Journal of Nonlinear Mathematical Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251
Journal Home Page: https://www.atlantis-press.com/journals/jnmp

On the hierarchies of the fully nonlinear Möbius-invariant and symmetry-integrable evolution equations of order three

Marianna Euler, Norbert Euler

To cite this article: Marianna Euler, Norbert Euler (2020) On the hierarchies of the fully nonlinear Möbius-invariant and symmetry-integrable evolution equations of order three, Journal of Nonlinear Mathematical Physics 27:4, 521-528, DOI:
https://doi.org/10.1080/14029251.2020.1819627
To link to this article: https://doi.org/10.1080/14029251.2020.1819627

Published online: 04 January 2021

Letter to the Editor

On the hierarchies of the fully nonlinear Möbius-invariant and symmetry-integrable evolution equations of order three

Marianna Euler and Norbert Euler*
Department of Mathematics, Jinan University, 601 Huangpu W Ave, 510632 Guangzhou, People's Republic of China
and
Centro Internacional de Ciencias, Av. Universidad s/n, Colonia Chamilpa, 62210 Cuernavaca, Morelos, Mexico

Received 5 August 2020
Accepted 13 August 2020

Abstract

This is a follow-up paper to the results published in Studies in Applied Mathematics 143, 139-156 (2019), where we reported a classification of 3rd- and 5th-order semi-linear symmetry-integrable evolution equations that are invariant under the Möbius transformation, which includes a list of fully nonlinear 3rd-order equations that admit these properties. In the current paper we propose a simple method to compute the higher-order equations in the hierarchies for the fully nonlinear 3rd-order equations. We apply the proposed method to compute the 5th-order members of the hierarchies explicitly.

Keywords: Symmetry-Integrable Nonlinear Evolution Equations, Fully Nonlinear PDEs, Möbius transformations.

2000 Mathematics Subject Classification: 37K35, 35B06.

1. Introduction

In an earlier work [2] we derived all $(1+1)$-dimensional semi-linear evolution equations of order three and order five which are both Möbius-invariant and symmetry-integrable. The classification was done for semi-linear and fully nonlinear 3rd-order equations (meaning nonlinear in the highest derivative) of the form

$$
\begin{equation*}
u_{t}=u_{x} \Psi(S) \tag{1.1}
\end{equation*}
$$

and for semi-linear 5th-order equations of the form

$$
\begin{equation*}
u_{t}=u_{x} \Psi\left(S, S_{x}, S_{x x}\right) . \tag{1.2}
\end{equation*}
$$

[^0]Here and throughout this paper, S denotes the Schwarzian derivative in terms of u, namely

$$
\begin{equation*}
S:=\frac{u_{x x x}}{u_{x}}-\frac{3}{2}\left(\frac{u_{x x}}{u_{x}}\right)^{2} . \tag{1.3}
\end{equation*}
$$

We remark that S, itself, is invariant under the Möbius transformation.That is

$$
\begin{equation*}
S(\bar{u})=S(u), \quad \text { where } \quad \bar{u}=\frac{\alpha_{1} u+\beta_{1}}{\alpha_{2} u+\beta_{2}} \tag{1.4}
\end{equation*}
$$

with $\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1} \neq 0$. Clearly u_{t} / u_{x} is also Möbius invariant, as well as the x-derivatives of S, so that the n th-order equation in u,

$$
\begin{equation*}
u_{t}=u_{x} \Psi\left(S, S_{x}, S_{x x}, S_{3 x}, \ldots, S_{(n-3) x}\right), \tag{1.5}
\end{equation*}
$$

is Möbius invariant for any smooth function Ψ with $n \geqslant 3$.
It follows [2] that the only semi-linear equation of the form (1.1) which is symmetry-integrable is the Schwarzian Korteweg-de Vries equation

