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Centre de Recerca Matemática, 08193 Bellaterra,
Barcelona, Catalonia, Spain
yohanna.martinez@uab.cat

Claudia Valls

Center for Mathematical Analysis, Geometry and Dynamical Systems,
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In this work we consider the Lotka–Volterra system in R3

ẋ =−x(x− y− z), ẏ =−y(−x+ y− z), ż =−z(−x− y+ z),

introduced recently in [7], and studied also in [8] and [14]. In the first two papers the authors mainly studied
the integrability of this differential system, while in the third paper they studied the system as a Hamilton-
Poisson system, and also started the analysis of its dynamics. Here we provide the global phase portraits of this
3-dimensional Lotka–Volterra system in the Poincaré ball, that is in R3 adding its extension to the infinity.
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1. Introduction and statement of the main results

The Lotka–Volterra systems, developed independently by Alfred J. Lotka in 1925 [9] and Vito
Volterra in 1926 [15], were initially proposed as models for studying the interactions in two dimen-
sions between species. Kolmogorov [5] in 1936 extended these systems to arbitrary dimension and
degree, which are now called Kolmogorov systems.

The Lotka–Volterra systems have been applied to model different natural phenomena such as
the time evolution of conflicting species in biology (which began with the work of May [10]), the
evolution of competition between three species (studied by May and Leonard [11]), the evolution of
electrons, ions and neutral species in plasma physics [6], chemical reactions [4], hydrodynamics [1],
economics [13], etc.
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In this work we consider the following Lotka–Volterra system

ẋ =−x(x− y− z),
ẏ =−y(−x+ y− z),
ż =−z(−x− y+ z),

(1.1)

where the dot denotes derivative with respect to the time t.
The main goal of this work is to describe the global dynamics of the Lotka–Volterra system

(1.1) in R3 adding the infinity, i.e. we are interested in describing the phase portraits of system
(1.1) on the Poincaré ball D3. A first attempt to describe these phase portraits was done in [14]
where the authors gave a Hamilton-Poisson formulation of system (1.1). Leach and Miritzis in [7]
proved that system (1.1) has a first integral, and in [8] the authors proved that this system has the
two independent first integrals x(y− z) and y(z− x). The existence of these first integrals has some
consequences on the phase portrait of the system. Thus on the invariant plane x = 0 one gets that all
trajectories are contained in the hyperbolas yz = constant. On the other hand, a generic trajectory
is contained in the elliptic curves intersection of the surfaces x(y− z) = constant and y(z− x) =
constant. In any case these informations are not sufficient for obtaining the global phase portrait of
system (1.1) in the Poincaré ball.

Our objective is to establish the α- and ω-limit of all the orbits of system (1.1) and to character-
ize the phase portrait of this system in the Poincaré ball D3. We recall that the Poincaré ball can be
seen as the closed unit ball centered at the origin of R3, where its interior is identified with R3 and
its boundary S2 is identified with the infinity of R3 (in the sense that in R3 we can go or come from
infinity in as many directions as points has the 2-dimensional sphere S2).

A polynomial differential system in R3 (in the interior of D3) can be extended analytically to its
boundary S2. This extension was done by the first time by Poincaré in [12] for polynomial differen-
tial systems in R2 and it is called the Poincaré compactification. In [2] the authors give an extension
to polynomial differential systems in R3. For a brief introduction to Poincaré compactification see
the appendix.

Two compactified polynomial differential systems in the Poincaré ball D3 are topologically
equivalent if there is a homeomorphism of D3 which send orbits of one system into orbits of the
other system, preserving or reversing the orientation of all orbits.

We note that system (1.1) has the symmetry (x,y,z, t)→ (−x,−y− z,−t). Then it is sufficient
to study its dynamics for x≥ 0.

In the next theorem we describe the phase portrait on the half-ball x≥ 0 of the Poincaré ball for
the 3-dimensional Lotka–Volterra system (1.1).

Theorem 1.1. The dynamics of the 3-dimensional Lotka–Volterra system (1.1) in the Poincaré ball
is the following.

(a) The phase portraits on the invariant planes x = 0, y = 0 and z = 0 are shown in Figures 1
and 2.

