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Construction of new integrable systems and methods of their investigation is one of the main directions of
development of the modern mathematical physics. Here we present an approach based on the study of behavior
of roots of functions of canonical variables with respect to a parameter of simultaneous shift of space variables.
Dynamics of singularities of the KdV and Sinh–Gordon equations, as well as rational cases of the Calogero–
Moser and Ruijsenaars–Schneider models are shown to provide examples of such induced dynamics. Some
other examples are given to demonstrates highly nontrivial collisions of particles and Liouville integrability of
induced dynamical systems.
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1. Introduction

Let AN denote a phase space of N-particle one dimensional dynamical system with coordinates
qi and momenta pi, i = 1, . . . ,N, canonical with respect to the Poisson bracket {qi, p j} = δi j. Let
H = H(q,p) denote the Hamiltonian of this system, where q = (q1, . . . ,qN), p = (p1, . . . , pN), i.e.,
q̇i = {qi,H}, ṗi = {pi,H}. We assume that qi are either real or pairwise complex conjugate and
the same are properties of the corresponding pi. Let we have a function f (q,p) on AN and let
f (q−x1,p) denote this function with all coordinates qi shifted by a real parameter x, 1 = (1, . . . ,1︸ ︷︷ ︸

N

).

In what follows we assume that equation

f (q− x1,p) = 0 (1.1)

has M simple real zeros x1, . . . ,xM, where N ≥M ≥ 0. We assume also that there exists such open
subset A ′

N ⊆ AN , that M = N for any (q,p) ∈ A ′
N . We define the induced system as system with

configuration space given by real (unordered) roots of (1.1). This system is dynamic: due to (1.1) all
roots xi(t) are functions on AN and depend on t via q and p only. Evolution of this system is given
by the same Hamiltonian H, ẋi = {xi,H}, under the same Poisson bracket {qi, p j} = δi j. Here, for
simplicity, we consider the case of a trivial dynamics on A :

H =
N

∑
i=1

h(pi), (1.2)
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where h is a function of one variable, so that

q̇i = h′(pi), ṗi = 0. (1.3)

The induced system is not only Hamiltonian but also integrable, as by construction it has (at least)
N integrals of motion in involution.

Assume, that (q,p) ∈A ′
N , i.e., there exists exactly N real (different) solutions of the Eq. (1.1):

f (q− xi1,p) = 0, i = 1, . . . ,N. (1.4)

Taking (1.3) into account we differentiate (1.4) twice with respect to t:

N

∑
j=1

(h′(p j)− ẋi) fq j(q− xi1,p) = 0, (1.5)

ẍi

N

∑
j=1

fq j(q− xi1,p) =
N

∑
j,k=1

(h′(p j)− ẋi)(h′(pk)− ẋk) fq jqk(q− xi1,p). (1.6)

One can consider (1.4) and (1.5) as system of 2N equations on 2N unknowns q and p, that are
defined by means of these equations as functions of x and ẋ under condition of unique solvability
of this system, that we assume below. Inserting these functions in (1.6) we prove existence of the
Newton-type equations of the induced dynamical system:

ẍi = Fi(x1, . . . ,xN , ẋ1, . . . , ẋN), i = 1, . . . ,N, (1.7)

where Fi are some forces depending on differences xi− x j and, generically, on the velocities ẋi.

The above consideration gives also scheme of solution of the Cauchy problem for the induced
system. Let we are given with 2N initial data: xi(0) and ẋ j(0), say at t = 0, where i, j = 1, . . . ,N.
Equations (1.4) and (1.5) define values (q(0),p(0)) that belong to A ′

N by definition. Then by (1.3)
qi(t) = qi(0)+ th′(pi), pi(t) = pi, that after substitution in (1.1) gives M real roots x1(t), . . . ,xM(t)
for any t ∈R. Thus the scheme of solution of the Cauchy problem for the induced dynamical system
is close to the one for integrable nonlinear PDE’s. Notice that M is not obliged to be equal to N at
any moment of time, i.e., point (q(t),p(t)) is not obliged to belong to A ′

N for any t.