$$
\begin{equation*}
u_{t}=u_{x} S \tag{1.6}
\end{equation*}
$$

When (1.1) is not required to be semi-linear, four additional symmetry-integrable fully nonlinear equations follow, namely [2]

$$
\begin{gather*}
u_{t}=-2 \frac{u_{x}}{\sqrt{S}} \tag{1.7a}\\
u_{t}=\frac{u_{x}}{\left(b_{1}-S\right)^{2}} \tag{1.7b}\\
u_{t}=\frac{u_{x}}{S^{2}} \tag{1.7c}\\
u_{t}=u_{x}\left(\frac{a_{1}-S}{\left(a_{1}^{2}+3 a_{2}\right)\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{1 / 2}}\right), \tag{1.7d}
\end{gather*}
$$

where the constants a_{1}, a_{2} and b_{1} are arbitrary, except for the condition that $a_{1}^{2}+3 a_{2} \neq 0$ and $b_{1} \neq 0$.
For the 5 th-order semi-linear equations

$$
\begin{equation*}
u_{t}=u_{x} S_{x x}+u_{x} \Phi_{1}\left(S, S_{x}, S_{x x}\right) \tag{1.8}
\end{equation*}
$$

we obtained two equations, namely [2]

$$
\begin{array}{ll}
u_{t}=u_{x}\left(S_{x x}+\frac{1}{4} S^{2}\right): & \text { the Schwarzian Kupershmidt I equation; } \\
u_{t}=u_{x}\left(S_{x x}+4 S^{2}\right): & \text { the Schwarzian Kupershmidt II equation. } \tag{1.9b}
\end{array}
$$

In addition, the 5th-order Möbius-invariant equation

$$
\begin{equation*}
u_{t}=u_{x}\left(S_{x x}+\frac{3}{2} S^{2}\right) \tag{1.10}
\end{equation*}
$$

M. Euler and N. Euler / Hierarchies of the fully nonlinear evolution equations of order three

follows from the 2nd member of the Schwarzian Korteweg-de Vries hierarchy of (1.6). The following statement is essential for this classification:

Lemma 1 ([2]). The nth-order Möbius-invariant equation

$$
\begin{equation*}
u_{t}=u_{x} \Psi\left(S, S_{x}, S_{x x}, \ldots, S_{(n-3) x}\right) \tag{1.11}
\end{equation*}
$$

can be presented in the form of the Möbius-invariant system

$$
\begin{gather*}
u_{t}=u_{x} \Psi\left(S, S_{x}, S_{x x}, \ldots, S_{(n-3) x}\right) \tag{1.12a}\\
S_{t}=\left(D_{x}^{3}+2 S D_{x}+S_{x}\right) \Psi\left(S, S_{x}, S_{x x}, \ldots, S_{(n-3) x}\right), \tag{1.12b}
\end{gather*}
$$

known as the Schwarzian system, where S denotes the Schwarzian derivative in terms of u and $n \geqslant 3$.
For semi-linear evolution equations with $n>3$, system (1.12a)-(1.12b) takes the following form:

$$
\begin{gather*}
u_{t}=u_{x} S_{(n-3) x}+u_{x} \Psi_{1}\left(S, S_{x}, S_{x x}, \ldots, S_{(n-4) x}\right) \tag{1.13a}\\
S_{t}=S_{n x}+2 S S_{(n-2) x}+S_{x} S_{(n-3) x}+\left(D_{x}^{3}+2 S D_{x}+S_{x}\right) \Psi_{1}\left(S, S_{x}, S_{x x}, \ldots, S_{(n-4) x}\right) \tag{1.13b}
\end{gather*}
$$

