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We study a particular class of Lotka-Volterra 3-dimensional systems called May-Leonard systems, which

depend on two real parameters a and b, when a+b =−1. For these values of the parameters we shall describe

its global dynamics in the compactification of the non-negative octant of R3 including its infinity. This can be

done because this differential system possesses a Darboux invariant.
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1. Introduction

Polynomial ordinary differential systems are often used in various branches of applied mathematics,

physics, chemist, engineering, etc. Models studying the interaction between species of predator-prey

type have been extensively analyzed as the classical Lotka-Volterra systems. For more information

on the Lotka-Volterra systems see for instance [8] and the references quoted there. In particular, one

of these competition models between three species inside the class of 3-dimensional Lotka-Volterra

systems is the May-Leonard model given by the polynomial differential system in R
3

ẋ = x(1− x−ay−bz),

ẏ = y(1−bx− y−az),

ż = z(1−ax−by− z),

(1.1)

where a and b are real parameters and the dot denotes derivative with respect to the time t. See for

more details on the May-Leonard system the papers [10] and [2] and on Lotka-Volterra systems [9],

and the references quoted there.

The Lotka-Volterra systems in R
3 have the property that the three coordinate planes are invariant

by the flow of these systems. Moreover, at points of straight line x= y= z, system (1.1) is reduced to

ẋ= x−(1+a+b)x2, because the other equations do not provide any further information. Therefore,

the bisectrix of the non-negative octant is an invariant straight line for this differential system.
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In this paper we describe the global dynamics of system (1.1) in function of the parameters a

and b when a+ b = −1. The system (1.1) is defined in R
3. In order to study the dynamics of its

orbits at infinity we extend analytically its flow by using the Poincaré compactification of R3. In the

appendix we give precise definitions for this compactification. The region of interest in our study

is the non-negative octant of R3, i.e. where x ≥ 0,y ≥ 0,z ≥ 0. So we shall study the flow of the

Poincaré compactification in the region

R = {(x,y,z) ∈ R
3 : x2 + y2 + z2 ≤ 1,x ≥ 0,y ≥ 0,z ≥ 0}

of the Poincaré ball.

We remark that the global dynamics of the May-Leonard system (1.1) with a+ b = −1 can be

studied because this differential system has a Darboux invariant.

The differential system (1.1) has been extensively studied in order to understand the interaction

between species and try to predict possible extinction or overpopulation for example. However our

interest is purely mathematical, we want to illustrate how the Darboux invariant can be used to

describe the global dynamics of a differential system. Note that we are interested in the study of

system (1.1) for all real values of the parameters a and b satisfying a+ b = −1, and not only for

their positive values. Consequently our analysis has no biological meaning. This study could be

made in a similar way in the others octants of R3.

2. Statement of the main results

We denote by X the polynomial vector field associated to the differential system (1.1), and by p(X)

the Poincaré compactification of X , see the appendix in section 5. The flow of system (1.1) in the

region R is described in the next two theorems. For a formal definition of topologically equivalent

phase portraits see [5].

Theorem 2.1. For the May-Leonard differential system (1.1) in the octant R the following state-

ments hold when a+b =−1.

(a) The phase portrait of the Poincaré compactification p(X) of system (1.1) on the boundaries

x = 0, y = 0 and z = 0 of R is topologically equivalent to the one described in Fig. 1(a) if

a ≤−2 or a ≥ 1, and in Fig. 2(a) if −2 < a < 1.

(b) The phase portrait of the Poincaré compactification p(X) of system (1.1) on R∞ = ∂R∩{x2 +

y2 + z2 = 1} (i.e. the phase portrait at the infinity of the non-negative octant of R3) is topolog-

ically equivalent to the one described in Fig. 1(b) if a ≤ −2 or a ≥ 1, Fig. 2(b) if a = −1/2,

Fig. 2(c) if −2 < a <−1/2, and Fig. 2(d) if −1/2 < a < 1. In particular, there are no periodic

orbits in R∞.