Below we demonstrate that in spite of a trivial dynamics of the system on the phase space A ,
dynamics of the induced system is highly nontrivial. In particular, it demonstrates effects that can
be interpreted as existence of stable bound states and even as creation and annihilation of particles.

The manuscript is organized as follows. In Sec. 2 we consider dynamical systems that appeared
many years ago (see, e.g., [1], [11], [12], [13], and [14]) as systems describing the dynamics of
singularities of solutions of some integrable equations (“zeros” of τ-functions). While ideology
developed here is based essentially on study of the singular solutions of the Liouville equation
in [12] and [13], here we consider more interesting dynamics of singularities of soliton solutions
of the KdV and Sinh–Gordon equations and show that this dynamics is the induced one. In Sec. 3
we derive a new determinant formula for solutions of the well known dynamical systems: rational
Calogero–Moser, [3, 4], and Ruijsenaars–Schneider, [16, 17], models. By these means dynamics of
these systems also can be described as the induced one, that explicitly demonstrates their Liouville
integrability. We also suggest some integrable generalizations of these models. In Sec. 4 we present
some other simple examples of the induced systems given by polynomial functions f in (1.1), both
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in nonrelativistic and relativistic cases. Results and possible developments of the suggested tech-
nique are discussed in Sec. 5. Properties of the induced systems under consideration are displayed
by means of figures carried out by package Wolfram Mathematica 11.1.

2. Dynamics of singularities of solutions of integrable differential equations

2.1. Singular solutions of the KdV equation

In this section we show that old results on dynamics of singularities of soliton solutions (singular
solitons) of integrable PDE’s can be formulated in terms of induced dynamics. We start with N-
soliton solution of the KdV equation 4ut−6uux +uxxx = 0 on a real function u(t,x), where indexes
denote partial derivatives. This famous equation is known to have both regular (see, e.g., [8]) and
singular (see [1]) N-soliton solutions. Their generic form is given by

u(t,x) =−∂
2
x logdet(E(t,x)+ v)2, (2.1)

where E(t,x) and v are correspondingly diagonal and constant N×N-matrices,

E(t,x) = diag
{

εie2pi(x−ai−p2
i t)}, vi j =

2pi

pi + p j
. (2.2)

Here ai, pi, and εi = ±1, i = 1, . . . ,N, are constant parameters of the solution such that Re pi > 0
and

either Im pi = 0, εi =±1, Imai = 0,

or Im pi 6= 0, then there exists pl = pi, εl = εi =±1, al = ai.
(2.3)

If Im pi = 0 signs εi = +1 and εi = −1 correspond to the regular and singular solitons. Every pair
of pi = pl with Im pi 6= 0 gives one line of singularity. All singularities of the solution u(t,x) are
given by the zeros of determinant in (2.1): det(E(t,x)+ v) = 0. Thus in generic situation we have
interaction of regular and singular solitons and breathers, the latter correspond to mutually conjugate
pairs of parameters. In [1] it was shown that singularities of this solution form smooth curves on
(x, t)-plane. They run from minus to plus t-infinities and thus are observable at any moment of
time. On the other side, the regular solitons are known to be observable outside the collision region
only. Taking that asymptotic behavior of the regular and singular solitons coincides into account,
we suggested (see [1]) to introduce a “charge conjugation”, i.e., to change all signs εi → −εi in
(2.2). Then regular and singular solitons mutually exchange and we get world lines of particles
corresponding to both, regular and singular solitons, as roots of the product

det(E(t,x)+ v)det(E(t,x)− v) = 0. (2.4)

Notice now that introducing functions

qi(t) = ai + p2
i t, so that q̇i = p2

i , ṗi = 0, i = 1, . . . ,N, (2.5)

we rewrite (2.4) in the form (1.1), i.e., as induced dynamical system, where

f (q,p) = det(E0 + v)det(E0− v), E0 = diag
{

εie−2piqi(t)
}
, (2.6)

cf. (2.2). As we mentioned in Sec. 1, this dynamical system is Hamiltonian (cf. (1.2)):