The Möbius-invariant and symmetry-integrable equations listed above then follow from
Proposition 1 ([2]). Let $R[S]$ be a recursion operator for (1.12b), such that

$$
\begin{equation*}
Z_{j}^{S}=R^{j}[S] S_{t} \frac{\partial}{\partial S} \tag{1.14}
\end{equation*}
$$

are generalized symmetries (also known as Lie-Bäcklund symmetries) for (1.12b) for all $j \in \mathscr{N}$. Then

$$
\begin{equation*}
Z_{j}^{u}=u_{x} \Psi\left(S, S_{x}, S_{x x}, \ldots, S_{(n-3) x}\right) \frac{\partial}{\partial u}+R^{j}[S] S_{t} \frac{\partial}{\partial S} \tag{1.15}
\end{equation*}
$$

are generalized symmetries for (1.12a) for all $j \in \mathscr{N}$. Therefore, (1.12a) is symmetry-integrable if (1.12b) is symmetry-integrable.

The hierarchies of higher-order members of the Möbius-invariant and symmetry-integrable equations (1.6), (1.9a) and (1.9b) are well known and are best presented in terms of their recursion operators ([1], [2], [4]). However, for the fully nonlinear equations (1.7a)-(1.7d) one encounters a problem as we have found that these equations do not admit recursion operators of the usual linear form

$$
\begin{equation*}
R[u]=\sum_{j=0}^{p} G_{j} D_{x}^{j}+\sum_{k=1}^{q} \eta_{k} D_{x}^{-1} \circ \Lambda_{k} . \tag{1.16}
\end{equation*}
$$

In this paper we propose and alternate approach to compute and present the higher-order members of the fully nonlinear hierarchies.

Motivation. The results for 3rd-order and 5th-order semi-linear equations reported in [2] show that the Möbius-invariant systems that are identified by Proposition 1 are exactly those equations that play a central role in the construction of nonlocal and auto-Bäcklund transformations by multipotentialisation, namely the Schwarzian KdV equation (1.6), the Schwarzian Kupershmidt I equation (1.9a) and the Schwarzian Kupershmidt II equation (1.9b) (see [1] for more details). We expect that
the Möbius-invariant and symmetry-integrable fully nonlinear equations of 3rd and higher order are of similar importance in the study of fully nonlinear evolution equations.

2. Hierarchies of the fully nonlinear evolution equations of order three

Lemma 1 directly leads to the following proposition by which it is relatively easy to compute the higher-order members of the Möbius-invariant and symmetry-integrable hierarchies of the 3rd-order equation $u_{t}=u_{x} \Psi(S)$:

Proposition 2. Let

$$
\begin{gather*}
u_{t}=u_{x} \Psi(S) \tag{2.1a}\\
S_{t}=\left(D_{x}^{3}+2 S D_{x}+S_{x}\right) \Psi(S) \tag{2.1b}
\end{gather*}
$$

be a Möbius-invariant and symmetry-integrable system for some given function $\Psi=\Psi(S)$, where S is the Schwarzian derivative in u. Let $R[S]$ be a 2 nd-order recursion operator for (2.1b). Then the higher-order equations in the hierarchy of the symmetry-integrable equation (2.1a) are of the form

$$
\begin{equation*}
u_{t_{j}}=u_{x} \Psi_{j}\left(S, S_{x}, S_{x x}, S_{(2 j) x}\right), \quad j=0,1,2, \ldots \tag{2.2}
\end{equation*}
$$

where Ψ_{j} is to be solved for every $j>0$ from the relation

$$
\begin{equation*}
\left(D_{x}^{3}+2 S D_{x}+S_{x}\right) \Psi_{j}\left(S, S_{x}, \ldots, S_{(2 j) x}\right)=R^{j}[S]\left(D_{x}^{3}+2 S D_{x}+S_{x}\right) \Psi(S) \tag{2.3}
\end{equation*}
$$

and $\Psi_{0} \equiv \Psi$.
Remark 1. Note that (2.1b) is never fully nonlinear (in the highest derivative of S), so that the existence of a recursion operator $R[S]$ of the form (1.16) for the symmetry-integrable equation (2.1b) can be assumed.