(c) When a = −1/2 the planes x = y, x = z and y = z are invariant by the flow of system (1.1),

and the phase portrait of the Poincaré compactification p(X) of system (1.1) on R∩{x = y},

R∩{x= z} and R∩{y= z} are topologically equivalent to the ones described in (a), (b) and (c)

of Fig. 3 respectively.

Let p(γ) denote the orbit γ of the vector field X associated to system (1.1) in the Poincaré

compactification p(X).

Theorem 2.2. Let γ be an orbit of system (1.1) with a+b = −1 such that p(γ) is contained in the

interior of R. Then the following statements hold.
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(a) If a ≤−2 or a ≥ 1 then we have:

(i) The α-limit set of p(γ) is either the origin of R3, or the heteroclinic loop connecting the

singular points p1, p2 and p3, or the heteroclinic loop connecting the singular points

p∞
x , p∞

y and p∞
z (see Fig. 1(a)).

(ii) The ω-limit set of p(γ) is either p∞
b (the positive endpoint of the bisectrix x = y = z), or

the heteroclinic loop connecting the singular points p∞
x , p∞

y and p∞
z (see Figure 1(b)).

(b) If −2 < a < 1 then we have:

(i) The α-limit set of p(γ) is one of the singular points p j for j = 0,1 . . . ,6 or p∞
x , p∞

y , p∞
z ,

p∞
xy, p∞

xz, p∞
yz (see Fig. 2(a)).

(ii) The ω-limit set of p(γ) is p∞
b , the positive endpoint of the bisectrix x = y = z (see Fig-

ure 2(b)(c)(d)).

An immediate consequence of Theorem 2.2 is the following result.

Corollary 2.1. All orbit γ of system (1.1) with a+b =−1 such that p(γ) is contained in the interior

of R has their α-limit in xyz = 0 and their ω-limit in R∞.
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Fig. 1. The global dynamics on the boundary of R for a+b=−1 and a ≤−2. (a) The dynamics on xyz = 0.

(b) The dynamics on R∞. Reversing the sense of all the orbits we have the global dynamics on the boundary

of R for a+ b =−1 and a ≥ 1.

3. Proof of Theorem 1

The following two lemmas will be useful to the proof of Theorem 1.

Lemma 3.1. The May-Leonard differential system (1.1) with a+b =−1 has four finite equilibrium

points in the case a ≤ −2 or a ≥ 1, and has seven finite equilibrium points in the case −2 <

a < 1. Moreover, the local dynamics around these equilibrium points are presented in Figures 1(a)

and 2(a).
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Fig. 2. The global dynamics on the boundary of R for a+ b = −1 and −2 < a < 1. (a) The dynamics on

xyz = 0. The dynamics on R∞ for a =−1/2 in (b), for a ∈ (−2,−1/2) in (c), and for a ∈ (−1/2,1) in (d).

Proof. The finite singular points of system (1.1) with a+b =−1 are the solutions of the system

P1(x,y,z) = x(1− x+ z+a(−y+ z)) = 0,

P2(x,y,z) = y(1+ x− y+a(−z+ x)) = 0,

P3(x,y,z) = z(1+ y− z+a(−x+ y)) = 0,

namely

p0 = (0,0,0), p1 = (1,0,0), p2 = (0,1,0), p3 = (0,0,1),

p4 =

(

0,
1−a

A
,
2+a

A

)

, p5 =

(

2+a

A
,0,

1−a

A

)

, p6 =

(

1−a

A
,

2+a

A
,0

)

,

where A = 1+a+a2.

Since A > 0 for a ∈ R and the region of interest is R, we have:

(i) If a ≤−2 or a ≥ 1 system (1.1) has only four finite equilibrium points: p0, p1, p2 and p3.
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Fig. 3. The global dynamics on R∩{x = y}, R∩{x = z} and R∩{y = z} respectively, when a = b =−1/2.