H =
1
3

N

∑
i=1

p3
i , (2.7)
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Fig. 1. KdV: Soliton–soliton collision:
ε1 = ε2 = 1.
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Fig. 2. KdV: Soliton–antisoliton collision:
ε1 =−ε2

with respect to the canonical Poisson bracket {qi, p j} = δi j. Moreover, the system is Liouville
integrable: variables {p1, . . . , pN} are integrals of motion, and they are in involution by construction.
It is easy to prove that system (1.5), (1.6) for the function f in (2.6) is solvable with respect to qi

and pi, while not explicitly. Correspondingly, forces (i.e., the r.h.s. of (1.7)) here exist but in implicit
form, so that the most descriptive characterization of this induced dynamical system is given by
Eq. (1.1). In spite of trivial dependence of qi and pi on t, cf. (2.5), dependence of zeros xi(t) is
highly nontrivial, see Figs. 1–4.
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Fig. 3. KdV: breather
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Fig. 4. KdV: soliton–breather collision
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2.2. Singular solutions of the Sinh–Gordon equation

Analogous consideration is applicable in the relativistic case. We consider a dynamical system
determined by motion of singularities of the soliton solutions of the Sinh–Gordon equation, utt −
uxx + sinhu = 0, on the real function u(t,x). Its N-soliton solution is given, [12] and [14], by

eu(t,x) =
det(E(ξ ,η)+ v)2

det(E(ξ ,η)− v)2 , E(ξ ,η) = diag
{

εie2[(ξ−ai)pi+η/pi]
}N

i=1, (2.8)

where

ξ = x+ t, η = x− t, (2.9)

are cone variables, matrix v is given in (2.2) and parameters qi and pi obey conditions (2.3). In this
case regular solitons do not exist, in contrast to the KdV case. Instead, we have here singularities
given by zeros of both determinants in (2.8), i.e., given by the product (cf. (2.4))

det(E(ξ ,η)+ v)det(E(ξ ,η)− v) = 0. (2.10)

These zeros form N smooth time-like curves ξi(η), i = 1, . . . ,N, their behavior is close to that on
Figs. 1–4, see [11], [12] and [14] for detail.

Setting

qi(η) = ai−η/p2
i , (2.11)

we can write matrix E(ξ ,η) in (2.8) in the form E(ξ ,η) = diag
{

εie2pi(ξ−qi)
}N

i=1. Thus equation
(2.10) has the form of (1.1),

f (q−ξ 1,p) = 0, (2.12)

characterizing the induced dynamical system, where

f (q,p) = det(E0 + v)det(E0− v), E0 = diag
{

εie−2piqi
}N

i=1, (2.13)

and 1 is N-vector, 1 = (1, . . . ,1).

Eq. (2.12) coincides with (1.1) with f given in (2.6) up to substitution x→ ξ , t→ η , but dynam-
ics on the space A is given here by

q′i(η) =−1/p2
i , p′i = 0, i = 1, . . . ,N, (2.14)

instead of (2.5). So we have induced system with Hamiltonian H = ∑
N
i=1 p−1

i (cf. (1.2)) with respect
to the canonical Poisson bracket {qi, p j}= δi j. At the same time evolution of the system of zeros of
(2.12) is highly nontrivial: particles repulse, attract, form bound states (breathers) and get nontrivial
phase shifts at infinity.

System (2.12) with function f (q,p) in (2.13) is invariant with respect to the Lorentz boost:

ξ → λξ , η → λ
−1

η , qi→ λqi, pi→ λ
−1 pi, (2.15)

where λ is an arbitrary positive parameter. Taking that thanks to definition all induced systems
are translation invariant, we see that system given by (2.12) is the relativistic one. The description
above can be equivalently reformulated in terms of the laboratory coordinates, x and t, where zeros
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of (2.12) are given by N curves xi(t), like in the KdV case. In [12] and [14] we presented equation
of motion of this system at the case N = 2 in the special frame x1(t)+ x2(t) = 0:

ẍ12 sgnx12√
4− ẋ2

12

=
4ε

cosh
(

4x12√
4− ẋ2

12

√√√√1+
ẍ12 sgnx12√

4− ẋ2
12

)
− ε

, (2.16)

where x12(t) = x1(t)− x2(t) and where ε = 1 for the case of repulsion and ε = −1 for the both
soliton-antisoliton and breather cases of attraction. This demonstrates that forces in Eq. (1.7) gener-
ically are irrational functions of their arguments.