Result. Applying Proposition 2 we obtain the following 5th-order equations that belong to the hierarchies of fully nonlinear 3 rd-order equations (1.7a), (1.7b), (1.7c) and (1.7d), respectively:

$$
\begin{gather*}
u_{t_{1}}=u_{x}\left(\frac{S_{x x}}{S^{5 / 2}}-\frac{5}{4} \frac{S_{x}^{2}}{S^{7 / 2}}+\frac{4}{S^{1 / 2}}\right) \tag{2.4a}\\
u_{t_{1}}=u_{x}\left(\frac{4 S_{x x}}{b_{1}\left(b_{1}-S\right)^{5}}+\frac{10 S_{x}^{2}}{b_{1}\left(b_{1}-S\right)^{6}}-\frac{b_{1}-4 S}{b_{1}\left(b_{1}-S\right)^{4}}\right) \tag{2.4b}\\
u_{t_{1}}=u_{x}\left(-\frac{2 S_{x x}}{S^{5}}+\frac{5 S_{x}^{2}}{S^{6}}+\frac{2}{S^{3}}\right) \tag{2.4c}\\
u_{t_{1}}=u_{x}\left(\frac{S_{x x}}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{5 / 2}}-\frac{5\left(S-a_{1}\right) S_{x}^{2}}{2\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{7 / 2}}\right. \\
\left.-\frac{a_{1} S+3 a_{2}}{\left(a_{1}^{2}+3 a_{2}\right)\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{3 / 2}}\right) . \tag{2.4d}
\end{gather*}
$$

To discuss the derivation of (2.4a)-(2.4d), we consider the equations (1.7a)-(1.7d) in four separate cases, where we also provide the recursion operators for each S-equation associated to (1.7a)-(1.7d):

Case 1: We consider the 3rd-order Schwarzian system that is associated with the equation (1.7a), namely

$$
\begin{gather*}
u_{t}=-2 \frac{u_{x}}{\sqrt{S}} \tag{2.5a}\\
S_{t}=S^{-3 / 2} S_{3 x}-\frac{9}{2} S^{-5 / 2} S_{x} S_{x x}+\frac{15}{4} S^{-7 / 2} S_{x}^{3} \tag{2.5b}
\end{gather*}
$$

A recursion operator for $(2.5 b)$ is

$$
\begin{equation*}
R[S]=\frac{1}{S} D_{x}^{2}-\frac{5}{2} \frac{S_{x}}{S^{2}} D_{x}-2 \frac{S_{x x}}{S^{2}}+\frac{15}{4} \frac{S_{x}^{2}}{S^{3}}-\frac{1}{2} S_{t} D_{x}^{-1} \circ \frac{1}{\sqrt{S}} \tag{2.6}
\end{equation*}
$$

where $R[S] S_{x}=0$ and

$$
\begin{gather*}
S_{t_{1}}=R[S] S_{t} \\
=S^{-5 / 2} S_{5 x}-10 S^{-7 / 2} S_{x} S_{4 x}+\frac{455}{8} S^{-9 / 2} S_{x}^{2} S_{3 x}-\frac{35}{2} S^{-7 / 2} S_{x x} S_{3 x} \\
+\frac{315}{4} S^{-9 / 2} S_{x} S_{x x}^{2}-\frac{3465}{16} S^{-11 / 2} S_{x}^{3} S_{x x}+\frac{3465}{32} S^{-13 / 2} S_{x}^{5} \tag{2.7}
\end{gather*}
$$