(b) The phase portraits on the invariant planes x = z, y = z and x = y are shown in Figure 3.
(c) The phase portrait at infinity is topologically equivalent to the one of Figure 4.
(d) The phase portraits on the boundary of the twelve invariant regions obtained dividing the

Poincaré ball by the six previous invariant planes in the region x ≥ 0 are topologically equiv-
alent to the ones shown in Figure 6.
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(e) The phase portraits in the interior of the twelve invariant regions provided in statement (d) are
topologically equivalent to the ones shown in Figure 7. Moreover the α- and ω-limits of each
orbit in the interior of these regions are given in Table 1.

The paper is organized as follows. In section 2 we study system (1.1) on the planes x = 0, y = 0,
z = 0, y = x, z = y and z = x, and we prove statements (a) and (b) of Theorem 1.1. In section 3
we study the infinite equilibria of system (1.1) and give the phase portraits on the Poincaré ball,
proving statements (c), (d) and (e) of Theorem 1.1. In the appendix there is a brief description of
the Poincaré compactification for polynomial differential systems in R3 and in R2.

2. Phase Portraits of system (1.1) on the planes

In this section we study all the phase portraits of the 3-dimensional Lotka–Volterra system (1.1) on
the planes x = 0, y = 0, z = 0, y = x, z = y and z = x.

First we point out that in [8] the authors proved that system (1.1) has the two independent first
integrals

H1 = (xyz)(x− y)(x− z)(y− z), and
H2 = x2y2− x2yz− xy2z+ x2z2− xyz2 + y2z2.

Moreover the unique irreducible Darboux polynomials with non-zero cofactor of system (1.1) are:

(1) x, y, z with cofactors −(x− y− z), −(−x+ y+−z), and −(−x+−y+ z), respectively.
(2) x− z, y− z and z−x with cofactors −(x−y+ z), −(−x+y+ z), and −(x+y− z), respectively.

We separate the study of the dynamics in the invariant planes in two cases.

2.1. Phase portraits on the invariant planes xxx === 000, yyy === 000 and zzz === 000

First note that system (1.1) on the planes x = 0, y = 0 and z = 0 are equivalent. In fact, system (1.1)
on x = 0 is given by

ẏ =−y(y− z), ż =−z(−y+ z), (2.1)

on y = 0 by

ẋ =−x(x− z), ż =−z(−x+ z), (2.2)

and on z = 0 by

ẋ =−x(x− y), ẏ =−y(−x+ y). (2.3)

Clearly system (2.1) and system (2.2) are equivalent through the change of variables (y,z)→
(x,z), and system (2.3) is equivalent to the previous ones considering the changes of variables
(x,y)→ (x,z), or (x,y)→ (y,z) to get system (2.2), or (2.1), respectively. Hence we are only going
to analyze the global phase portraits of system (2.3).

We start with the study of the infinite singular points. For this purpose we use the Poincaré
compactification of a polynomial differential systems in R2, see details in chapter 5 of [3]. System
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(2.3) in the local chart U1 is given by

ż1 =−2z1(−1+ z1), ż2 =−z2(−1+ z1), (2.4)

and in the local chart U2 is

ż1 =−2z1(−1+ z1), ż2 =−z2(−1+ z1). (2.5)

From systems (2.4) and (2.5) we get that at infinity (i.e. at all points having the coordinate z2 = 0)
the origin of each chart is an equilibrium point. Moreover, in U1 we have a second equilibrium point
given by (1,0). The eigenvalues of the linear part at the origins of U1 and U2 are 1 and 2, so they are
unstable nodes. Note that since system (2.3) has degree 2 the corresponding equilibria on V1 and V2

will be stable nodes. The equilibrium (1,0) in U1 is not a hyperbolic equilibrium. It is at the infinity
of the straight line x = y which is filled of equilibria as will be seen later on in the next.

Now we study the finite singular points. System (2.3) has a straight line of equilibria given by
x = y. Since −x+ y is a common factor of system (2.3), doing a reparametrization of the time,
system (2.3) becomes

x′ = x, y′ =−y. (2.6)

It is known that the global dynamics of system (2.6) is the following: it has a saddle at the origin
with stable separatrices on the y-axis and unstable separatrices on x-axis and at infinity it has infinite
unstable nodes at the origins of U1 and V1 and infinite stable nodes at the origins of U2 and V2.