3. Rational cases of the Calogero–Moser and Ruijsenaars–Schneider models

Here we show that the rational versions of the Calogero–Moser (CM) and Ruijsenaars–Schneider
(RS) models also give examples of the induced dynamics, i.e., their solutions are given as roots
of Eq. (1.1) with proper choices of functions f (q,p) and h in (1.1) and (1.2). Dynamics of these
models, see [3, 7, 16, 17], is given by equations

CM: ẍ j =
N

∑
k=1,
k 6= j

2γ2

(xk− x j)3 , (3.1)

RS: ẍ j =
N

∑
k=1,
k 6= j

2γ2ẋ jẋk

(x j− xk)
(
γ2− (x j− xk)2

) , (3.2)

where for the RS model we use here canonical coordinates, not the physical ones which satisfy
the relativistic world line conditions. Both systems are completely integrable, see references above,
they obey Lax representations and their L-operators can be written as

L(t) = diag{ẋ1(t), . . . , ẋN(t)}+V (t), (3.3)

where for CM and RS models the off-diagonal N×N-matrix V equals correspondingly

(
VCM

)
jk =

γ

xk(t)− x j(t)
,
(
VRS
)

jk =
γ ẋk(t)

xk(t)− x j(t)+ γ
, (3.4)

where j,k = 1, . . . ,N, j 6= k. In [9] and [18] it was shown that solutions xi(t) of equations (3.1) and
(3.2) are eigenvalues of the matrix X(0)+ tL(0), where

X(t) = diag{x1(t), . . . ,xN(t)}, (3.5)

and where X(0) and L(0) are values of these matrices given in terms of the initial data xi(0), ẋi(0).
It was also proved there that, say, at t→−∞ this solutions obey asymptotic behavior

xi(t) = ai + t pi +O(t−1), (3.6)

where ai and pi are constants.
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In order to prove that CM and RS systems can be written in the form (1.1), we notice that
because of the translation invariance, solutions xi(t) are roots of the characteristic equation

det
(
X(τ)+(t− τ)L(τ)− xI

)
= 0, (3.7)

where I is N×N unity matrix and τ is an arbitrary initial moment of time. Let us consider limit of
(3.7) when τ →−∞. Thanks to (3.3) and (3.6) we have that

xi(τ)+(t− τ)ẋi(τ) = ai + t pi +O(τ−1), τ →−∞. (3.8)

Now for the term (t− τ)V (τ) (see (3.3) and (3.4)) we have in the limit (3.6):

(t− τ)γ

xk(τ)− x j(τ)
→ γ

p j− pk
,

(t− τ)γ ẋ j(τ)

xk(τ)− x j(τ)+ γ
→

γ p j

p j− pk
.

Thus solutions of the rational versions of CM and RS models are given by the roots of the equation

det
(
Q+W − xI

)
= 0, (3.9)

where

Q(t) = diag{q1(t), . . . ,qN(t)}, qi(t) = ai + t pi, (3.10)

and W is off-diagonal matrix

(
WCM

)
jk =

γ

p j− pk
,

(
WRS

)
jk =

(
γ p j

p j− pk

)
, (3.11)

j,k = 1, . . . ,N, j 6= k.

Eqs. (3.9)–(3.11) in their turn enables derivation of the known Lax representations for the both
these models following the same lines like in [9] and [18]. In particular, we get that momenta pi are
eigenvalues of the Lax matrix (3.3).