Applying Proposition 2 we need to find the general solution for $\Psi_{1}\left(S, S_{x}, S_{x x}\right)$ from the relation

$$
\begin{equation*}
\left(D_{x}^{3}+2 S D_{x}+S_{x}\right) \Psi_{1}\left(S, S_{x}, S_{x x}\right)=R[S] S_{t} \tag{2.8}
\end{equation*}
$$

with $R[S] S_{t}$ given by (2.7). This leads to

$$
\begin{equation*}
\Psi_{1}\left(S, S_{x}, S_{x x}\right)=S^{-1 / 2}\left(S^{-2} S_{x x}-\frac{5}{4} S^{-3} S_{x}^{2}+4\right) \tag{2.9}
\end{equation*}
$$

so that the 5th-order Schwarzian system in the hierarchy is

$$
\begin{gather*}
u_{t_{1}}=u_{x}\left(S^{-5 / 2} S_{x x}-\frac{5}{4} S^{-7 / 2} S_{x}^{2}+4 S^{-1 / 2}\right) \tag{2.10a}\\
S_{t_{1}}=R[S] S_{t} \\
=S^{-5 / 2} S_{5 x}-10 S^{-7 / 2} S_{x} S_{4 x}+\frac{455}{8} S^{-9 / 2} S_{x}^{2} S_{3 x}-\frac{35}{2} S^{-7 / 2} S_{x x} S_{3 x} \\
+\frac{315}{4} S^{-9 / 2} S_{x} S_{x x}^{2}-\frac{3465}{16} S^{-11 / 2} S_{x}^{3} S_{x x}+\frac{3465}{32} S^{-13 / 2} S_{x}^{5} . \tag{2.10b}
\end{gather*}
$$

Case 2: We consider the 3rd-order Schwarzian system that is associated with equation (1.7b), namely

$$
\begin{gather*}
u_{t}=\frac{u_{x}}{\left(b_{1}-S\right)^{2}} \tag{2.11a}\\
S_{t}=\frac{2 S_{3 x}}{\left(b_{1}-S\right)^{3}}+\frac{18 S_{x} S_{x x}}{\left(b_{1}-S\right)^{4}}+\frac{24 S_{x}^{3}}{\left(b_{1}-S\right)^{5}}+\frac{\left(3 S+b_{1}\right) S_{x}}{\left(b_{1}-S\right)^{3}} \tag{2.11b}
\end{gather*}
$$

where $b_{1} \neq 0$. A recursion operator for (2.11b) is

$$
\begin{align*}
& R[S]=\frac{1}{b_{1}} \frac{2}{\left(b_{1}-S\right)^{2}} D_{x}^{2}+\frac{1}{b_{1}} \frac{10 S_{x}}{\left(b_{1}-S\right)^{3}} D_{x} \\
& +\frac{8}{b_{1}}\left(\frac{S_{x x}}{\left(b_{1}-S\right)^{3}}+\frac{3 S_{x}^{2}}{\left(b_{1}-S\right)^{4}}+\frac{S}{2\left(b_{1}-S\right)^{2}}\right) \\
& \quad+\frac{1}{b_{1}} S_{t} D_{x}^{-1} \circ 1+\frac{1}{b_{1}} S_{x} D_{x}^{-1} \circ \frac{1}{\left(b_{1}-S\right)^{2}}, \tag{2.12}
\end{align*}
$$

whereby $R[S]$ maps the x-translation symmetry to the t-translation symmetry. That is

$$
\begin{equation*}
R[S] S_{x}=\frac{2 S_{x x x}}{\left(b_{1}-S\right)^{3}}+\frac{18 S_{x} S_{x x}}{\left(b_{1}-S\right)^{4}}+\frac{24 S_{x}^{3}}{\left(b_{1}-S\right)^{5}}+\frac{\left(3 S+b_{1}\right) S_{x}}{\left(b_{1}-S\right)^{3}}=S_{t} \tag{2.13}
\end{equation*}
$$

