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A class of n-dimensional Poisson systems reducible to an unperturbed harmonic oscillator shall be considered.
In such case, perturbations leaving invariant a given symplectic leaf shall be investigated. Our purpose will
be to analyze the bifurcation phenomena of periodic orbits as a result of these perturbations in the period
annulus associated to the unperturbed harmonic oscillator. This is accomplished via the averaging theory up to
an arbitrary order in the perturbation parameter ε . In that theory we shall also use both branching theory and
singularity theory of smooth maps to analyze the bifurcation phenomena at points where the implicit function
theorem is not applicable. When the perturbation is given by a polynomial family, the associated Melnikov
functions are polynomial and tools of computational algebra based on Gröbner basis are employed in order to
reduce the generators of some polynomial ideals needed to analyze the bifurcation problem. When the most
general perturbation of the harmonic oscillator by a quadratic perturbation field is considered, the complete
bifurcation diagram (except at a high codimension subset) in the parameter space is obtained. Examples are
given.
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1. Introduction

Finite-dimensional Poisson systems (see [15, 16, 19] and references therein for an overview) have
a significant presence in most domains of physics and applied mathematics. The specific format of
Poisson systems has allowed the development of many tools for their analysis (for instance, see [5]-
[7], [16] and references therein for a sample). In addition, the relevance of Poisson systems arises
from the fact that they constitute a generalization of classical Hamiltonian systems comprising non-
constant structure matrices as well as odd-dimensional vector fields. Additionally, Poisson system
format is invariant under general diffeomorphic transformations, therefore not being restricted to
the use of canonical transformations.

Consider a smooth vector field having a finite-dimensional Poisson structure

dx
dt

= J (x) ·∇H(x) (1.1)
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of dimension n and rank r = 2≤ n constant in an open set Ω⊆Rn. In (1.1) J (x) and H(x) are the
structure matrix and Hamiltonian function, respectively. Then under these hypotheses for each point
x0 ∈Ω there is (at least locally in a neighborhood Ω0 ⊂Ω of x0) a complete set of functionally inde-
pendent Casimir invariants {D3(x), . . . ,Dn(x)} in Ω0, as well as a transformation x 7→ ΦD(x) = y
where ΦD is a smooth diffeomorphism in Ω0 bringing the system (1.1) into its Darboux canonical
form. Thus, beyond the fact that Poisson systems are a formal generalization of classical Hamilto-
nian flows, Darboux Theorem provides the dynamical basis for such a generalization. The explicit
construction of the Darboux coordinates may be a complicated task in general, specially in the case
of their global determination, in which the transfer of results between the Poisson and the classical
Hamiltonian formats is optimal for the applications. Similarly the explicit construction in closed
form of the Casimir invariants D j is not an easy task, recall that these invariants are the solutions of
the system of PDEs J (x) ·∇D j(x) = 0.

In this article, a class of n-dimensional Poisson systems reducible to an unperturbed harmonic
oscillator shall be considered. In such case, perturbations leaving invariant a given symplectic leaf
shall be investigated. Our purpose will be to analyze the bifurcation phenomena of periodic orbits
as a result of these perturbations in the period annulus associated to the unperturbed harmonic
oscillator. This is accomplished via the averaging theory up to an arbitrary order in the perturba-
tion parameter ε . In that theory we shall also use both branching theory and singularity theory of
smooth maps to analyze the bifurcation phenomena at points where the implicit function theorem
is not applicable. When the perturbation is given by a polynomial family, the associated Melnikov
functions are polynomials. This sentence is a consequence of the fact that the Lagrange standard
form (2.7) associated to the above perturbation problem can be written as dr/dθ = ∑i≥1 Gi(θ ,r)ε i

with Gi(θ ,r) polynomials in r for all i ∈ N, see Lemma 9 in [11] for a proof. There fore tools of
computational algebra based on Gröbner basis are employed in order to reduce the generators of
some polynomial ideals needed to analyze the bifurcation problem. When the most general per-
turbation of the harmonic oscillator by a quadratic perturbation field is considered, the complete
bifurcation diagram (except at a high codimension subset) in the parameter space is obtained.