Characteristic equation (3.9) is exactly of the form (1.1), where f (q,p) = det(Q+W ), q̇i = pi

and ṗi = 0, i = 1, . . . ,N, so that (qi, p j) are canonical variables with respect to the bracket {qi, p j}=
δi, j, Hamiltonian is given by (1.2) with h(p) = p2/2 for both models. Derived representation (3.9)
gives direct proof of the Liouville integrability for these models. Moreover, integrability takes place
for any choice of the (off-diagonal) matrix W (p) in (3.9) that obeys conditions of solvability of the
systems (1.4) and (1.5). Specific property of the CM and RS models is possibility to write down
equations (3.1) and (3.2) of motion and Lax pairs explicitly, cf. discussion of this problem in Sec. 2
for the dynamics of singularities of the KdV and Sinh–Gordon equations.
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4. Polynomial examples of induced dynamics

In this section we consider some simplest examples of induced dynamical systems, given by poly-
nomial function f in (1.1):

f (q,p) =
N

∏
i=1

qi−C. (4.1)

Here C is a real constant (parameter of the system), variables qi and pi obey condition of reality,
given in the beginning of Sec. 1 and

q̇i = pi, ṗi = 0, i = 1, . . . ,N. (4.2)

Such systems are more trivial then those considered in Sec. 2. Say, they do not give nontrivial
phase shifts. Nevertheless, examples of N = 2 and N = 3 of these system and their relativistic
analogs (see Sec. 4.2 below) demonstrate such unexpected for classical mechanics effects as cre-
ation/annihilation of particles. Notice that here we do not impose conditions of the kind Re pi > 0
in (2.3) on variables in AN .

4.1. Nonrelativistic case

Let us start with N = 2 in (4.1), i.e., with function f (q,p) = q1q2−C/4, that also coincides with
the N = 2 case of (3.9), where matrix 2×2-matrix W is off-diagonal and p-independent. Eq. (1.1)
in this case sounds as

f (q− x1,p)≡ (q1− x)(q2− x)−C/4 = 0, (4.3)

so that H = (p2
1 + p2

2)/2 (cf. (1.2)). Let x1(t) and x2(t) denote two real solutions of Eq. (1.1).
Introducing notation for the differences:

x12 = x1− x2, q12 = q1−q2, (4.4)

we get

x1 + x2 = q1 +q2, x2
12 = q2

12 +C, (4.5)

so that

ẋ1 + ẋ2 = p1 + p2, p1− p2 =
ẋ12x12

q12
. (4.6)

Eqs. (4.5) and (4.6) define qi and pi in terms of xi and ẋi (cf. (1.5), (1.6)). These values, being sub-
stituted in the time derivative of (4.6) gives explicit equations of motion of the induced dynamical
system, cf. (1.7):

ẍ1 + ẍ2 = 0, ẍ12 =
Cẋ2

12

x12(x2
12−C)

. (4.7)

It is worth to mention that under reduction to the center of mass frame, ẋ1 + ẋ2 = 0, these equations
coincide with the same reduction of the N = 2 case of Ruijsenaars–Schneider system (3.2).
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Eqs. (4.7) are Lagrangian with

L =
ẋ2

1 + ẋ2
2

2
+

Cẋ2
12

4(x2
12−C)

. (4.8)

Variables qi and pi are canonically conjugate, and due to (4.5) we get {xi,x j}= 0. Then (4.8) enables
to introduce momenta conjugate to xi as

Pi = ẋi +(−1)i+1 Cẋ12

2(x2
12−C)

, i = 1,2, (4.9)

so that equations (4.5) and

p1 + p2 = P1 +P2, p1− p2 =
(P1−P2)

√
x2

12−C

x12

give canonical transformation from variables {xi,Pj} to {qk, pl}, where i, j,k, l = 1,2. The Hamil-
tonian H, being trivial in terms of the variables on A2, equals

H =
P2

1 +P2
2

2
−C(P1−P2)

2

4x2
12

, (4.10)

in terms of the variables on the phase space of the induced system.

-10 -5 5 10
x

-10

-5

5

10

t

Fig. 5. Two particles, x2
12 >C > 0.
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Fig. 6. Two particles, C > x2
12 > 0.