Calculating $R[S] S_{t}$ and using Proposition 2 to determine Ψ_{1}, we obtain the following 5th-order Schwarzian system for this hierarchy:

$$
\begin{gather*}
u_{t_{1}}=u_{x}\left(\frac{4 S_{x x}}{b_{1}\left(b_{1}-S\right)^{5}}+\frac{10 S_{x}^{2}}{b_{1}\left(b_{1}-S\right)^{6}}-\frac{b_{1}-4 S}{b_{1}\left(b_{1}-S\right)^{4}}\right) \tag{2.14a}\\
S_{t_{1}}=R[S] S_{t} \\
=\frac{4 S_{5 x}}{b_{1}\left(b_{1}-S\right)^{5}}+\frac{80 S_{x} S_{4 x}}{b_{1}\left(b_{1}-S\right)^{6}}+\frac{140 S_{x x} S_{3 x}}{b_{1}\left(b_{1}-S\right)^{6}}+\frac{780 S_{x}^{2} S_{3 x}}{b_{1}\left(b_{1}-S\right)^{7}}+\frac{20 S S_{3 x}}{b_{1}\left(b_{1}-S\right)^{5}} \\
+\frac{1080 S_{x} S_{x x}^{2}}{b_{1}\left(b_{1}-S\right)^{7}}+\frac{4620 S_{x}^{3} S_{x x}}{b_{1}\left(b_{1}-S\right)^{8}}+\frac{4\left(55 S+b_{1}\right) S_{x} S_{x x}}{b_{1}\left(b_{1}-S\right)^{6}}+\frac{3360 S_{x}^{5}}{b_{1}\left(b_{1}-S\right)^{9}} \\
+\frac{10\left(35 S+13 b_{1}\right) S_{x}^{3}}{b_{1}\left(b_{1}-S\right)^{7}}+\frac{\left(2 S^{2}+5 b_{1} S-b_{1}^{2}\right) S_{x}}{b_{1}\left(b_{1}-S\right)^{5}} \tag{2.14b}
\end{gather*}
$$

Case 3: We consider the 3rd-order Schwarzian system that is associated with the equation (1.7c), namely

$$
\begin{gather*}
u_{t}=u_{x}\left(\frac{1}{S^{2}}\right) \tag{2.15a}\\
S_{t}=-2\left(\frac{S_{3 x}}{S^{3}}-\frac{9 S_{x} S_{x x}}{S^{4}}+\frac{12 S_{x}^{3}}{S^{5}}+\frac{3 S_{x}}{2 S^{2}}\right) \tag{2.15b}
\end{gather*}
$$

A recursion operator for $(2.15 b)$ is

$$
\begin{equation*}
R[S]=\frac{1}{S^{2}} D_{x}^{2}-\frac{5 S_{x}}{S^{3}} D_{x}-\frac{4 S_{x x}}{S^{3}}+\frac{12 S_{x}^{2}}{S^{4}}+\frac{2}{S}+\frac{S_{t}}{2} D_{x}^{-1} \circ 1+\frac{S_{x}}{2} D_{x}^{-1} \circ \frac{1}{S^{2}} \tag{2.16}
\end{equation*}
$$

whereby $R[S]$ maps the x-translation symmetry to zero. Calculating $R[S] S_{t}$ and using Proposition 2 to determine Ψ_{1}, we obtain the following 5th-order Schwarzian system for this hierarchy:

$$
\begin{gather*}
u_{t_{1}}=u_{x}\left(-\frac{2 S_{x x}}{S^{5}}+\frac{5 S_{x}^{2}}{S^{6}}+\frac{2}{S^{3}}\right) \tag{2.17a}\\
S_{t_{1}}=R[S] S_{t} \\
=-\frac{2 S_{5 x}}{S^{5}}+\frac{40 S_{x} S_{4 x}}{S^{6}}+\frac{70 S_{x x} S_{3 x}}{S^{6}}-\frac{390 S_{x}^{2} S_{3 x}}{S^{7}}-\frac{10 S_{3 x}}{S^{4}}-\frac{540 S_{x} S_{x x}^{2}}{S^{7}} \\
+\frac{2310 S_{x}^{3} S_{x x}}{S^{8}}+\frac{110 S_{x} S_{x x}}{S^{5}}-\frac{175 S_{x}^{3}}{S^{6}}-\frac{1680 S_{x}^{5}}{S^{9}}-\frac{10 S_{x}}{S^{3}} . \tag{2.17b}
\end{gather*}
$$

