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In this paper, the Hirota bilinear equation of the constrained modified KP hierarchy is expressed as the vacuum
expectation values of Clifford operators by using the free fermions method of mKP hierarchy. Then we mainly
use the Boson-Fermion correspondence to solve the Hirota bilinear equation of the k-constrained mKP hierar-
chy. Further, by choosing special group elements in GL«, the corresponding rational and soliton solutions are
given.
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1. Introduction

The modified KP hierarchy [14, 15] is introduced as a series of bilinear equations by using the
Boson-Fermion correspondence, i.e.

resy (%t = (A7) e (4 A A" eS0T ) —0, >, (1.1)

where t = (t) = x,fp,13,--+) and [A] = (4, %2, %3, .-+ ). Here the tau functions are defined as follows

T.(:8) = (n|eVgln), g€G, (1.2)

where

H(t) =) ) 0ubyi it
I=1neZ
On, 0, (n € Z) are generators of the Clifford algebra <7 which satisfy

[‘Pna (prfz]-i- = ¢n¢:1 +(P:;l(pn = 6m,ny
[¢na¢m]+ - [¢:7¢;rkl]+ =0. (1.3)
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G={ge/|F3g™!, gvg =V, gV'¢!=V'} withV =Y,,C and V* =¥, C;. (1
and |n) are the states of the charge n, which are defined as follows:

<O‘¢—1"'¢na n<0
(n|=4 (0], n=0 ,
0197+, n>0.

-1

;+1"’¢j1’0>, I’l<0
ny =14 10), n=0 .
O—n+1-+¢o[0), n>0.

And (0| and |0) are the vacuum states

$,[0) =0, (n<0); ¢,/0)=0, (n>0),
0|, =0, (n>0); (0/¢,=0, (n<0),
(0[0) = 1. (1.4)

After the work above, people paid more attention to find the Lax equation forms. There are many
versions of the mKP hierarchy [3,7,16-18,21,26]. All the forms are trying to generalize the Miura
link between the mKdV and KdV equations to the KP cases. Here in this paper, we only consider
the Kupershmidt-Kiso version [16—18,26]. In fact, the mKP hierarchy of Kupershmidt-Kiso version
is corresponding to the bilinear equation [5]

res;, (rleﬂf*”MTO(I AT + [rl])) = 71 (1)70(7), (1.5)

which can be rewritten [22] from the original bilinear equation (1.1).
The wave function and the adjoint wave function [5, 14, 15] can be defined through the tau
functions 7; and 7y in the following way

Tt —[A7"]) eoay_ (1Mo (2)g]0)
l — ’ — 16
M= (TefOglt) o
T+, 1 ey (09" (A)gll)
Wit 4) 0 ¢ A{0]eHgl0) ("
where §(1,4) =Yt ;AJ. Thus the bilinear equations (1.5) are equivalent to
res; w(t', A )w*(t,A) = 1. (1.8)

Then one can introduce two pseudo-differential operators Z and W such that the relations below
hold

w(t, 1) =Z(e* ) w1, A) = W (=), (1.9)
with
Z=z204+20 "420 2+, W=wid '+wd 2+---. (1.10)
Co-published by Atlantis Press and Taylor & Francis
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Here 0 = d,. The algebraic multiplication of 9’ with the multiplication operator f is given by the
usual Leibnitz rule [8]

df=Y <;)f<f>af—f, ieZ, (1.11)

jz0

where f(/) = 8171; For A =Y,a;0", Axj = ¥;>4ai0", Ack = ¥ a;0" and Ay = ay.. In this paper, for
any pseudo differential operator A and a function f, the symbol A(f) will indicate the action of A
on f, whereas the symbol Af or A - f will denote the operator product of A and f, and * stands for
the conjugate operation: (AB)* = B*A*, d* = —d, f* = f.

Lemma 1.1 ([12]). Ifwe let A(x) = ¥;ai(x)d} and B(x') = ¥ ; b; (x’)aj; be two operators, then

A(x)B*(x)0:(A%) = resy A(x) (e) -B(xl)(e_"ll), (1.12)
where AY = (x — x')° and

0, a<0,
9 (A% = { (x—x')a o (1.13)

a!