2. Reduction procedure

2.1. Darboux canonical form and harmonic oscillator form

For the Poisson system (1.1) and under the assumptions previously stated, we shall say that the
Hamiltonian function H(x) is quasi-harmonic for variables xi and x j in a domain Ω⊂Rn if, by def-
inition, it can be written in the form H(x) ≡ H(ϕ(xi,x j),D3(x), . . . ,Dn(x)) where ϕ(xi,x j) admits,
in the region of interest Ω, at least one decomposition of the kind ϕ(xi,x j) = ϕ1(xi,x j)+ϕ2(xi,x j)

with ϕk(xi,x j) > 0 for k = 1,2, and with application (xi,x j) 7→ (ϕ1(xi,x j),ϕ2(xi,x j)) being invert-
ible. Let us then assume, without loss of generality, a Hamiltonian quasi-harmonic for x1 and x2.
We finally assume that the following non-degeneracy Jacobian condition holds

det
(

∂ (D3, . . . ,Dn)

∂ (x3, . . . ,xn)

)
6= 0 in Ω. (2.1)

Then the following change of variables is to be performed:

x 7→ y = (y1, . . . ,yn) = Φ(x) =
(√

2ϕ1(x1,x2),
√

2ϕ2(x1,x2),D3(x), . . . ,Dn(x)
)
. (2.2)
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By definition, Ω is the open set such that the Poisson system (1.1) is defined and has rank r = 2, and
in addition Φ|Ω is a diffeomorphism by (2.1). Then the transformed system can be written as

dy
dt

= J ∗(y) ·∇H∗(y)

with H∗(y) = H ◦Φ−1(y) = Ĥ
(1

2(y
2
1 + y2

2),y3, . . . ,yn
)
, and J ∗(y) = η(y) ·JD, where

JD ≡
(

0 1
−1 0

)
⊕On−2 =

 0 1
−1 0

On−2


is the Darboux canonical form matrix for the rank-2 case, where On−2 denotes the null square matrix
of order n−2. Finally, rescaling the time as t 7→ τ with dτ = η dt we obtain the Darboux canonical
form in Ω of the Poisson system (1.1).

Moreover, we can proceed further and reduce the system completely to a classical harmonic
oscillator. For this, we first rectrict ourselves to one symplectic leaf yi = yi(0) = ci, for i = 3, . . . ,n.
We are thus left with a planar classical Hamiltonian system for which the structure matrix is the
2× 2 symplectic matrix, and the Hamiltonian is H̃

(1
2(y

2
1 + y2

2)
)
≡ Ĥ

(1
2(y

2
1 + y2

2),c3, . . . ,cn
)
. Now

denote as H̃ ′(z) = dH̃(z)/dz. Then the reduction is completed by means of an additional time
reparametrization τ 7→ ρ with dρ = µ(y1,y2) dτ , where µ(y1,y2) = H̃ ′

(1
2(y

2
1 + y2

2)
)
. The outcome

is a one degree of freedom harmonic oscillator of Hamiltonian H (y1,y2) =
1
2(y

2
1 + y2

2) and time ρ .

2.2. Perturbations leaving invariant a given simplectic leaf

We consider now the analytical perturbations of the initial Poisson system (1.1)

dx
dt

= J (x) ·∇H(x)+ εF(x;ε) (2.3)

where ε 6= 0 is a small perturbation real parameter and F is an analytic vector field in Ω depending
analytically on the parameter ε and satisfying F(0;ε) = 0 and ∇xF(0;ε) = 0. We will restrict our
selves to those pertur= bation fields F(x;ε) that leave invariant for the flow of (2.3) a given sim-
plectic leaf Lc = ∩n

j=3{D j(x) = c j} of the Poisson system (1.1) for certain c = (c3, . . . ,cn) ∈ Rn−2

such that Lc∩Ω 6= /0.

Remark 2.1. Regarding the construction of allowed perturbed vector fields (2.3) we emphasize the
following procedure. Rewriting the leaf Lc as the zero-set Lc = f−1(0) of the function f (x) =
∑

n
j=3(D j(x)− c j)

2 then we can take the perturbation field F in (2.3) as F(x;ε) = f (x)G(x;ε) with
G an arbitrary analytic vector field.

Performing the Darboux canonical form reduction of the previous subsection, we obtain that
(2.3) becomes the analytic system

dy
dτ

= JD ·∇H∗(y)+ εF∗(y;ε) (2.4)

defined in Ω∗ = Φ(Ω). Since Lc becomes an invariant surface of the perturbed system (2.3), under
these conditions, diffeomorphism Φ defined in (2.2) and the rescaling of time t 7→ τ previously
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characterized transform (2.3) in Ω into a system in Ω∗ which can be restricted to Φ(Lc) leading to
a two dimensional system because dim(Lc) = 2. More specifically (2.4) can be written as

dy1

dτ
=

∂H∗

∂y2
+ εP(y;ε) ,

dy2

dτ
= −∂H∗

∂y1
+ εQ(y;ε) ,

dy j

dτ
= ε(y j− c j)R j(y;ε), j = 3, . . . ,n.

Finally, the restriction to Φ(Lc) combined with the time rescaling τ 7→ ρ described in the previous
subsection leads to

dy1

dρ
=

∂H

∂y2
+ εP(y1,y2,c;ε) ,

dy2

dρ
= −∂H

∂y1
+ εQ(y1,y2,c;ε) , (2.5)

where H (y1,y2) =
1
2(y

2
1 + y2

2). The reduction to a perturbed harmonic oscillator is thus accom-
plished.