In order to show behavior of the world lines of the particles on the (x, t)-plane we consider
initial problem: xi(t)|t=0 = ai, ẋi(t)|t=0 = vi, where x0,i and vi are real initial data. These data define
qi(0) and pi(0) by Eqs. (4.5) and (4.6). Because of the free evolution on A2, we have that qi(t) =
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Fig. 7. Two particles, C < 0
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Fig. 8. Three particles.

qi(0)+ pit, pi(t) = pi, and finally we reconstruct xi(t) by (4.5):

x1(t)+ x2(t) = a1 +a2 +(v1 + v2)t, (4.11)

x2
12(t) = (a12 + v12t)2 +

Cv2
12t2

a2
12−C

, (4.12)

where we used notation for differences like in (4.4). Behavior of the roots of Eq. (4.3) on the (x, t)-
plane is determined by the sign of a2

12−C. For the induced system with C > 0 we have in the case
of a2

12 > C that solutions xi(t) are real for any t and x2
12(t) ≥ C > 0, Fig. 5. The world lines of

both particles run from minus to plus t-infinity and we have repulsion of particles in this case. But
situation changes essentially if C > a2

12. In this case q12 and p12 are pure imaginary, solutions xi(t)
are real in the finite interval t+≥ t ≥ t− of time only, where t± are moments where the r.h.s. of (4.12)
vanishes, see Fig. 6. Inside this interval C ≥ x2

12(t)> 0, the background system is in A ′
2 , while for

t = t± we have only one solution, M = 1. For t < t− and t > t+ real solutions do not exist, so M = 0
and background system belongs to A2, but not to A ′

2 , so the the dynamical system (4.7) does not
exist. We can interpret this behavior of the system as creation of two particles at moment t−, where
they scatter with infinite velocities. With time growing they slow down, stop and move to meet one
another at t = t+. At this moment they reach infinite velocities and annihilate. It is necessary to
emphasize that, in spite of this strange evolution of the induced system, both its integrals of motion,
p1 and p2, exist for any t.

If the induced system is given by (4.3) with C < 0, we always have a2
12 > 0 > C, so by (4.11),

(4.12) real solutions xi(t) exist outside of the time interval {t−, t+}, where x2
12(t) ≥ 0, see Fig. 7

(this figure corresponds to the case where a12v12 < 0, for the opposite sign t-axis must be inverted).
Here two particles come from infinity: they attract, speed up till infinity and bump into each other at
t = t−. At this moment they reach infinite velocities and disappear. For a period t− < t < t+ induced
system does not exist: the r.h.s. of (4.12) is negative. Later, at t = t+ two particles arise with infinite
velocities at some point of the x-axis. Then they slow down and blow to infinity. So we can say
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that at t = t− there is annihilation of particles and their creation at t = t+, that looks like a bang:
particles appear from nowhere. Notice that variables of phase space A2 exist at any moment of time,
independently of existence of the real solutions xi(t). In particular, all integrals of motion exist for
any t. It is necessary to emphasize that due to (4.11) and (4.12) singularities of the induced system—
absence of real solutions—are movable: intervals where real solutions do not exist are defined by
the initial data only. This property is analogous to the Painlevé property for integrable PDEs.

Analogously one can consider the higher values of N in (4.1). Say, on the Fig. 8 we present
structure of the world lines of the system, given by N = 3 in (4.1). By no means this structure is
very unexpected for dynamical systems: three particles descend from infinity, two of them annihilate
and for a period induced system has only one particle (only one real solution of the equation of the
third order). Nevertheless, motion of this particle is far from being free: it slows down, stops and
turns back.

4.2. Relativistic case.

As we discussed in Sec. 3 relativistic induced system is defined by function f (q,p) invariant with
respect to the Lorentz boost (2.15). Say, in the case N = 2 we can define such system by means of
equation

f (q−ξ 1,p)≡ p1 p2(q1−ξ )(q2−ξ )−C
4

(
p2

p1
+

p1

p2

)
, (4.13)

where qi(η) = q0,i−η/p2
i , cf. (2.11). It is easy to see that this equation is invariant with respect to

transformation (2.15). Omitting details we write down equations of motion:

ξ
′′
i =

(−1)iC(ξ ′1−ξ ′2)
2(ξ ′1 +ξ ′2)

2(ξ1−ξ2)[(ξ1−ξ2)2 +C(ξ ′1 +ξ ′2)]
, i = 1,2, (4.14)

where prime denotes derivative with respect to η . Taking that ξ ′1 + ξ ′2 is integral of motion into
account, we see that system (4.14) is close to the RS system (3.2), cf. also (4.7) above.