From the bilinear equation (1.8), one can find W = (Z9~!)* and the evolution equations of the
operator Z as follows

9,7 =— <za"z*1) Z. (1.14)
<0

Here the operator Z is called the dressing operator or the wave operator. Then one can introduce the

Lax operator of the mKP hierarchy [16-18,26] in the way below

L=20Z"=0+uy+ui0 ' +u0 > +uz0 > +---, (1.15)
which satisfies the Lax equations

O L=[(L")s>1,L],n=1,2,3,.... (1.16)

n

The mKP hierarchy and its various extensions have many important integrable structures, such as
tau function [5, 32], Hirota bilinear equation [2, 5], squared eigenfunction symmetries [5, 28, 29],
additional symmetry [5, 33], Hamiltonian structures [3,7,17,27], gauge transformation [1,4,6, 13,
23,30, 34], and algebraic strucutre [21, 24] etc. In this paper, we mainly discuss the constrained
mKP hierarchy, which can be viewed as the sub-hierarchy of the mKP hierarchy.

The k-constrained mKP hierarchy [2,5,29] is defined by imposing the following constraint on
the Lax operator,

L= (L%=14Y g0~ 'r0, (1.17)
i=1

where g and r are the eigenfunction and the adjoint eigenfunction of the mKP hierarchy respectively,
satisfying

0,9i = (L")>1(qi), Oyri= —(a(L")Zla*)*(r,-). (1.18)
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Introduce two auxiliary functions p(¢) and o (¢) such that

q:‘(t): pi(t) r[(l):

T (l‘)’

Then we have the proposition below [2].

(1.19)

Proposition 1.1 ([2]). The auxiliary functions o (t),p(t), 71 (t), and Ty(t) satisfy the following bilin-
ear equations:

fp,-(r)a,.(z’) — res; (M—lfo(z— A + [z—l])eé(’—/v“), (1.20)
i=1

pil)To(r) = resy (A no(e = (A~ Dol + M”])e"“’*"“), (1.21)
Gi(1 )T (t) = resy, (x-‘n ( + Aot — [l_l])eé(t_’/’l)). (1.22)

Boson-Fermion correspondence [9-11, 14, 15, 19, 20, 25] describes the link between the free
fermions and the Bosons, which is a very powerful tool to deal with the integrable hierarchy. By this
method, the solutions for the constrained KP and BKP hierarchies are constructed from its bilinear
representations [31,35]. In this paper, we will rewrite the Hirota bilinear equations of the constrained
mKP hierarchy in the proposition above, in terms of the vacuum expectation values of Clifford
operators by using Boson-Fermi correspondence [11,25]. Then we mainly use the Boson-Fermion
correspondence to solve the Hirota bilinear equation of the k-constrained mKP hierarchy. Further,
by choosing special group elements in GL.., the corresponding rational and soliton solutions are
given.

This paper is organized in the following way. Rational solutions for the vector k-constrained
mKP hierarchy are derived in Section 2. Section 3 is devoted to the soliton solutions of k-constrained
mKP hierarchy. At last, some conclusions and discussions are given in Section 4.

2. Rational solutions for the vector k-constrained mKP hierarchy
Lemma 2.1 (Wick’s theorem [25]). For ¢, ---¢, € VP V*,

{ 0, if ris odd,
Y.o81g0(0) (96 (1)95(2)) "+ (Po(r—1)Po(r)), if T is even.
where () = (vac|-|vac) and sign(0) is the sign of a permutation; the sum runs over all permutations
o satisfying 6(1) < 6(2),---,0(r—1) < o(r)and (1) < 6(3) < --- < o(r—1), in other words,
over all ways of grouping the @¢; into pairs.

(Or--0) = 2.1)

Denote ¢(A) =Y ,,cz 9, A" and ¢* (1) = ¥,,c7 ¢, A 7". Define the t-evolution of an operator a as
a(t) = e"Wae=H) Then

Lemma 2.2 ([11]). The following relations hold

H(t)|vac) =0, (2.2)
M09 (A)e M0 = Mp(2), 2.3)
eH(t)(p*(k)efH(t) _ eié(t’l)(l)*(l), (2'4)
(vac| @, (t)@m(1)|vac) = ;Op, n (=) pm—i(t), (2.5)
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where p,(t) is the Schur polynomial, determined by ¢*"*) =Y p,(1)A™.