(ii) If −2 < a < 1 system (1.1) has the seven finite equilibrium points p j for j = 0,1 . . . ,6.

All these finite equilibrium points are hyperbolic if a 6=−2,1, and consequently its local phase

portrait is topologically equivalent to the phase portrait of its linear part by the Hartman–Grobman

Theorem, see for instance [4].

We note that when a ∈ (−2,1) and a → 1 we have that p4 → p3, p5 → p1 and p6 → p2; while

if a →−2 we have that p4 → p2, p5 → p3 and p6 → p1. This behavior of these equilibria allows

to determine by continuity the local phase portraits on the boundary of R of the non-hyperbolic

equilibrium points p1, p2 and p3 when a = −2 and a = 1 from the global phase portraits of the

boundary of R when a ∈ (−2,1).

The linear part of system (1.1) at the equilibrium p0 is the identity matrix. Therefore it is a

repelling equilibrium.

The eigenvalues of linear part at equilibrium points p1, p2 and p3 are −1, 1−a, 2+a. Therefore

when a <−2 or a > 1 these equilibria have a 2-dimensional stable manifold and an 1-dimensional

unstable one; and for −2 < a < 1 these equilibria have a 2-dimensional unstable manifold and an

1-dimensional stable one.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

271



C.A. Buzzi et al. / May-Leonard Lotka-Volterra systems

When −2< a< 1 the eigenvalues of linear part at equilibrium points p4, p5 and p6 are 3, −1 and

(−2+a+a2)/A. Since −2+a+a2 < 0 for −2 < a < 1 then these equilibria have a 2-dimensional

stable manifold and an 1-dimensional unstable one. Moreover, p4 (respectively p5 and p6) is an

attractor restricted to the invariant boundary x = 0 (respectively y = 0 and z = 0). Now we explain

in few words, what we mean by saying that the local phase portraits, for a = −2 and a = 1, can

be determined by continuity. For example, if a ∈ (−2,1) then, on the plane x = 0, we have that

p4 is a node and p2 is a saddle. If a tends to −2 then p4 tends to p2 and we have a saddle-node

bifurcation. For a = −2 we have that p4 = p2 is a saddle-node singularity with two hyperbolic

sectors in the half-plane {x = 0,y < 0} and a parabolic sector in the half-plane {x = 0,y > 0}. So,

in a neighborhood of p2 contained in the half-plane {x = 0,y > 0}, the local phase portraits are the

same for a =−2 or a <−2 in the non-negative octant. The same analysis can be done for the other

points p1 and p3, and for the case when a tends to 1. �

Lemma 3.2. The May-Leonard differential system (1.1) with a+ b = −1 has four infinite equi-

librium points in the case a ≤ −2 or a ≥ 1, and has seven infinite equilibrium points in the case

−2 < a < 1. Moreover, the local dynamics around these equilibrium points are presented in Fig-

ures 1(b), 2(b), 2(c) and 2(d).

Proof. Now we shall study the infinite equilibrium points. For study the dynamics on the infinity

R∞ of R we shall use the Poincaré compactification of the differential system (1.1). See appendix

for details. Thus the differential system (1.1) in the local chart U1 becomes

ż1 = 2z1 +az1 − z2
1 +az2

1 − z1z2 −2az1z2,

ż2 = z2 −az2 + z1z2 +2az1z2 −2z2
2 −az2

2,

ż3 = z3 +az1z3 − z2z3 −az2z3 − z2
3.

(3.1)

So system (1.1), with a+ b = −1 and satisfying a ≤ −2 or a ≥ 1, has two equilibrium points at

infinity: (0,0,0) and (1,1,0). We call the first one p∞
x the positive endpoint of the x-axis, and the

second one p∞
b the positive endpoint of the bisectrix x = y = z. The linear part at the equilibrium

p∞
x has the eigenvalues 1−a and 2+a at infinity and eigenvalue 1 in its finite direction. Therefore,

on the infinity p∞
x is a saddle such that its stable separatrix is contained in the z1-axis when a ≤ −2

(respectively z2-axis when a ≥ 1).