Behavior of the world lines of this system on the (x, t)-plane is determined by the sign of the
product C[(ξ1−ξ2)

2 +(ξ ′1 +ξ ′2)C], that is preserved under evolution (4.14). It is necessary to take
into account that in cone variables (2.9) condition on a world line to be time-like sounds as ξ ′i < 0.
In the case where the product is positive, we get behavior of the world lines close to the one on
Fig. 5, where both lines are time-like.

5. Concluding remarks

The idea to construct dynamical systems by means of the relationship among the zeros and coef-
ficients of time-dependent polynomials (or possibly more general functions, for instance entire
ones) is rather old, [4]. It was essentially developed later, see, e.g., [5] and references therein. This
approach can be considered as a version of induced dynamics as well—the dynamics of the zeros is
induced by the dynamics of the coefficients of polynomials—in fact more general than considered
above. The main difference between this general approach and the notion of induced dynamical
systems introduced in this article is the Liouville integrability of the latter ones. Say, coefficients
of polynomial f (q− x1,p) for dynamical system defined by (4.1) are given in terms of elementary
symmetric polynomials of qi and for a generic N evolution equations of these coefficients are neither
explicit, nor give any information on integrability, in contrast to (4.2).
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Induced dynamical systems of Sec. 2 were originated by the singular soliton solutions of the
integrable equations, KdV and Sinh–Gordon. Thus it was natural to expect their Liouville inte-
grability. Integrability of the CM and RS system is well known also. Unexpected result of our
consideration in Secs. 2 and 3 is the existence of rich families of integrable models beyond these
known ones. Thus functions f in (2.6) and (2.13) define, thanks to Eqs. (2.5) and (2.14), integrable
systems not only in the case where matrix v is given by (2.2), but for an arbitrary matrix v(p). The
same is valid for matrices W in Sec. 3, that are not obliged to be given by (3.11) in order to gener-
ate integrable dynamical systems by means of (3.9). Examples from Sec. 4 show that cases where
forces in the r.h.s. of (1.7) are explicit are very rare, and in generic situation investigation of induced
systems must be based on the description of solutions of Eq. (1.1). Properties of the induced dynam-
ical systems (4.7) and (4.14) look to be rather strange, they are new to our knowledge and deserve
further investigation. Summarizing results of Sec. 4, we see that the dynamical system on the space
AN (i.e., q̇i = pi, ṗi = 0) plays the role of a background one. This free system exists for any t, has
always N degrees of freedom and controls dynamics of the induced system. Passage in involution
from subspace A ′

N to AN and vice verse leads to instant change of dimension of the induced system,
recalling such quantum effects as creation/annihilation of particles. Say, in situation presented on
Fig. 7 the induced dynamical system does not exist in the interval t ∈ {t−, t+}, while variables on
AN do exist. They include integrals of motion pi, that coincide with integrals of the induced system.
Following the famous fairy tale this effect can be referred to as “cheshirization” of our dynamical
systems.

In this article we suggested notion of the induced dynamical system and proved that it gives
effective method to investigation of known systems and to construction of new ones. These sys-
tems demonstrate rather nontrivial particle interactions being completely integrable by construc-
tion. Some other examples of the induced systems were presented in the preliminary version of this
article, see [15]. It is also interesting to generalize consideration of the Sec. 2—dynamics of sin-
gularities of the nonlinear equations—to the case where solitons are unstable and, say, collision of
two regular solitons leads to a singularity. Such soliton solutions were studied in [10], [6], and [2],
in particularly for the case of the Boussinesq equation.
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