From this lemma, one can obtain
= Z On—ipi(t), (2.6)

el gre U Z¢n+,pl : 2.7)

The following differential operators of infinite order are called vertex operators.

X(A) = etMe Zx( ) 2.8)
i€Z
X*(A) = eSA éx ( ) 2.9)

where X;, X;* are given by

Xi= Y puriOpa(=0), X7 =Y puci(—1)pu(d (2.10)

n>0 n>0

and 9 = (91,105,10,...).

Lemma 2.3 ([11]). The vertex operators (2.8) and (2.9) have the following properties:
(ne"Me(A) = A" "X (A)(n—1|"D), (2.11)
(n]e¢*(A) = A7"X*(A) (n+1|HD, (2.12)

From Ref. [11], for any g € G, it satisfies the following commutation relations with free fermion
operators,

ong =Y g0i(a Nin, 0rg=Y g0 ain. (2.13)

i€Z i€Z

Proposition 2.1. Let Iy = Y ,.c7 0,9, ;. if g € G satisfies the condition

g 'Tig=Y fij0i0;, (2.14)

i,jEZ

with fi j =Y, l.(l)eg-” fori>0, j <0, then

7 (t) = (0le"Vgl0), (2.15)

r(t)—(1|e’“ g|1), (2.16)

pilt) = (1" g Y dy9,]0), (2.17)
n>0

ai(t) = (0] g ¥ e 9:[1). (2.18)
n<0

i=1,2,....m

satisfy the bilinear equations in Proposition 1.1.
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Proof.  We first prove that Eq. (2.14), (2.16), (2.17) and (2.18) satisfy (1.20). According to
Lemma 2.3

resy (A qo(e— (A7) m (e + [A*l})eﬂ’*f’ﬂ))

= res; (A5 1X(2) (0] Vgl0)X* (1) (1]e"g|1))

= resy (451 (11eM09(2)¢]0) (0] g *<A>g|1>)
—res,1<7tk 110 Y :A7]0) (0] ) ¥ ¢34~ fg|1)

i€Z JjEZ
= ¥ (110 91g]0) (01" ) 67,1 811). (2.19)
€7
Due to g € G, we have
0ig=Y gmla mi, 0'¢=Y, ghnttim, (2.20)
meZ me7z

further,

g ' Tig=g¢"'Y 00/ue=Y g ' digg o148

€7 leZ
= Y g 'gtila)ig 'gdrar s
Li,jEZ
) ¢i¢7(a71)i,lal+k,j~ (2.21)
Li,jEZ

According to the assumption of the theorem

Y (@ intuin; = ﬁ,—Zd W ixo0, <o, (2.22)

nez

by using (1.4) and (2.20), (2.19) can be further written as

Y (1" gil0)(a)inansik ;0" g7|1)
n,i,jeZ

= 5% X 1150104 0" g 1)

=1i>0,<0

!

pi(t)ou(t). (2.23)

Ms

=1

So (1.20) is verified. And then we will prove (1.22). By using Lemma 2.3
resy (A7 ai (¢ + [ oyl - [/1—1])650—"»’”)
= res; (271X () (117 Og X (2) (01 g X el ;1))

n<0
= resy (x-‘<0|eH</>¢*<x>g|1><1|e’*<f>¢<x>gZe£f>¢,;‘|1>)
n<0
=Y (o[ ¢Jg\1 (11096 Y el 97[1). (2.24)

JEZL n<0
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(2.24) can be rewritten as

Y (0" grl1)ajmla )1 Dggr Y el 9:(1)

JjmleZ n<0

= Z <0]e g¢m’1> ml l\e g(l)lzen o, 1)
m,lEZ n<0

= Y (0l Ogpz 1) (1] gel) 1) = 0t )i (1), (2.25)
m<0

where we haved used (1.3), (1.4) and (2.20). Therefore (1.22) is proven. In the same way, it is easy
to prove (1.21). O

Remark 2.1. Note that these results are different from the ones in the KP case [35]. The major
differences are as follows. 1) The subscript j in e(l) can be zero in the mKP case, while zero is
forbldden in the KP case. 2) The expressions of o; are different. Since zero is allowed in subscript
jof e foo will appear and it will bring much difficulty when discussing the rational solutions. So
in the lemma below, in order to avoid these problems, we separate the zero parts from the nonzero
parts in the expressions of the group elements in GL...

