

Artery Research Vol. **26(S1)**; 2020, *p.* S63 DOI: https://doi.org/10.2991/artres.k.201209.053; ISSN 1872-9312; eISSN 1876-4401 https://www.atlantis-press.com/journals/artres

Conference Abstract

P.41 Measurement of Pressure-dependent Intra-Beat Changes in Carotid Pulse Wave Velocity using Image-Free Fast Ultrasound

Kiran V Raj¹, P M Nabeel², Jayaraj Joseph^{1,2,*}, Dinu Chandran³, Mohanasankar Sivaprakasam^{1,2}

- ¹Department of Electrical Engineering, Indian Institute of Technology Madras
- ²Healthcare Technology Innovation Centre, Indian Institute of Technology Madras
- ³Department of Physiology, All India Institute of Medical Sciences

Keywords

Fast-ultrasound incremental-PWV image-free ultrasound

ABSTRACT

Background: The clinical significance of pressure-dependent intra-beat changes in local pulse-wave velocity (C) has recently come to light [1]. While reported methods require arterial pressure and diameter measurements from a single site to assess intrabeat changes in C, we present an image-free fast ultrasound device that performs this by capturing diameter waveforms from two proximal locations on an artery.

Methods: The functionality was assessed on eight normotensive participants (26 ± 4 years). By perturbing blood pressure through a short duration moderate lower body negative pressure intervention [2], C_D and C_F pulse wave velocities corresponding to diastolic and 80% of peak pressure were measured from the carotid artery. Human NIBP system (ADInstruments, India) was used for monitoring continuous pressure.

Results: The device captured dual-diameter waveforms and evaluated C_D and C_P with a beat-to-beat variation <8% during baseline. C_D was smaller than C_F (p < 0.001), 4.2 \pm 0.5 m/s versus 4.6 \pm 0.7 m/s during baseline and 3.7 \pm 0.6 m/s versus 3.9 \pm 0.7 m/s during intervention. Concomitant to the drop in group-average diastolic (17%) and systolic (18%) pressures during the intervention, C_D and C_F dropped by 14% and 16%, respectively. The statistically significant correlation (r > 0.6, p < 0.001) of C_D and C_F with the diastolic and systolic pressures for each individual was preserved even after adjusting for heart-rate.

Conclusions: The device demonstrated its functionality and reliably measured the incremental nature of C. Its pressure-dependent intra-beat variations and inter-beat dynamics during the intervention concurred with literature. Further studies are underway to demonstrate the potential use of the device in vascular research and clinical applications.

REFERENCES

- [1] Nabeel PM, Raj VK, Joseph J, Abhidev VV, Sivaprakasam M. Local pulse wave velocity: theory, methods, advancements, and clinical applications. IEEE Rev Biomed Eng 2020;13:74–112.
- [2] Goswami N, Blaber AP, Hinghofer-Szalkay H, Convertino VA. Lower body negative pressure: physiological effects, applications, and implementation. Physiol Rev 2019;99:807–51.

© 2020 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).