2.3. The Lagrange standard form of averaging theory

In polar coordinates, y1 = r cosθ , y2 = r sinθ , system (2.5) becomes

ṙ = ε G∗1(θ ,r,c;ε) ,

θ̇ = −1+
ε

r
G∗2(θ ,r,c;ε) , (2.6)

where

G∗1(θ ,r,c;ε) = cosθ P(r cosθ ,r sinθ ,c;ε)+ sinθ Q(r cosθ ,r sinθ ,c;ε) ,

G∗2(θ ,r,c;ε) = cosθ Q(r cosθ ,r sinθ ,c;ε)− sinθ P(r cosθ ,r sinθ ,c;ε) .

Notice that this system is only well defined for r > 0. Moreover, in this region, since for suffi-
ciently small ε we have θ̇ < 0 in an arbitrarily large ball centered at the origin, we can rewrite the
differential system (2.6) in such ball into the form

dr
dθ

= ε G(θ ,r,c;ε) (2.7)

by taking θ as the new independent variable. Recall that any 2π-periodic solution of (2.7) corre-
sponds biunivocally with a periodic orbit of (2.3) on an arbitrarily large compact set included in
Lc∩Ω. Therefore, system (2.7) is 2π–periodic in variable θ and is in the Lagrange standard form
of averaging theory.
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2.4. Example: Maxwell-Bloch equations

The real-valued Maxwell-Bloch system (see [4] and references therein) is given by the following
polynomial vector field in R3:

ẋ1 = x2 , ẋ2 = x1x3 , ẋ3 =−x1x2. (2.8)

Equations (2.8) can be written as a Poisson system (1.1) with Hamiltonian H(x) = 1
2(x

2
2 + x2

3) and
structure matrix

J (x) =

 0 1 0
−1 0 x1

0 −x1 0

 .

Since rank(J ) = 2 everywhere it has one independent Casimir invariant which can be chosen as
D(x) = x3 +

1
2 x2

1.
Let F(x;ε) = (A(x),B(x),C(x)) be the perturbation vector field in (2.3). We make the following

statement: the perturbed field (2.3) has the invariant surface Lc = {x ∈ R3 : D(x) = c} for some
arbitrary real constant c ∈ R if and only if D(x)− c divides the analytic function xA(x)+C(x). The
proof is as follows: Sc is an invariant surface of (2.3) if and only if there is a real analytic function K
in R3 such that Y (D(x)−c) =K(x)(D(x)−c) where Y = A(x)∂x1 +B(x)∂x2 +C(x)∂x3 is the vector
field (linear differential operator) associated to F . Then, direct computations give xA(x)+C(x) =
K(x)(D(x)− c) thus proving the claim.

Note that the Maxwell-Bloch Hamiltonian is quasi-harmonic in terms of variables x2 and x3,
namely H(x)ϕ1(x2,x3)+ϕ2(x2,x3), with ϕ1(x2,x3)=

1
2 x2

2 and ϕ2(x2,x3)=
1
2 x2

3. Accordingly, we can
perform the change of variables given by the diffeomorphism x = (x1,x2,x3) 7→ y = (y1,y2,y3) =

Φ(x) = (x2,x3,D(x)) defined in the region Ω = {x ∈ R3 : xi 6= 0, i = 1,2,3}. This is the natural
choice in order to arrive to a harmonic oscillator. Observe that under such transformation, the surface
Lc is transformed into the half-plane Π = {y ∈ Ω∗ ⊂ R3 : y3 = c} defined in Ω∗ = Φ(Ω) = {y ∈
R3 : y1 6= 0,y2 6= 0,y3 > y2}. The perturbed system (2.3) defined in Ω∗ adopts the form

ẏ1 = η(y)
(

∂H

∂y2
+ εP(y)

)
,

ẏ2 = η(y)
(
−∂H

∂y1
+ εQ(y)

)
, (2.9)

ẏ3 = ε(y3− c)R(y),

where η(y) =
√

2(y3− y2) > 0 in Ω∗, H (y1,y2) =
1
2(y

2
1 + y2

2), P(y) = B(η(y),y1,y2), Q(y) =
−η(y)A(η(y),y1,y2) + (y3 − c)K(η(y),y1,y2) and R(y) is an analytic function in Ω∗. Now we
restrict system (2.9) to its invariant plane Π and rescale the time t 7→ τ with dτ = η dt to obtain the
planar system

dy1

dτ
= y2 + εB(

√
2(c− y2),y1,y2) ,

dy2

dτ
= −y1− ε

√
2(c− y2)A(

√
2(c− y2),y1,y2), (2.10)

which is defined on Π. Notice that in the particular case in which the perturbation (A(x),B(x),C(x))
is polynomial with A and B even and odd, respectively, in the variable x1, that is having the form
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A(x) = Â(x2
1,x2,x3) and B(x) = x1B̂(x2

1,x2,x3) then (2.10) is also a polynomial perturbation of the
harmonic oscillator.