In order to find rational solutions of the k-constrained mKP hierarchy more conveniently by
using the proposition 2.1, the following lemma is needed.

Lemma 2.4. Let g = 4% 0+ Tas1 bad, O — e¥, where a and b, are constant, i, < 0, Jjn>0forn=
1,2,...,N, then

]Fkg = Fk + Z b b 6ln+k Jn (le ¢J}l + Z b (pl,l ¢]n (P:,,-‘rk(P]n)

m,n=1

N
+(1—€)(¢ ¢o — Zb 8, k07:00)+ (1 —e ) (9591 + Y bud i, k05 9;,)- (2.26)
n=1

Proof. Direct calculation shows

N
(adY )Tr = a(9; 9o — 9 9—&) + Y bu(Bir 1 0), — 0197, —4),
n=1
N

(ad¥ T = (=07 90— 05.9-1) +2a Y., bu(8;,.497, 00 + 81,059,

n=1

N
+2° Y bubn8i ik, 95 ),

mn=1

N
(adY )T = (990 = 99-4) +3a* Y bu(=8;, 495 60+ 8c-i,9695,), (227
n=1
Further calculation by means of mathematical induction method,
(adY)"Ty = a" (<—1>'”-‘ 0; 90— 650

d" 1Zb( D"8,40%00+83,060;,). m=3.  (228)
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Then by Baker-Campbell-Hausdorff-formula

oo

1
g Mig=e el = Z (—1)"—(adY)"T

0 m!
= ()"0 90— 0504
::I}—% (—l)m
mz:“l m!
oo mma’"“Zﬁ,\’:1bn((—l)m@mk‘f’z‘t%+5kﬁin¢’5‘¢7n)

+ ) (=1) —

m=2 :
N N
m,n=1 n=1

Using the Taylor’s formula to calculate the above formula, one can get (2.26). O

To better understand Proposition 2.1, let’s use Lemma 2.4 to give an example.

Example 2.1. We consider the case where m = 1 in (1.20) and N = 1 in Lemma 2.4, then

8 'Tug =Tk +b18;, 4k, 07 0y + (€ — 1)b18}, 497 90 + (1 — e “)b1 51, k03 9,
+b19; 0,k — b19; 1 0, + (1 —e") O do+ (1 —e ) Pg P—r- (2.30)

By direct calculation using the mathematical induction hypothesis one can obtain

oF — % Potbi9; 8,

= 1+ (" = 1)¢5 00 + b19;,9;, + (" — 1)b1¢5 9095, ;- (2.31)

Ifi; < 0and j; > 0, there are five cases to be discussed.

(1) When iy + ji = k, by using Proposition 2.1 we find f;, ;, = —b%. So we may choose d;, = —1,
e, = b%. Then by Lemma 2.1-Lemma 2.3 and Eqs.(2.8)-(2.10), we obtain the solutions of (1.20)-
(1.22) are

(1) = <0‘eH(t)ea¢5¢o+b1¢,~’; )y 10)
= (01" (14 (e = 1)95 0 + b1 950, + (e — 1)b1650007, 95, ) 10)
= 1+ (e = 1)(95 ()90 (1)) + 5195, (19, (1)
(e = 1 ({05 (1)00(0) (05 (106, (1)) — (96 (1), (1)) (6 (1)60(1)) )
=" +¢b1 Y pueis(<0pji—n(t) = (¢ = 1)b1 Y pul=0)pj-n(t)p—is (1), (2.32)

n>0 n>0
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T (1) = (1] W W00 00 1)

= (1" D]1) + (e* = 1)(11e" g5 go[1) + b1 (1] D g ¢, 1)

+(e* = 1)bi(1]e" D95 0097 95, 1)

= Xo (0] )]0) + (¢* — 1) (1] g5 ¢o0|0) — b1X;;, (0] ;1)

+(e* = 1)b (11e"") 95 0097 9, 60/0)

—1—b1X/1P i (—1), (2.33)
pi(t) = —(1]eH D NP1 % g, |0)

= — (11", 10) — (e* = 1)(1]e" f¢5¢o¢,~110>

= —X;,(0e"1]0) — (¢ — 1) <1\e J(1- ¢097)9;,10)

= —pj,(t) = (" = 1)X;, (0]e"]0) + (¢* — 1)X;;, (0] 90955 |0)