The eigenvalues of linear part at equilibrium p∞
b are (−3± i

√
3(1+ 2a))/2 and 0. Therefore,

on the infinity p∞
b is a stable focus turning clockwise if a ≤ −2 (respectively counterclockwise if

a ≥ 1).

Now system (1.1) in the local chart U2 writes

ż1 = z1 −az1 −2z2
1 −az2

1 + z1z2 +2az1z2,

ż2 = 2z2 +az2 − z1z2 −2az1z2 − z2
2 +az2

2,

ż3 = z3 − z1z3 −az1z3 +az2z3 − z2
3.

(3.2)

Since the local chart U2 covers the end part of the plane x = 0 at infinity of the non-negative octant

of R3, we are interested only in the equilibrium points which are on z1 = 0 and z3 = 0. In this case,

with a+b =−1 and satisfying a ≤−2 or a ≥ 1, there is one equilibrium point at infinity: (0,0,0).

We call this equilibrium p∞
y the positive endpoint of the y-axis. The eigenvalues of linear part at

equilibrium p∞
y are 1−a and 2+a at infinity and eigenvalue 1 in its finite direction. Therefore, on
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the infinity p∞
y is a saddle such that its stable separatrix is contained in the z2-axis when a ≤ −2

(respectively z1-axis when a ≥ 1).

Now for a ≤−2 or a ≥ 1 we only need to study the equilibrium point at the endpoint of positive

z-half-axis, i.e. the equilibrium point at the origin of the local chart U3. We call this equilibrium

point p∞
z . In the local chart U3 system (1.1) becomes

ż1 = 2z1 +az1 − z2
1 +az2

1 − z1z2 −2az1z2,

ż2 = z2 −az2 + z1z2 +2az1z2 −2z2
2 −az2

2,

ż3 = z3 +az1z3 − z2z3 −az2z3 − z2
3.

The linear part at the equilibrium point p∞
z has eigenvalues 1−a and 2+a at infinity and eigenvalue

1 in its finite direction. Therefore the origin of the local chart U3 is a saddle such that its stable

separatrix is contained in the z1-axis when a ≤−2 (respectively z2-axis when a ≥ 1).

We have proved that the phase portrait of system (1.1) on R∞, for a+b =−1 and a ≤−2, is the

one presented in Figure 1(b). In the same figure, reversing the sense of all the orbits, we have the

global dynamics on R∞, for a+b =−1 and a ≥ 1.

It remains to study the infinite equilibrium points of system (1.1) in case −2 < a < 1. In the

local chart U1 the system (3.1) has four equilibrium points at infinity: p∞
x = (0,0,0), p∞

xy = ((2+

a)/(1− a),0,0), p∞
xz = (0,(1− a)/(2+ a),0) and p∞

b = (1,1,0). The eigenvalues of linear part at

equilibrium p∞
x are 1− a and 2+ a at infinity and eigenvalue 1 in its finite direction. Then this

equilibrium is an unstable node. The linear part at the equilibrium p∞
xy (respectively p∞

xz) has the

eigenvalues −(2+a), A/(1−a) and 3A/(1−a) (respectively (a−1), A/(2+a) and 3A/(2+a)).

Therefore the equilibria p∞
xy and p∞

xz are saddles such that their stable separatrix is contained in

the z1-axis and z2-axis respectively. The eigenvalues of the linear part at the equilibrium p∞
b are

(−3± i
√

3(1+ 2a))/2 and 0. Therefore, on the infinity p∞
b is a stable focus turning clockwise if

−2 < a < −1/2 (respectively counterclockwise if −1/2 < a < 1). When a = −1/2 on the infinity

p∞
b is stable node.

