Conference Abstract

P.49 Aortic Root Longitudinal Strain by Speckle-Tracking Echocardiography: Comparison with Cardiac Magnetic Resonance and Predictive Value in Marfan Syndrome Patients

Andrea Guala*, Maria Isabel Pons, Aroa Ruiz-Muñoz, Lydia Dux-Santoy, Laura Madrenas, Minerva Gandara, Filipa Valente, Angela Lopez-Sainz, Laura Galian, Laura Gutierrez, Augusto Sao-Aviles, Teresa Gonzalez-Alujas, Ignacio Ferreira, Arturo Evangelista, Jose Rodriguez-Palomares, Gisela Teixido-Tura

Department of Cardiology, Vall d’Hebron Hospital

Keywords
Echocardiography
speckle-tracking
Marfan strain

ABSTRACT

Background: Low longitudinal strain of the ascending aorta (AAo) by cardiac magnetic resonance (CMR) predicts dilation and aortic events in Marfan syndrome (MFS) [1], possibly reflecting aortic stiffness [2]. Speckle-tracking is established for cardiac deformation, but proximal aorta applications are challenging due to wall thickness and substantial motion. We aimed to validate a purpose-specific speckle-tracking tool for root longitudinal strain analysis by comparison with CMR-derived AAo longitudinal strain and as predictor of dilation in MFS patients.

Methods: CMR feature-tracking [1] and echocardiography speckle-tracking where applied to 25 MFS patients free from previous aortic surgery by a single observer blind to clinical data. For echocardiography, two regions of interests were manually created covering both walls in a parasternal long-axis view and tracked along the cardiac cycle. Longitudinal strain was computed as the average of maximum increase in relative distance of several sub-regions covering both walls. Aortic diameter was measured on CMR images.

Results: Both techniques were successfully applied to all patients. Aortic root longitudinal strain by echocardiography was linearly related to CMR-derived AAo longitudinal strain ($R = 0.573$, $p = 0.003$, Figure A) and was higher (20.4 ± 8.4 vs 10.5 ± 3.8), especially at higher absolute values (Figure B). After a mean follow up of 45 ± 13 months, aortic root diameter growth rate was 0.27 ± 0.3 mm/year. In multivariable analysis corrected for root diameter and heart rate ($p = 0.083$ and 0.005, respectively), baseline longitudinal strain by echocardiography was independently related to progressive dilation ($B = -0.017$, $p = 0.005$).

Conclusion: Aortic root longitudinal strain by echocardiography is related to CMR-derived AAo longitudinal strain and is an independent predictor of progressive dilation in MFS patients.

REFERENCES

© 2020 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: andrea.guala@yahoo.com