= —e“pjl( ), (2.34)
o1 (t) = (0]e! e 0 W0 pT o 1)

= b7(01e" V97 |1) + b7 (e — 1)(0]e™ 95 909 1)

+b7 (01" 905,075 1) + b7 (¢ — 1)(0]e” b 9097 95, 07 |1)

= b1(0le" Wyt 1) = bip_i, (—1). (2.35)

(2) When j; =k and —ij # k, we find fo; = bi(1 —e*). So one has dy = by, e;, = —e”. Then the
solutions of (1.20)-(1.22) are

To(t) = e* + e“by an,[l(ft)pjl,n( (e —1)by an Npj—n(t)p—iy(—t), (2.36)

n>0 n>0
Tl(t)ZI—lele i (—1), (2.37)
pi(t) = (1]ef “¢°¢”+hl¢’ld’flb1¢o!0>
= by (1]e"7 99|0) + b7 (11e" ) 9;: 9, 90]0)
= b1 Xo(0[e"")]0) — biX;;, (0]e" ") 97 90]0)
:bl—bZlepil( 1), (2.38)
o1 (t) = (0]e! e B W10 (1 — )¢ 1) = (1— ) p_s, (—1). (2.39)

(3) When j; # k and —i; =k, one has dj, = by and ey = e~ — 1. The solutions of (1.20)-(1.22) are

To(t) = e +e’by an—i] <_t)pj1—n( )—(e" = 1)b an Pj| —a(t)p—i, (—1), (2.40)

n>0 n>0
() =1- leij i (=1), (2.41)
p1(t) = (1|10 %0100y, 6. 10) = byep;, (1), (2.42)
G1() = (0[N @80 (=0 — 1) g5 1)

(1= ¢) (65 ()60 (1)
(11— e)b1 ({05 (190095 (105, (1)) — (65 (1) 05, (1)) (07 ()0 (1)))

=1=e"+ (1= (= piy (=) ¥ p(=0)pji2(0)+ ¥ Pt (~0)ps-m(1) ) 2:43)

n>0 m>0
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(4) When j; =k and —i; =k, one has fy; = bi(1—e“), fj, 0 =bi(1 —e™*). So we may choose
do=1—¢, djl = by, e, =b;, ey=1—e % Then

TOO) =e“+eb anfil(_t)pjﬁn( ) —(e* —=1)by an P]| n( )p*l](_t)a (2.44)

n>0 n>0
T(t) = 1= biXj, p—i(—1), (2.45)
pi(1) = (1O 5N ((1— )9y + 19y, ) 0)
= (1=e") (1 =b1X;,p—iy (=) +bre"p;, (1), (2.46)
01 (1) = (0] e @0 (1 — =) g5 + by 97 )0)
= (1= +bipi (1)
(1= b1 (X Pt (0P -a(0) = p-is (1) ¥ pu(=0)pji-n(0). (24D

n>0 m>0
(5) When j; <k, —iy <k, j1 # —i1+k, or j1 >k, —ij <k, or jj # k, iy < —k, there are no

corresponding solutions.

3. Soliton solutions of k-constrained mKP hierarchy

In this part, we mainly use the Boson-Fermion correspondence to find the soliton solution of mKP
hierarchy.

Proposition 3.1 (Boson-Fermion correspondence, [11]). There exists an isomorphism ® from the
Fermionic Fock F = a/|0) to the Bosonic Fock space 8 = Clt1,ty,...,u,u”"], which is defined in
the way below,

®(alvac)) = Z’(l\elLl(’)61|1/czc>Ltl7 (3.1)

I€Z

where a|vac) € .F. Then the actions of §(A) and ¢*(A) on .F can be realised on A as follows,

D(9(1)al0)) =X (4)S(A)P(al0)), D(¢7(A)al0)) = X"(A)S"(A)D(al0)). (3.2)

Here

(S(k)S)(t,u) = uf(t,ku),  (S*(k)f)(t,u) = k™" 1,k ). (3.3)

Remark 3.1. Denote A(m) as the subspace of &/ with the charge m operators. If a € A(m), then
only the term with [ = m survives in the expression of ®(a|vac)).
Let

X(p,q) = E@P)~Exa) =800 480", (3.4)