Case 4: We consider the 3rd-order Schwarzian system that is associated with equation (1.7d), namely

$$
\begin{gather*}
u_{t}=u_{x}\left(\frac{a_{1}-S}{\left(a_{1}^{2}+3 a_{2}\right)\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{1 / 2}}\right) \tag{2.18a}\\
S_{t}=\frac{S_{3 x}}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{3 / 2}}-\frac{9\left(S-a_{1}\right) S_{x} S_{x x}}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{5 / 2}} \\
+\frac{3\left(4 S^{2}-8 a_{1} S+5 a_{1}^{2}+3 a_{2}\right) S_{x}^{3}}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{7 / 2}}-\frac{\left(S^{3}-3 a_{1} S^{2}-9 a_{2} S+3 a_{1} a_{2}\right) S_{x}}{\left(a_{1}^{2}+3 a_{2}\right)\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{3 / 2}}, \tag{2.18b}
\end{gather*}
$$

where $a_{1}^{2}+3 a_{2} \neq 0$. Note that the case $a_{1}^{2}+3 a_{2}=0$ is given by Case 2 above. A recursion operator for (2.18b) is

$$
\begin{align*}
& R[S]= \frac{1}{S^{2}-2 a_{1} S-3 a_{2}} D_{x}^{2}+\frac{5 S_{x}\left(a_{1}-S\right)}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{2}} D_{x}+\frac{4 S_{x x}\left(a_{1}-S\right)}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{2}} \\
&+\frac{3 S_{x}^{2}\left(4 S^{2}-8 a_{1} S+5 a_{1}^{2}+3 a_{2}\right)}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{3}}+\frac{2 S}{S^{2}-2 a_{1} S-3 a_{2}}+\frac{a_{1}}{a_{1}^{2}+3 a_{2}} \\
&+S_{t} D_{x}^{-1} \circ \frac{a_{1}-S}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{1 / 2}}-\frac{S_{x}}{a_{1}^{2}+3 a_{2}} D_{x}^{-1} \circ 1, \tag{2.19}
\end{align*}
$$

whereby $R[S]$ maps the x-translation symmetry to zero. Calculating $R[S] S_{t}$ and using Proposition 2 to determine Ψ_{1}, we obtain the following 5th-order Schwarzian system for this hierarchy:

$$
\begin{gather*}
u_{t_{1}}=u_{x}\left(\frac{S_{x x}}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{5 / 2}}-\frac{5\left(S-a_{1}\right) S_{x}^{2}}{2\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{7 / 2}}\right. \\
\left.-\frac{a_{1} S+3 a_{2}}{\left(a_{1}^{2}+3 a_{2}\right)\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{3 / 2}}\right) \tag{2.20a}\\
S_{t_{1}}=\frac{S_{5 x}}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{5 / 2}}-\frac{20\left(S-a_{1}\right) S_{x} S_{4 x}}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{7 / 2}}-\frac{35\left(S-a_{1}\right) S_{x x} S_{3 x}}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{7 / 2}}
\end{gather*}
$$