2.5. Example: Euler top

As a second instance of the reduction procedure consider the Euler equations, which describe the
rotation of a rigid body:

ẋ1 =
µ2−µ3

µ2µ3
x2x3 , ẋ2 =

µ3−µ1

µ3µ1
x3x1 , ẋ3 =

µ1−µ2

µ1µ2
x1x2 . (2.11)

In system (2.11) each variable xi denotes the ith component of angular momentum, and constants
µi are the moments of inertia about the coordinate axes, both for i = 1,2,3. Energy is conserved
for this vector field, and actually this is a Poisson system [1, 16] in terms of the following structure
matrix:

J (x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .

Obviously the rank of the structure matrix is 2 everywhere in R3 except at the origin. The Hamilto-
nian, which is the total (kinetic) energy, can be written as:

H(x) =
1
2

(
x2

1
µ1

+
x2

2
µ2

+
x2

3
µ3

)
.

Euler top has received a significant attention in the Poisson system framework, for instance see
[5] and references therein. From the point of view of the study of periodic solution bifurcations
after perturbations of the Euler top, see [3]. Excluding the origin, there is one independent Casimir
invariant, which can be taken as the square of the angular momentum norm:

D(x) = x2
1 + x2

2 + x2
3 .

Accordingly, we shall denote the symplectic leaves as Lc2 ≡{x∈R3 : D(x)= c2}. The Hamiltonian
is quasi-harmonic for every pair of variables. For instance, in terms of x1 and x2 we have H(x) =
ϕ1(x1,x2)+ϕ2(x1,x2)+

1
2µ3

D(x), where ϕi(x1,x2) =
1
2 κ2

i3x2
i , for i = 1,2, and

κi3 =

(
1
µi
− 1

µ3

)1/2

.

According to the reduction procedure assumptions, we have ϕi(x1,x2) 6= 0 provided x1 6= 0 and
x2 6= 0, and in addition we assume without loss of generality µ3 > µ1 and µ3 > µ2. Let us also
define the semispheres

L +
c2 := {(x1,x2,x3) ∈Lc2 : x3 > 0} , L −

c2 := {(x1,x2,x3) ∈Lc2 : x3 < 0} .
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Consider now the most general analytic perturbation in R3\{x3 = 0} of the Euler top, leaving invari-
ant the semispheres L +

c2 and L −
c2 :

ẋ1 =
µ2−µ3

x 2
x3 + εA(x1,x2,x3) ,

ẋ2 =
µ3−µ1

µ3µ1
x1x3 + εB(x1,x2,x3) , (2.12)

ẋ3 =
µ1−µ2

µ1µ2
x1x2 + εC(x1,x2,x3) ,

where

A(x1,x2,x3) = x3P(x1,x2,D(x1,x2,x3)) ,

B(x1,x2,x3) = x3Q(x1,x2,D(x1,x2,x3)) ,

C(x1,x2,x3) =
D(x1,x2,x3)− c2

2x3
R(x1,x2,D(x1,x2,x3))

−x1P(x1,x2,D(x1,x2,x3))− x2Q(x1,x2,D(x1,x2,x3)) ,

with P, Q and R analytic functions everywhere in R3. We then perform the following diffeomorphic
change of variables:

(x1,x2,x3) 7→ (y1,y2,y3) = (κ13x1,κ23x2,D(x1,x2,x3)) , (2.13)

defined in Ω≡ {(x1,x2,x3) ∈R3 : x1 6= 0, x2 6= 0, x3 6= 0}. The perturbed system (2.12) restri= cted
to L +

c2 adopts the form

ẏ1 = −κ13κ23

√
y3− (y1/κ13)2− (y2/κ23)2

(
∂H
∂y2

+ εP(y1,y2,y3)

)
,

ẏ2 = −κ13κ23

√
y3− (y1/κ13)2− (y2/κ23)2

(
−∂H

∂y1
+ εQ(y1,y2,y3)

)
, (2.14)

ẏ3 = ε(y3− c2)R(y1,y2,y3) ,

with H(y1,y2,y3) =
1
2(y

2
1 + y2

2) +
1

2µ3
y3. The perturbed system (2.12) restricted to the semispace

x3 < 0 is given by (2.14) changing the sign in the right-hand side of ẏ1 and ẏ2. Then, the restriction
of system (2.14) to L +

c2 is given by the analytic system

ẏ1 = −κ13κ23

√
c2− (y1/κ13)2− (y2/κ23)2

(
∂H

∂y2
+ εP(y1,y2,c2)

)
,

ẏ2 = −κ13κ23

√
c2− (y1/κ13)2− (y2/κ23)2

(
−∂H

∂y1
+ εQ(y1,y2,c2)

)
,

where H (y1,y2) =
1
2(y

2
1 + y2

2). Finally, we introduce a time reparametrization t 7→ τ of the form
dτ = η dt, with η = −κ13κ23

√
c2− (y1/κ13)2− (y2/κ23)2 which completes the reduction to the

form (2.5) of a perturbed harmonic oscillator.