Going back through the reparametrization of time, taking into account the change of stability in
the region −x+ y < 0 and the straight line of finite equilibria on −x+ y = 0, we can complete the
global phase portrait of system (2.3) by using the Poincaré Bendixson Theorem (see [3]) connecting
the separatrices of the saddle at the origin to the nodes at the infinity. Doing so we obtain the phase
portrait described in Figure 1(a).

(a) (b) (c)

Fig. 1. Phase portraits of system (1.1) in the planes x = 0, y = 0 and z = 0, respectively.

The phase portraits in the planes x = 0, y = 0 and z = 0 in R3 are shown in Figure 2. This
completes the proof of statement (a) of Theorem 1.1.
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Fig. 2. Phase portrait of system (1.1) on the planes x = 0, y = 0, z = 0 inside the Poincaré ball.

2.2. Phase portraits on the invariant planes xxx === zzz, yyy === zzz and yyy === xxx

Note that the dynamics of system (1.1) restricted to the plane x = z, to the plane y = z and to the
plane y = x are topologically equivalent. Actually it is sufficient to study the phase portrait in the
plane x = z (taking z→ x) and inthis case system (1.1) takes the form

ẋ = xy, ẏ =−y(y−2x). (2.7)

System (2.7) has the common factor y. Eliminating this common factor by reparametrizing the
time, it becomes

x′ = x, y′ = 2x− y, (2.8)

whose phase portrait consists in a saddle at the origin with stable separatrices on the y axis and
unstable separatrices on the straight line x = y.

At infinity we have that system (2.8) in the local chart U1 is

z′1 = 2−2z1, z′2 =−z2,

which has a unique equilibrium on (1,0) and it is a stable node. In the local chart V1 it has another
stable node. On the other hand, on the local chart U2 system (2.8) writes as

z′1 = 2z1(1− z1), z′2 = (1−2z1)z2.

The origin is an equilibrium point which is an unstable node. The same stability has the origin of
V2. Observe that system (2.7) has the opposite stability in the region y < 0 than system (2.8).

From the previous analysis of system (2.8), considering the reparametrization done with the
factor y, and due to the fact that there are not more finite equilibria, by the Poincaré Bendixson
Theorem, we have that the separatrices of the saddle at the origin connect with the nodes at infinity.
We can thus conclude that the phase portrait in the Poincaré disc of system (2.7) is the one described
on Figure 3. Statement (b) of Theorem 1.1 has been proved.
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(a) (b) (c)

Fig. 3. Phase portraits of system (1.1) in the planes z = x, y = z and x = y, respectively.

3. Dynamics on R3

In order to obtain the phase portrait in R3 of system (1.1) we first study the phase portrait at infin-
ity using the Poincaré compactification (for details of the Poincaré compactification in R3, see
appendix A.1).

System (1.1) in the local charts U1, U2 and U3 are exactly the same, except for the meaning of
the coordinates (z1,z2,z3) (see (A.1), (A.2) and (A.3)). At infinity we have the following system in
the local charts

z1 =−2z1(−1+ z1), z2 =−2z2(−1+ z2), z3 =−z3(−1+ z1 + z2). (3.1)

Considering (3.1) on the local chart U1, we have the four infinite equilibria (i.e, on z3 = 0): the
origin, p̂1 = (0,0,0), p̂2 = (1,0,0), p̂3 = (0,1,0) and p̂4 = (1,1,0). In the local chart U2 the infinite
equilibria on z1 = z3 = 0 are the origin of U2, p̂5 = (0,0,0) and p̂6 = (0,1,0). Finally, in the local
chart U3 we have that the origin p̂7 = (0,0,0) is an infinite equilibria.

All the infinite equilibria are at the infinity of the planes studied in section 2 and so their phase
portraits are known. Due to the fact that the linear part of system (3.1) is−2(z1−1)−2z1 0 0

0 −2(z2−1)−2z2 0
−z3 −z3 −z1− z2 +1


which is a diagonal matrix, it is easy to conclude that p̂1, p̂5 and p̂7 are unstable nodes, p̂4 is a stable
node, that the eigenvalues of p̂2 are −2,2,0, and the eigenvalues of p̂3 and p̂6 are 2,−2,0. Thus,
p̂2, p̂3 and p̂6 are saddles in the plane z3 = 0.