M. Euler and N. Euler / Hierarchies of the fully nonlinear evolution equations of order three

$$
\begin{gather*}
+\frac{65\left(6 S^{2}-12 a_{1} S+3 a_{2}+7 a_{1}^{2}\right) S_{x}^{2} S_{3 x}}{2\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{9 / 2}}+\frac{\left(2 a_{1} S^{2}+a_{1}^{2} S+15 a_{2} S-6 a_{1} a_{2}\right) S_{3 x}}{\left(a_{1}^{2}-3 a_{2}\right)\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{5 / 2}} \\
+\frac{45\left(6 S^{2}-12 a_{1} S+3 a_{2}+7 a_{1}^{2}\right) S_{x} S_{x x}^{2}}{\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{9 / 2}} \\
-\frac{1155\left(S-a_{1}\right)\left(2 S^{2}-4 a_{1} S+3 a_{2}+3 a_{1}^{2}\right) S_{x}^{3} S_{x x}}{2\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{11 / 2}} \\
-\frac{\left(18 a_{1} S^{3}+a_{1}^{2} S^{2}+165 a_{2} S^{2}-9 a_{1}^{3} S-189 a_{1} a_{2} S+84 a_{1}^{2} a_{2}+90 a_{2}^{2}\right) S_{x} S_{x x}}{\left(a_{1}^{2}+3 a_{2}\right)\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{7 / 2}} \\
+\frac{105\left(16 S^{4}-64 a_{1} S^{3}+112 a_{1}^{2} S^{2}+48 a_{2} S^{2}-96 a_{1}^{3} S-96 a_{1} a_{2} S\right) S_{x}^{5}}{2\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{13 / 2}} \\
+\frac{105\left(33 a_{1}^{4}+54 a_{1}^{2} a_{2}+9 a_{2}^{2}\right) S_{x}^{5}}{2\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{13 / 2}+\frac{\left(945 a_{2}^{2} S+30 a_{1}^{4} S-693 a_{1} a_{2}^{2}-375 a_{1}^{3} a_{2}\right) S_{x}^{3}}{2\left(a_{1}^{2}+3 a_{2}\right)\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{9 / 2}}} \\
+\frac{\left(48 a_{1} S^{4}+525 a_{2} S^{3}-17 a_{1}^{2} S^{3}-33 a_{1}^{3} S^{2}-963 a_{1} a_{2} S^{2}+981 a_{1}^{2} a_{2} S\right) S_{x}^{3}}{2\left(a_{1}^{2}+3 a_{2}\right)\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{9 / 2}} \\
+\frac{3\left(a_{1} S^{3}+5 a_{2} S^{2}-a_{1} a_{2} S+3 a_{2}^{2}\right) S_{x}}{\left(a_{1}^{2}+3 a_{2}\right)\left(S^{2}-2 a_{1} S-3 a_{2}\right)^{5 / 2}} \tag{2.20b}
\end{gather*}
$$

3. Concluding remarks

We have introduced a simple method, given by Proposition 2, by which it is relatively easy to compute the higher-order equations for a hierarchy of Möbius-invariant and symmetry-integrable equations. This is of particular intertest for fully nonlinear equations (1.7a)-(1.7a), where it is difficult to obtain the recursion operators of the equations. Proposition 2 applies to 3rd-order equations, but the extension to higher-order equations is straightforward. Our study of 5th-order quasi-linear and fully nonlinear Möbius-invariant and symmetry-integrable evolution equations is ongoing and will be published in the near future.

References

[1] Euler M. and Euler N., Nonlocal invariance of the multipotentialisations of the Kupershmidt equation and its higher-order hierarchies In: Nonlinear Systems and Their Remarkable Mathematical Structures, N. Euler (ed.), CRC Press, Boca Raton, 317-351, 2018.
[2] Euler M. and Euler N., On Möbius-invariant and symmetry-integrable evolution equations and the Schwarzian derivative, Studies in Applied Mathematics, 143, 139-156, 2019.
[3] Euler M., Euler N. and Reyes E.G., Multipotentialisation and nonlocal symmetries: Kupershmidt, Kaup-Kupershmidt and Sawada-Kotera equations, J. Nonlinear Math. Phys., 24 (3), 303-314, 2017.
[4] Sanders J.A. and Wang J.P., Integrable systems and their recursion operators, Nonlinear Analysis 47, 5213-5240, 2001.

[^0]: *Corresponding author's email address: euler199@gmail.com