3. Perturbations of the harmonic oscillator

As far as we know, the bifurcation of limit cycles from the period annulus P = R2\{(0,0)} of a
harmonic oscillator ẏ1 = y2 + εP, ẏ2 = −y1 + εQ was first analyzed in [10] for polynomial pertur-
bation fields (P(y1,y2),Q(y1,y2)) of arbitrary degree and whose coefficients are independent of ε .
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The cyclicity of P under perturbations (P,Q) with |ε| � 1 is the maximum number of limit cycles
bifurcating from the circles that foliates P . A detailed analysis of the homogeneous case for which
P and Q are homogeneous polynomials of the same arbitrary degree is given in [9] where its is
shown that the cyclicity of P is zero.

Later in [13] the cyclicity of P under arbitrary polynomial perturbation fields (P(y1,y2;ε),
Q(y1,y2;ε)) is analyzed but now allowing the coefficients to depend analytically on ε , that is P,Q ∈
R{ε}[y1,y2]. In [13] it is derived the global upper bound [`(n−1)/2] on the cyclicity of P where
n = max{deg(P),deg(Q)} and ` is the order of the associated first Melnikov function which is not
identically zero. Also in [13] some cases where the above upper bound is sharp are shown.

An interesting question arises if we assume that P,Q ∈ Rm[ε][y1,y2], that is, the coefficients of
(P,Q) are polynomial functions of ε having some fixed maximum degree m: to find the bifurcation
diagram of limit cycles in P in the parameter space. We consider here the simplest case with
respect to the degrees, namely, (m,n) = (1,2). Thus we consider the most general perturbation of a
harmonic oscillator like (2.5) by a quadratic perturbation field (P,Q) whose coefficients are linear
functions of the perturbation parameter ε . Moreover, the right hand side can be taken without loss
of generality (after a rotation in the phase plane) in the called Bautin form (see [2])

ẏ1 =−y2 + ε
[
−A3(ε)y2

1 +(2A2(ε)+A5(ε))y1y2 +A6(ε)y2
2
]
,

ẏ2 = y1 + ε
[
A2(ε)y2

1 +(2A3(ε)+A4(ε))y1y2−A2(ε)y2
2
]
,

(3.1)

with linear coefficients Ai(ε) = ai0 +ai1ε for i = 2,3,4,5,6. The resulting perturbation coefficients
ai j are collected into the vector parameter λ ∈ R10.

Remark 3.1. After [2], it is well known that the origin is a center of family (3.1) for any ε ∈ R if
and only if one of the following four conditions is fulfilled:

(a) A4(ε) = A5(ε)≡ 0;
(b) A3(ε)−A6(ε)≡ 0;
(c) A5(ε) = A4(ε)+5(A3(ε)−A6(ε)) = A3(ε)A6(ε)−2A2

6(ε)−A2
2(ε)≡ 0;

(d) A2(ε) = A5(ε)≡ 0.

Introducing polar coordinates y1 = r cosθ , y2 = r sinθ , and for |ε| sufficiently small, any system
ẏ1 = y2 + εP(y1,y2;ε), ẏ2 = −y1 + εQ(y1,y2;ε) and in particular system (3.1) is transformed into
the analytic differential equation

dr
dθ

= F (θ ,r;λ ,ε) (3.2)

which is defined on the cylinder {(r,θ) ∈ (R+ ∪ {0})× S1} with S1 = R/2πZ and satisfies
F (θ ,r;λ ,0) ≡ 0. Therefore, equation (3.2) is written in the standard Lagrange form of the aver-
aging theory with period 2π . The classical tool of averaging allows us to analyze the 2π-periodic
solutions of (3.2), see for example the book [17] or, for recent advances, the papers [8] and [14].

The solution r(θ ;z,λ ,ε) of (3.2) with initial condition r(0;z,λ ,ε) = z ∈ R+ admits the conver-
gent power series expansion near ε = 0 like r(θ ;z,λ ,ε) = z+∑ j≥1 r j(θ ,z,λ )ε j where the coeffi-
cient functions r j are real analytic. The function r(·;z,λ ,ε) is defined on the interval [0,2π] provided
that ε is close enough to 0, hence we can define the displacement map d : R+×R12× I→R+ with I
some real interval containing the origin as d(z,λ ,ε) = r(2π;z,λ ,ε)− z. From this definition we see
that the isolated positive zeros z0 ∈R+ of d(·,λ ,ε) are just the initial conditions for the 2π-periodic
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solutions of (3.2), which clearly are in one-to-one correspondence with the limit cycles of system
(3.1) bifurcating from the circle y2

1 + y2
2 = z2

0 included in the period annulus P of the unperturbed
harmonic oscillator.