In summary in the Poincaré ball we have 14 infinite equilibria. They are p1 = (1,0,0), p2 =

(1,1,0), p3 = (1,0,1), p4 = (1,1,1), p5 = (0,1,0), p6 = (0,1,1) and p7 = (0,0,1) on the charts
U1,U2 and U3 and their corresponding antipodal equilibria on the local charts Vi (that we will denote
by qi the antipodal point of pi) for i = 1,2,3.

Using the Poincaré-Bendixson Theorem we can characterize the connections between the sepa-
ratrices of the saddles at p2, p3 and p6 with the infinite nodes. Furthermore, these separatrices are
on the invariant planes studied in section 2. The phase portrait at infinity is the one shown in Figure
4. This completes the proof of statement (c) of Theorem 1.1.
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Fig. 4. Phase portrait of system (1.1) at infinity on the boundary of the Poincaré ball for x≥ 0.

On the other hand, the finite equilibria of system (1.1) are the origin and the straight lines of
equilibria already mentioned in section 2. Then we can describe the phase portrait in the Poincaré
ball.

In order to give an efficient description of the global dynamics of system (1.1) we separate the
Poincaré ball in regions defined by the intersections of the planes x = 0, y = 0, z = 0, x = y, x = z
and y = z. There are 24 regions, all invariant by the flow of system (1.1). Due to the symmetry
(x,y,z, t)→ (−x,−y,−z,−t) it is sufficient to analyze the invariant regions contained in x ≥ 0.
These regions are

R1 = {(x,y,z) : 0≤ y < x < z}, R7 = {(x,y,z) : y≤ 0≤ x < z},
R2 = {(x,y,z) : 0≤ x < y < z}, R8 = {(x,y,z) : y≤ 0≤ z < x},
R3 = {(x,y,z) : 0≤ x < z < y}, R9 = {(x,y,z) : z≤ 0≤ y < x},
R4 = {(x,y,z) : 0≤ z < x < y}, R10 = {(x,y,z) : z≤ 0≤ x < y},
R5 = {(x,y,z) : 0≤ z < y < x}, R11 = {(x,y,z) : z < y≤ 0≤ x},
R6 = {(x,y,z) : 0≤ y < z < x}, R12 = {(x,y,z) : y < z≤ 0≤ x}.

The mentioned regions R1-R12 are shown in Figure 5. We note that the differential system is invariant
under the cyclic permutation of the variables x,y,z, and consequently the dynamics on several of the
regions Rk for k = 1, . . . ,12 in which is divided the half-space x ≥ 0 can be obtained one from the
others. But in what follows we prefer to provide the dynamics in all these twelve regions because
this facilitates understanding the motion between these regions.

To provide the phase portrait in each of these regions we describe first the phase portrait in the
faces of each region, and after that the phase portrait in the interior of them. Note that in each region
the isolated equilibria are on the vertices of the region and a segment filled of equilibria is on an
edge of the region. We recall that one orbit in each face and one orbit in the interior are sufficient for
determining the phase portraits in each invariant region. The edges of the regions are separatrices
or segments filled of equilibria.

As an example we consider the region R1. This region is a tetrahedron formed by three infinite
equilibria p3, p4 and p7 and the finite equilibrium at the origin θ . Note that it has one edge, given
by x = z and y = 0, which connects the vertex p3 with θ filled of equilibria. The infinite equilibrium
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Fig. 5. Regions R1−R12 on the Poincaré ball.

p4 is an attractor and p7 is a repeller. By the Poincaré-Bendixson Theorem we can establish the α-
and ω-limits of all the orbits in this region.

In the faces of R1 without a segment filled of equilibria all the orbits have their ω-limit in p4

and their α-limit in p7.

On the face formed by p3, p7 and θ the orbits have their α limit in p7 and the ω-limit on the
edge filled of equilibria.

On the face formed by p3, p4 and θ all orbits have their ω-limit at p4 and their α-limit on the
edge filled of equilibria.

Finally in the region R1, by the Poincaré-Bendixson Theorem, we can conclude that an orbit in
the interior of R1 has its α-limit at p7 and its ω-limit at p4.

The phase portrait in the remaining regions can be characterized analogously. In Table 1 it is
shown the α- and ω-limits for all orbits in the interior of each region.