Now since we are interested only in the equilibrium points which are on z1 = 0 and z3 = 0, in

the local chart U2 the system (3.2) has two equilibrium points: p∞
y = (0,0,0) and p∞

yz = (0,(2 +

a)/(1− a),0). The eigenvalues of linear part at equilibrium p∞
y are 1− a and 2+ a at infinity and

eigenvalue 1 in its finite direction. Then, on the infinity this equilibrium is an unstable node. The

linear part at the equilibrium (0,(2+ a)/(1 − a),0) has the eigenvalues −(2+ a), A/(1− a) and

3A/(1−a) at infinity. Therefore, on the infinity p∞
yz = (0,(2+a)/(1−a),0) is a saddle such that its

stable separatrix is contained in the z2-axis.

In the local chart U3 we only need to study the equilibrium point p∞
z = (0,0,0). The eigenvalues

of linear part at this equilibrium are 1−a and 2+a at infinity and eigenvalue 1 in its finite direction.

Then, on the infinity this equilibrium is an unstable node.
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We conclude that the infinite equilibrium points of system (1.1) witha+ b = −1 in case −2 <

a < 1 are

p∞
x = the positive endpoint of the x-axis,

p∞
y = the positive endpoint of the y-axis,

p∞
z = the positive endpoint of the z-axis,

p∞
xz = the positive endpoint of the straight line (a−1)x+(2+a)z = 0, y = 0,

p∞
xy = the positive endpoint of the straight line (2+a)x+(a−1)y = 0, z = 0,

p∞
yz = the positive endpoint of the straight line (2+a)y+(a−1)z = 0, x = 0,

p∞
b = the positive endpoint of the bisectrix x = y = z,

and the phase portraits of system (1.1) on R∞, for a+ b = −1 and −2 < a < 1, are presented in

Figures 2(b), 2(c) and 2(d).

We also observe that when a ∈ (−2,1) and a → 1 we have that p∞
xz → p∞

x , p∞
yz → p∞

z , and

p∞
xy → p∞

y ; while if a → −2 we have that p∞
xz → p∞

z , p∞
yz → p∞

y , and p∞
xy → p∞

x . So the behavior of

these equilibria allows to determine by continuity the local phase portraits on the boundary of R of

the non-hyperbolic equilibrium which are at the positive endpoints of the axes of coordinates when

a =−2 and a = 1 from the global phase portraits of the boundary of R when a ∈ (−2,1). �

We will show now that does not exist a periodic orbit on R∞. For this we will need Bautin’s

Theorem, which is proved in [1].

Theorem 3.1 (Bautin’s Theorem). A quadratic polynomial differential system of the form

ẋ = x(a0 +a1x+a2y), ẏ = x(b0 +b1x+b2y),

has no limit cycles.

Lemma 3.3. There are no periodic orbits of the Poincaré compactification of the vector field asso-

ciated to system (1.1) in the Poincaré compactification on R∞.

Proof. The differential system (1.1) in the local chart U1 is given by (3.1). Making z3 = 0 to

determine the dynamics on R∞ we have the system

ż1 = z1

(

(2+a)+ (a−1)z1 − (1+2a)z2

)

,

ż2 = z2

(

(1−a)+ (1+2a)z1 − (2+a)z2

)

.
(3.3)

By Bautin’s Theorem, the system (3.3) has no limit cycles. In addition, system (3.3) has only two

equilibrium points: (z1,z2) = (0,0) and (z1,z2) = (1,1). The linear part at the equilibrium (0,0)

has the eigenvalues 1− a and 2+ a, and the eigenvalues of linear part at equilibrium (1,1) are

(−3± i
√

3(1+ 2a))/2. Therefore, both (0,0) and (1,1) are not centers. Thus, the only possibility

of periodic orbit in R∞ would be to have a limit cycle, which we have already seen is not possible.

�

So, using Lemmas 3.1, 3.2 and 3.3, the proof of statements (a) and (b) of Theorem 2.1 is com-

plete.