In summary, the displacement map d is expressed as the following convergent series expansion

d(z,λ ,ε) = ∑
i≥1

fi(z;λ )ε
i,

and the coefficient functions fi(z;λ ) = ri(2π,z,λ ) can be computed by a recursive procedure,
see [11] for the general structure. We call fi the i-th averaged function (also called i-th Melnikov
function in the literature).

We say that a branch of limit cycles bifurcates from the circle y2
1 +y2

2 = z2
0 with z0 ∈R+ if there

is a function z∗(λ ,ε) (which may be defined only for values of ε on a half-neighborhood of zero)
such that z∗(λ ,0) = z0 and d(z∗(λ ,ε),λ ,ε)≡ 0. It is well known (see [17], for example) that in such
a case z0 must be a zero of the function f`(·;λ ) where ` is the first subindex such that f`(z;λ ) 6≡ 0,
that is the first non-identically zero averaged function is the `-th.

Remark 3.2. Since the averaged functions fi(z;λ ) = zm j ∑
n j
j=0 ξi j(λ )z j ∈ R[λ ][z], we can consider

the polynomial ideal I generated by its coefficients ξi j ∈ R[λ ] in the ring R[λ ]. We also can
consider the ascending chain of ideals

I2 ⊆I3 ⊆ ·· · ⊆Ik = I

where Is = 〈ξi j : 2 ≤ i ≤ s〉. Since I is a Noetherian ring, the above chain stabilizes at, say, the
moment k ∈N. The former implies that if the parameters λ = λ ∗ ∈Ik, then d(z,λ ∗,ε)≡ 0 and the
origin becomes a center of (3.1).

Remark 3.3. We summarize here the classical averaging theory applied to the differential equation
(3.2). Assume that z0 ∈R+ is a zero of f`(·;λ ∗), the first non identically zero averaged function and
let N be the number of isolated branches of 2π-periodic solutions of (3.2) with parameters λ = λ ∗

bifurcating from z0 for |ε| � 1. Then the following statements hold:

(i) If z0 is simple then N = 1.
(ii) If z0 is multiple of multiplicity k̄, then N ≤ k̄.

Notice that (i) is a simple consequence of the Implicit Function Theorem while for (ii) it is required
the Weierstrass Preparation Theorem.

The following result is new in the literature and is a first approach to obtain the complete limit
cycle bifurcation diagram of P in the parameter space of the quadratic family with linear polynomi-
als of ε in their coefficients. The analysis includes the orders `≤ 6 of the associated first Melnikov
functions.

Theorem 3.1. Let us consider the perturbed harmonic oscillator given by family (3.1) and the
following set of polynomials in their parameters λ ∈ R10 (here λ denote the vector parameter
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whose components are ai0 and ai1 for i = 2,3,4,5,6.):

ξ20(λ ) = a50(a30−a60),

ξ̂30(λ ) = a31a50 +a30a51−a51a60−a50a61,

ξ̂40(λ ) = a51(a31−a61),

ξ̂42(λ ) = −a20a40(5a30 +a40−5a60)(a30−a60),

ξ̂51(λ ) = 5a21a2
30a40 +10a20a30a31a40 +a21a30a2

40 +a20a31a2
40 +5a20a2

30a41 +

2a20a30a40a41−10a21a30a40a60−10a20a31a40a60−a21a2
40a60−

10a20a30a41a60−2a20a40a41a60 +5a21a40a2
60 +5a20a41a2

60−
10a20a30a40a61−a20a2

40a61 +10a20a40a60a61,

ξ̂61(λ ) = −10a21a30a31a40−5a20a2
31a40−a21a31a2

40−5a21a2
30a41−10a20a30a31a41−

2a21a30a40a41−2a20a31a40a41−a20a30a2
41 +10a21a31a40a60 +

10a21a30a41a60 +10a20a31a41a60 +2a21a40a41a60 +a20a2
41a60−

5a21a41a2
60 +10a21a30a40a61 +10a20a31a40a61 +a21a2

40a61 +

10a20a30a41a61 +2a20a40a41a61−10a21a40a60a61−10a20a41a60a61−
5a20a40a2

61,

ξ̂63(λ ) = a20a2
40(a30−a60)(5a2

20 +a40a60 +5a2
60).