Then we have

X(p)X*(q) = X(p,q)- (3.5

1—q/p
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Corollary 3.1 ([11]). Fora € A(0),

®(9(p)al0)) = X (p)S(p)(0]e”Val0) = ux (p) (0]e"Va|0), (3.6)
(9" (9)a0)) = X*(¢)S*(9)(0le"al0) = qu~"'X*(¢)(0]e" Val0), (3.7)
®(¢(p)9*(q)al0)) = ﬁxw,que"%m» (3.8)

Fora € A(1),
®(9(p)al0)) = X (p)S(p)(1]e"Valoyu = u?X (p)(1]e"“)a|0), (3.9)
®(9"(g)al0)) = X" (¢)S" (¢) (1] D al0yu = X*(q)(1]e"a|0), (3.10)
®(¢(p)9*(q)al0)) = %X(p,qweﬂ%m (3.11)

After the preparation above, one can obtain the following conclusion.

Lemma 3.1 ([35]). Let g = L= D0 (PO (4)) gy bij has the formTIY _, (p1 — qs)cij, pi,qj,cij are
given constant and p; # q;. Then

N
g 'Tig=Tu+ Y, Y bipla;™(pf — ") 010 (3.12)
ImeZi,j=1

0,0
Further if b;; = Y;°, dk e;k_ i,j=1,2---N, by Lemma 3.1 we find easily g 'I'yg = I'x +

J

[:125‘\’:1 i ‘P(pi) 1}’:1 §)¢ (q))-

Proposition 3.2. The soliton solutions of (1.20)-(1.22) in Proposition 1.1 are listed as follows:

(1) = (0" “gl0), (3.13)
() =1 !’””g!l) (3.14)
pilt 1|e g Z dn 0 (pn)]0), (3.15)
= (0] g Z en) 0" (gn)|1), (3.16)
i=1,2,...,m.
Proof. 1t is easy to prove by using the conclusion of proposition 2.1. (]
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Proposition 3.3. The Egs. (3.13)-(3.16) formulas in the proposition 3.2 can be expressed as the

following forms respectively:

blljlb. 'binjn

ija "

||
Mz

n=11<i1<ip<--<i <N,
1<juSN, ju# ju,u7v

(pi, — pi)q;, — q;) .

XHS<1 Zt:l(‘:(hpia)*(g([vqja)’
(pl_; q]l)(qjs _pil)
N
~ ~ ~ p . .p-n
t) =1+ Z Z biljlbizjz ’ btnjnil
n=11<i;<iy<-<i, <N, 4jy " 4jn

1§ju§N7ju7éjV7M7év
(Pi, = Piy)(4), — 4i)
e
(pi,—aj)(qj, — piy)

XI5« :;:1(‘5(17171'0;)*5(1,%0,))7

N N—1
! t, i
dy)er) 1y Y )3 d\"bi,j,bij, by,
n=1 j=1n=1 1<i|<ip<---<ip<N
ISjMSN?jH#jV'yu%v
it

|
M=

pi(t)

(Piv—Piz)(‘IJs 4111)
(P, —a)(a), — m“

_ () E(t.qn) e Oy 7 = Pi D,
nN=Yene Z Z )y e; biyjibiyjy -+ bi,j, ==
n=1 j=1n=1

x I« "
<! %= l(p]_qja)

1<i) <ir<-<iy <N, 4ji " 4jn
1<ju<N, Ju?é]va”’?é"
it
WTL,., (pi, — Pir)(a), — 4;i) m_ (Pj = dju) 1 (G l0.pig)~E (1) & 0.0 ).
(pi, —4qi)(qj, — Pi) (Pig — 4))

whereb,] ;”q’ i,j=1,2,...,N.