Now since the bisectrix x= y= z is an invariant straight line for the system, it is easy to check for

a=−1/2 that the global phase portrait on the invariant planes R∩{x= y}, R∩{x= z} and R∩{y=

z} are topologically equivalents to the ones described in (a), (b) and (c) of Fig. 3 respectively. This

completes the proof of Theorem 2.1.
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4. Proof of Theorem 2

We say that a C1 function I(x,y,z, t) is an invariant of the polynomial differential system (1.1) if

I(x(t),y(t),z(t), t) is constant, for all the values of t for which the solution (x(t),y(t),z(t)) of (1.1) is

defined. When the function I is independent of the time, then it is called a first integral of differential

system (1.1). Also if an invariant I(x,y,z, t) is of the form f (x,y,z)est , then it is called a Darboux

invariant.

Proposition 4.1. System (1.1), for a+b =−1, has the Darboux invariant I = I(t,x,y,z) = xyze−3t .

Proof. It is immediate to check that

dI

dt
=

∂ I

∂x
ẋ+

∂ I

∂y
ẏ+

∂ I

∂ z
ż+

∂ I

∂ t
= 0,

where ẋ, ẏ and ż are given in (1.1). Therefore I is a Darboux invariant of system (1.1). �

For knowing how to obtain the Darboux invariant given in Proposition 4.1 see statement (vi) of

Theorem 8.7 of [5], there the theory is described for polynomial vector fields in R
2, but the results

and the proofs extend to R
3.

Proposition 4.2. Let I(x,y,z, t) = f (x,y,z)est be a Darboux invariant of system (1.1). Let p ∈ R
3

and ϕp(t) the solution of system (1.1) such that ϕp(0) = p. Then

α(p),ω(p) ⊂ { f (x,y,z) = 0}∪S2.

Here α(p) and ω(p) denote the α-limit and ω-limit sets of p respectively, and S
2 denotes the

boundary of the Poincaré ball, i.e. the infinity of R3.

For a proof of Proposition 4.2 see [7].

Lemma 4.1. Let p(γ) = {ϕp(t) = (x(t),y(t),z(t)) : t ∈ R} be the orbit of the Poincaré compact-

ification of system (1.1), for a+ b = −1, such that ϕp(0) = p and lim
t→+∞

x(t)y(t)z(t) = +∞. Then

ω(p)⊂ R∞.

Proof. Let q ∈ ω(p). Then there exists a sequence (tn) with tn → +∞, such that ϕp(tn) =

(x(tn),y(tn),z(tn)) → q when n → +∞. By Proposition 4.2 we know that q ∈ {(x,y,z) ∈ R : xyz =

0}∪R∞. Suppose that q /∈ R∞ and take ε > 0. Then there exist M > 0 and n0 ∈N such that xyz ≤ M

for all x,y,z ∈ B(q,ε) and ϕp(tn) ∈ B(q,ε) for all n ≥ n0. Therefore x(tn)y(tn)z(tn) ≤ M for all

n ≥ n0. On the other hand, as lim
t→+∞

x(t)y(t)z(t) = +∞ then exists t0 ∈ R such that x(t)y(t)z(t) ≥ M

for all t ≥ t0, which is a contradiction. Therefore q ∈ R∞. �

Proof. [Proof of Theorem 2.2] Let p(γ) = {ϕp(t) = (x(t),y(t),z(t)) : t ∈ R} be the orbit of the

Poincaré compactification of system (1.1) with a+b =−1 such that ϕp(0) = p with p in the interior

of R. We recall that all the orbits of a differential system defined on a compact set are defined for all

t ∈R. By Propositions 4.1 and 4.2 the α- and ω-limit set of p(γ) is contained in boundary of R, i.e.

in {(x,y,z) ∈ R : xyz = 0}∪R∞. Furthermore, by Proposition 4.1, I(t,x(t),y(t),z(t)) = k constant
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with k > 0. So

x(t)y(t)z(t) = ke3t , (4.1)

for all t. Taking limit in (4.1) when t →−∞, we obtain

lim
t→−∞

x(t)y(t)z(t) = 0.