Let N(λ ) be the number of limit cycles that bifurcate from its period annulus P = R2\{(0,0)} as
the perturbation parameter ε slightly varies from zero. Then the following holds:

(i) If ξ20 6= 0 then N = 0;
(ii) If ξ20 = 0 and ξ̂30 6= 0 then N = 0;

(iii) If ξ20 = ξ̂30 = ξ̂42 = 0 then N = 0;
(iv) If ξ20 = ξ̂30 = 0 but ξ̂42 6= 0 then, defining s1 = ξ̂40/ξ̂42, we have that N = 1 or N = 0 according

to wether s1 < 0 or s1 ≥ 0, respectively;
(v) If ξ20 = ξ̂30 = ξ̂40 = ξ̂42 = 0 and ξ̂51 6= 0 then N = 0;

(vi) If ξ20 = ξ̂30 = ξ̂40 = ξ̂42 = ξ̂51 = 0 but ξ̂63 6= then, defining s2 = ξ̂61/ξ̂63, we have that N = 1
or N = 0 according to whether s2 < 0 or s2 ≥ 0, respectively.

Proof. Straightforward computations produce the following averaged functions for system (3.1):

f1(z;λ ) ≡ 0,

f2(z;λ ) = z3
ξ20(λ ),

f3(z;λ ) = z3 [ξ30(λ )+ zξ31(λ )],

f4(z;λ ) = z3 [ξ40(λ )+ zξ41(λ )+ z2
ξ42(λ )],

f5(z;λ ) = z4 [ξ50(λ )+ zξ51(λ )+ z2
ξ52(λ )],

f6(z;λ ) = z4 [ξ60(λ )+ zξ61(λ )+ z2
ξ62(λ )+ z3

ξ63(λ )],

where ξi j ∈ R[λ ] are the polynomials in the parameters of family (3.1). In what follows we
shall denote by ξ̂i j the remainder of ξi j upon division by a Gröbner basis of the ideal gener-
ated by all the ξks with k < i in the polynomial ring R[λ ]. This remainder can be computed, for
instance, with the functions PolynomialReduce and GroebnerBasis of the computer algebra
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system Mathematica c©. Another option is the use of reduce with the software Singular c©. The non-
identically zero polynomials ξ̂i j ∈R[λ ] are listed in the statement of the theorem. After such reduc-
tion, we will consider the polynomials:

f2(z;λ ) = z3
ξ20(λ ),

f̂3(z;λ ) = ξ̂30(λ )z3,

f̂4(z;λ ) = z3 [ξ̂40(λ )+ z2
ξ̂42(λ )],

f̂5(z;λ ) = ξ̂51(λ )z5,

f̂6(z;λ ) = z5 [ξ̂61(λ )+ z2
ξ̂63(λ )] .

=46rom the expression of f2(z;λ ) and f̂3(z;λ ) we deduce statements (i) and (ii) respectively while
from the expression of f̂4(z;λ ) we obtain (iii) and (iv). Next (v) and (vi) are obtained from the
expressions of f̂5(z;λ ) and f̂6(z;λ ). �

Notice that the complete limit cycle bifurcation diagram of P in the parameter space R10 for
family (3.1) when ξ20 = ξ̂30 = ξ̂40 = ξ̂42 = ξ̂51 = ξ̂61 = ξ̂63 = 0 (that is for parameters λ = λ ∗ lying
in the real variety associated with I6) is not presented. Unfortunately the massive computations
to obtain f7(z;λ ), hence f̂7(z;λ ), in the proof of Theorem 3.1 do not seem to be possible in our
computer. In other words, for family (3.1) we are unable to get the ideal stabilization explained in
Remark 3.2. The reason is that we can check that I6 6= I because there are parameters in I6 for
which the origin is not a center of (3.1) as can be easily seen by using Remark 3.1. Anyway, the
bifurcation diagram can be made complete with a further case-by-case explicit analysis of the 10
subcases that arise after the vanishing of the factors in the expressions of ξ20, ξ40 and ξ42 which are
the simpler ones.

We remark on the other hand that in all the cases exposed in Theorem 3.1 we have obtained
simple zeroes of the corresponding averaged function f`(·;λ ). In order to compute the actual value
(not only its upper bound as in part (ii) of Remark 3.3) of the number of branches bifurcating from
a multiple zero z0 of f`(·;λ ) several methods can be employed. Among them branching theory and
singularity theory applied to the reduced displacement map δ (z,λ ,ε) = f`(z;λ )+∑i≥1 f`+i(z;λ )ε i

are worth mentioning. Branching theory uses the Newton’s diagram of δ (see [18]) to analyze the
local structure of the zeroes of δ near (z,ε) = (z0,0). The approach of singularity theory of smooth
functions (see for example [12]) is completely different: the goal is to find when λ = λ ∗ a normal
form δ̂ (z,ε) of δ (z,ε) such that U(z,ε)δ (Z(z,ε),Λ(ε)) = δ̂ (z,ε) where (z,ε) 7→ (Z(z,ε),Λ(ε))
is a local diffeomorphism of R2 mapping the origin to (z0,0) and preserving orientation whereas
U(z,ε) > 0. A different approach dealing with the degenerate case for which z0 is a multiple zero
of f`(·;λ ) and fk(z0;λ ) = 0 for any k ∈ N can be found in [8].