R1, R2 R3, R4 R5, R6 R7, R12 R8 R9 R10, R11

α-limit p7 p5 p1 p1 p7 p5 p1

ω-limit p4 p4 p4 q5 q5 q7 q7

Table 1. α- and ω-limits in the interior each invariant region R1-R12.

In Figure 6 it is shown the phase portraits on the boundary of the invariant regions, and one
orbit in the interior of each invariant region is shown in Figure 7. These previous results prove
statements (d) and (e) of Theorem 1.1 and complete the proof of Theorem 1.1.

A. Poincaré Compactification

We give a description of the Poincaré compactification in order to describe the phase portraits in the
Poincaré ball. The Poincaré compactification of R3 is needed in the proof of Theorem 1.1.
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Fig. 6. Phase portraits of system (1.1) at the boundaries of the 12 regions contained in x≥ 0 obtained dividing the Poincaré
ball by the six invariant planes, x = 0, y = 0, z = 0, x = y, x = z and y = z.

We consider a polynomial vector field X = (P,Q,R) associated to the polynomial differential
system

ẋ1 = P(x1,x2,x3), ẋ2 = Q(x1,x2,x3), ẋ3 = R(x1,x2,x3).

The degree n of X is defined as n = max{deg(P),deg(Q),deg(R)}.
Now we shall describe the equations of the Poincaré compactification of a polynomial differen-

tial system in R3.
We consider the local charts (Uk,φk) and (Vk,ψk) for k = 1,2 on the disc D3 defined by

Uk = {x = (x1,x2,x3) ∈ D3 : xk > 0},
Vk = {x = (x1,x2,x3) ∈ D3 : xk < 0},

where the diffeomorphisms φk : Uk→ R3 for k = 1,2,3 are

φ1(x) =
(

x2

x1
,
x3

x1
,

1
x1

)
= (z1,z2,z3), φ2(x) =

(
x1

x2
,
x3

x2
,

1
x2

)
= (z1,z2,z3),

φ3(x) =
(

x1

x3
,
x2

x3
,

1
x3

)
= (z1,z2,z3),

and ψk(x) =−φk(x).
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Fig. 7. Phase portraits of system (1.1) in the interior of the invariant regions.

Note that the coordinates (z1,z2,z3) have different meaning depending on local chart, but the
points at infinity, i.e. the points of the boundary S2 of D3 have all the coordinate z3 = 0.

Now we give the expression of the compactified vector field p(X ) of the polynomial vector
field X = (P,Q,R) in each local chart. The expression of the compactified analytical vector field
p(X ) of X of degree n on the local chart U1 of D3 is

zn
3 (−z1P(z)+Q(z),−z2P(z)+R(z),−z3P(z)) , (A.1)

where z = (1/z3,z1/z3,z2/z3).

In a similar way the expression of p(X ) in U2 is

zn
3 (−z1Q(z)+P(z),−z2Q(z)+R(z),−z2Q(z)) , (A.2)

where z = (z1/z3,1/z3,z2/z3).

Finally the vector field p(X ) in U3 is

zn
3 (−z1R(z)+P(z),−z2R(z)+Q(z),−z2R(z)) , (A.3)

where z = (z1/z3,z2/z3,1/z3).

The singular points of p(X ) which are on the boundary S2 of D3 (at z3 = 0) are called infinite
singular points, and we call finite singular points the ones which are in the interior of D3.

From equations (A.1), (A.2) and (A.3) it follows that the infinity S2 of the Poincaré ball is
invariant under the flow of the compactified vector field p(X ). For studying its infinite singular
points we only need to study the ones that are on the local chart U1, in U2 with z1 = 0, and the origin
of the local chart U3 in case that this is a singular point.

The expression for p(X ) in the local chart Vk is the same as in Uk multiplied by (−1)n−1.

Therefore the infinite singular points appear on pairs diametrally opposite on S2 with the same
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stability if n is odd and with the opposite stability if n is even. For more details on the Poincaré
compactification in R3 see [2].

As we said in the introduction two compactified polynomial differential systems in the Poincaré
ball D3 are topologically equivalent if there is a homeomorphism of D3 sending orbits of one system
to orbits of the other system, either preserving or reversing the orientation of the orbits.
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