Proof. We first prove (3.18). Using Lemma 3.1, one can find

7 () = (1]e"Wg|1)
= u”'®(go|0))
= 71¢<H11 1(1 +Eijpiq__qj¢(pi)¢*(qj) ' ¢0’0>>>

J
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(3.17)

(3.18)

(3.19)

(3.20)

3.21)



H.Z. Chen et al. / Solutions of the cmKP hierarchy by Boson-Fermion correspondence
Then according to (3.11) of Corollary 3.1, the above equation can be written as
_1 H
1Yo (14 B X (i) (11" gol0)

=107, 1(14:1;1'1*~ (Pi>q]'))X0<0|€H(t)¢o|0>
qj

=T, 1<1+Biiﬁx(pi’qf>)'1
qj
N . ~ ~ p‘ . .p‘
1 In
:1_|_Z Z bi|j1bi2j2"'binjn%
n=11<i<iy<-<iy <N, 4 @i

1<ju<N,ju# jv,u7v
o1, Pis =Pl = 9i) v (€0pi) -6 a0,
Similarly, by lemma 3.1 and Corollary 3.1

N
oult) = @(g L.e"9"@)I1))

" X*(q1)S* (q)®(¢o|0)

1=
Nm/\

N
I
—_

" X*(q1)S* (1) - Xo (0" )| 0)u

1=
-\m/\

N
Il
—_

M-
N(\/\
3
Q
e
2
B

0 o) &) 4 Y G T PP
o m) —E(t,q, my. b ... J1 Jn
= Ze" e ! +Z Z €; biy j bij, -+~ biy j,
n=1 J=1 n=1 1<i|<ip<-<in<N, qj " 4jn
1 Ju SN ju iy
Ju#J

an<l

(pi, —a;)(a;, —pi) “" (Pig —aj)

(Pt = Pi) i = i) pn (P dja) Tj (E0pi)~E(ra)~E ()

(3.22)

(3.23)

The proof method of (3.17) and (3.19) is the same as that of (3.18), and no more description is given

here.

Remark 3.2. If N = m in Proposition 3.2 we may choose d; 0=
ingly, the solutions of the Hirota bilinear equation can be 51mp11ﬁed to

(1) = (0" “gl0),
T(r) = (l\eH(’)g\U
Zb,, pi—d4)(1]e" Vg (pi)|0),

oi(t) = (0|€ Jg0”(:)[1),
i=1,2,....m
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bi (P, 611) and el = §;;. Accord-

(3.24)
(3.25)

(3.26)

(3.27)
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Example 3.1. Form =N =2, b;; # 0, byy # 0, b1y = by; = 0, we have two-soliton solutions of
(1.20)-(1.22):

to(t) = 14+ 219 &)L b2 E6p)-Eia)
P1—41 P2—q2

+-b11b 9192(P1 — p2) (91 — q2) eé(hpn)+§(f~,pz)*§(wh)*5(%(12)7 (3.28)
(Pr—q1)(p1—q2)(q1 — p2) (P2 — q2)

() = 1+ DUPL Ewp)-ga) 4 P2P2 Ep)-¢a)

P1—4q1 P2—q2
by p1p2(P1—p2)(91 —42) Lp)rEp)~Era) ¢t (329)
(p1—q1)(p1 —q2)(q1 — p2)(P2 — 92)
bngx(p1 — p2) -
1) = by (05 — k) (SEr) 02 5 1p1)+6(1,p2) =8 (1.92) ’ 3.30
p1(?) 1(p %)( (p1—q2)(p2—q2) ) ( )
bingi(PL—=P2) el p)+e(p)—Eta)
5 (1) = by pk_ k eé(t,pz)_ Pl P2 1)) | (3.31)
pa(t) = bna(ph — ) oS )
o1(1) = ¢St _ _b2P2(@2 =) e p)-ta)-tan) (3.32)
(Pp2—q1)(p2—q2)
0r(1) = ¢-S0a) 4 _bPU@2 =) ep)-gia)-tan) (3.33)

(p1—q1)(p1 —q2)

4. Conclusions and Discussions

In this paper, we construct the solutions of the constrained mKP hierarchy through the bilinear
representation and the free fermion operators. The corresponding solutions are expressed in terms
of the vacuum expectation value of the Clifford operators, which are presented in Proposition 2.1.
Then by choosing g = ™ %L1 695,93 — oY with i, < 0 and j, > 0, some examples of rational
solutions are given. At last, by selecting g = eLij=1 6179 ()" (4] ), the corresponding soliton solutions
are obtained, which are summarized in Proposition 3.2 and Proposition 3.3.

Just as we know, the KdV hierarchy is corresponding to the affine Lie algebra sl, [14,25]. But
the algebraic structures of the constrained mKP hierarchy are unknown. The results in this paper
are expected to be helpful for the understanding the algebraic structures of the constrained mKP
hierarchy.
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