In the next example, the analysis of multiple zeroes of f`(·;λ ) is needed.

Proposition 3.1. Let us consider the perturbed harmonic oscillator given by system ẏ1 = y2 +

εP3(y1,y2;ε), ẏ2 =−y1 + εQ3(y1,y2;ε) with the cubic perturbation

P3(y1,y2;ε) =

(
289
2

+
18719ε

884736β

)
x3− 1

4
βx2y− 867

2
xy2 +

β

12
y3,

Q3(y1,y2;ε) = − 1
768

xy+ εy2− 861
2

x2y+
(

287
2
− 18719ε

884736β

)
y3,
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and β =
√

145. Then limit cycles on the period annulus P only can bifurcate from the circle
x2 + y2 = 1/2. Moreover, exactly either two or none limit cycles bifurcate according to whether
ε > 0 or ε < 0, respectively.

Proof. Straightforward computations produce the following averaged functions for system (3.1):

f1(z) = f2(z)≡ 0,

f3(z) = z3 (−1+2z2)2,

f4(z) = z5 (8210368799−21687552313344z2 +295572602880z4).

Therefore, the reduced displacement map δ (z,ε) = d(z,ε)/ε3 has the form δ (z,ε) = f3(z) +
f4(z)ε +O(ε2) where z0 =

√
2/2 ∈R+ is a multiple zero of f3 of multiplicity k̄ = 2. We know then

that at most 2 limit cycles can bifurcate from the circle x2 + y2 = z2
0. The following analysis will

show that actually this bound is sharp. Indeed, since f4(z0) 6= 0, using singularity theory of smooth
maps (see [12]), we deduce that δ is strongly equivalent to the normal form δ̃ (z,ε) = δ1z2 + δ2ε

where δ j are ±1 according to the signs

δ1 = sgn
(

d2 f3

dz2 (z0)

)
6= 0, δ2 = sgn( f4(z0)) 6= 0.

We recall here that δ̃ (z,ε) and δ (z,ε) are strongly equivalent if they are related by
U(z,ε)δ (Z(z,ε),ε) = δ̃ (z,ε) where z 7→ Z(z,ε) is a local diffeomorphism of R mapping the origin
to z0 and preserving orientation, and U(z,ε) is a positive function. Notice that if Nδ (ε) denotes the
number of local zeros of δ (·,ε) near z0 and N

δ̃
(ε) the number of local zeros of δ̃ (·,ε) near 0 then

we arrive at the important consequence for our purpose that Nδ (ε) = N
δ̃
(ε).

In our case δ1 = 1 and δ2 =−1 so that δ̃ (·,ε) has exactly two zeros z∗±(ε) =±
√

ε which only
appear when ε > 0 so that z∗± ∈R. Therefore, going back we conclude that exactly two limit cycles
bifurcate from the circle x2 + y2 = z2

0 when ε > 0 and no limit cycle bifurcation occurs with the
contrary sign of ε . �
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[3] A. Buică and I.A. Garcı́a, Periodic solutions of the perturbed symmetric Euler top, Topol. Methods

Nonlinear Anal., 36 (2010), 91–100.
[4] D. David and D.D. Holm, Multiple Lie-Poisson Structures, Reductions, and Geometric Phases for the

Maxwell-Bloch Travelling Wave Equations, J. Nonlinear Sci., 2 (1992), 241–262.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

306



I.A. Garcı́a and B. Hernández-Bermejo / Periodic orbits of perturbed rank 2 Poisson systems

[5] I.A. Garcı́a and B. Hernández–Bermejo, Perturbed Euler top and bifurcation of limit cycles on invariant
Casimir surfaces, Physica D, 239 (2010), 1665–1669.

[6] I.A. Garcı́a and B. Hernández–Bermejo, Periodic orbits in analytically perturbed Poisson systems,
Physica D, 276 (2014), 1–6.

[7] I.A. Garcı́a and B. Hernández–Bermejo, Inverse Jacobi multiplier as a link between conservative sys-
tems and Poisson structures, J. Phys. A Math. Theor., 50 (2017), 325204 1–17.

[8] I.A. Garcı́a, J. Llibre and S. Maza, On the multiple zeros of a real analytic function with applications to
the averaging theory of differential equations, Nonlinearity, 31 (2018), 2666–2688.

[9] I.A. Garcı́a and S. Maza, Period annulus of the harmonic oscillator with zero cyclicity under perturba-
tions with a homogeneous polynomial field, Electron. J. Qual. Theory Differ. Equ., 3 (2019), 1–6.

[10] H. Giacomini, J. Llibre and M. Viano, On the nonexistence, existence and uniqueness of limit cycles,
Nonlinearity, 9 (1996), 501–516.
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