

Artery Research Vol. 26(S1); 2020, p. S23

DOI: https://doi.org/10.2991/artres.k.201209.017; ISSN 1872-9312; eISSN 1876-4401

https://www.atlantis-press.com/journals/artres

Conference Abstract

P.03 Local Pulse Wave Velocity Estimation using a Double **Gaussian Propagation Model**

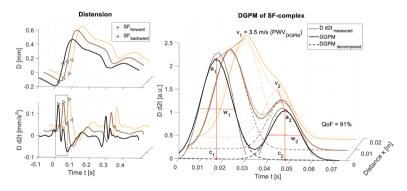
Fabian Beutel^{1,2,*}, Chris Van Hoof^{1,3}, Evelien Hermeling²

¹KU Leuven ²imec The Netherlands 3imec

Keywords

Local pulse wave velocity

ABSTRACT


Background: Pulse wave velocity (PWV) is an established marker of arterial stiffness [1]. Local PWV estimates, however, are affected by confluence of incident and reflected waves, biasing the spatiotemporal propagation of the systolic foot (SF) in the distension waveform [2,3]. We, therefore, propose a Double Gaussian Propagation Model (DGPM) to estimate PWV in consideration of local wave dynamics.

Methods: Ten subjects (38 ± 10 years) were measured in rest for 2 minutes, repeatedly in 3 sessions over 3 weeks. From carotid ultrasonography (Vantage64, VerasonicsInc., USA), we acquired 32 distension waveforms over a 19 mm wide arterial segment, simultaneously with noninvasive continuous blood pressure (NOVA, FinapresMedicalSystemsB. V., NL). The DGPM, fitted to the detrended second derivative (of the SF-complex, was defined as:

with time t[s], segment distance x[m] and 8 parameters modelling all 32 waveforms, i.e. a(mplitude)[a.u.], c(entroid)[s], w(idth) [s] and v(elocity)[m/s] of the forward (1) and backward (2) propagating wave, respectively (see Figure). Quality of fitting (QoF) was assessed as percentage of the waveform accounted by DGPM relative to the mean amplitude. Per cardiac cycle, PWV (= v₁), spatiotemporal PWV(PWV_{ST}) from linear regression of SF distances and timings, and Bramwell-Hill PWV (PWV_{BH}) were computed [4]. Pearson correlation coefficients were computed between session means of local PWV measures and PWV_{BH}.

Results: The DGPM adequately models the SF-complex (mean QoF = 85% for >20.000 cardiac cycles). For PWV_{BH}, PWV_{DGPM} shows a significantly higher predictive utility compared to $PWV_{ST}(r: 0.64 \text{ vs. } 0.10)$.

Conclusion: The proposed DGPM demonstrates significant predictive utility for PWV by accounting for wave confluence. This may facilitate the clinical practicality of local arterial stiffness estimation.

Figure

REFERENCES

- [1] Safar ME, Asmar R, Benetos A, Blacher J, Boutouyrie P, Lacolley P, et al. Interaction between hypertension and arterial stiffness: an expert reappraisal. Hypertension 2018;72:796-805.
- Hermeling E, Reesink KD, Reneman RS, Hoeks APG. Confluence of incident and reflected waves interferes with systolic foot detection of the carotid artery distension waveform. J Hypertens 2008;26:2374–80.
- Beutel F, Van Hoof C, Hermeling E. A beat-to-beat quality indicator based on piecewise spatiotemporal estimates of carotid pulse wave velocity improves correlation with pulse pressure. Artery Res 2019;25:S108–S9.
- Bramwell JC, Hill AV. The velocity of pulse wave in man. Proc R Soc Biol Sci 1922;93:298-306.

© 2020 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).