This implies that the orbit p(γ) tends to the set xyz = 0 when t →−∞. Looking at the dynamics

of the flow of the compactified vector field on xyz = 0 described in Fig. 1(a) if a ≤−2 or a ≥ 1, and

in Fig. 2(a) if −2 < a < 1, we consider the following two cases.

Case 1. Suppose that a ≤ −2 or a ≥ 1. Therefore, by Theorem 2.1(a) and Fig. 1(a) we have that

the α-limit set of p(γ) can be the equilibrium point p0 because the eigenvalue at p0 is 1 with

multiplicity three. The equilibrium points p1, p2, p3, p∞
x , p∞

y and p∞
z can not be α-limit set of p(γ)

in the case that p(γ) is a characteristic orbit, because the unstable separatrix of the saddles are

contained in the faces of R. But other possible sets to be α-limit of the orbit p(γ) in the interior of

R is either the heteroclinic loop connecting the equilibrium points p1, p2 and p3, or the heteroclinic

loop connecting the equilibrium points p∞
x , p∞

y and p∞
z . So statement (a)(i) of Theorem 2.2 is proved.

Case 2. Assume that −2 < a < 1. By Theorem 2.1(a) and Fig. 2(a) we have that the singular points

p0, p∞
x , p∞

y and p∞
z are repelling. Furthermore, the singular points p j for j = 1,2, . . . ,6 and p∞

xy, p∞
xz,

p∞
yz are of saddle type such that their 2-dimensional unstable manifold intersect the interior of R.

Therefore, the α-limit set of p(γ) can be one of the singular points p j for j = 0,1 . . . ,6 or p∞
x , p∞

y ,

p∞
z , p∞

xy, p∞
xz, p∞

yz. So statement (b)(i) of Theorem 2.2 is proved.

Now we study the ω-limit set of p(γ). In a similar way taking limit in (4.1) when t →+∞ we

obtain

lim
t→+∞

x(t)y(t)z(t) = +∞.

So by Proposition 4.2 and by Lemma 4.1 we conclude that the ω-limit set of p(γ) is contained in R∞.

Looking at the dynamics of the flow of the compactified vector field on R∞ described in Fig. 1(b) if

a≤−2 or a≥ 1, we conclude that the ω-limit set of p(γ) is the infinite singular point p∞
b ∈R∞ or the

heteroclinic loop connecting the singular points p∞
x , p∞

y and p∞
z . So, the proof of statement (a)(ii) of

Theorem 2.2 is complete. Furthermore, if −2 < a < 1, looking in Figs. 2(b)(c)(d) we conclude that

the ω-limit set of p(γ) is the infinite singular point p∞
b ∈ R∞. Hence statement (b)(ii) of Theorem 2.2

is proved. �

Remark 4.1. An interesting question is: Can we say something for other values of the parame-

ters a and b? As we have mentioned at the beginning of Section 4, both Darboux invariant and

first integral are invariants to the system (1.1). Leach and Miritzis [6] obtained the following first

integrals:

(i) H1 =
xyz

(x+y+z)3 if a+b = 2 and a 6= 1,

(ii) H2 =
y(x−z)
x(y−z) if a = b 6= 1,

(iii) H3 =
x
z

and H4 =
y
z

if a = b = 1.

The global dynamics in these cases was studied in [2].
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Appendix

A. The Poincaré compactification in R
3

For more details on the Poincaré compactification in R
3 see [3]. In R

3 we consider the polynomial

differential system

ẋ = P1(x,y,z), ẏ = P2(x,y,z), ż = P3(x,y,z),

or equivalently its associated polynomial vector field X = (P1,P2,P3). The degree n of X is defined

as n = max{deg(Pi) : i = 1,2,3}.

Let S3 = {y = (y1,y2,y3,y4) ∈ R
4 : ‖y‖ = 1} be the unit sphere in R

4, and

H+ = {y ∈ S
3 : y4 > 0} and H− = {y ∈ S

3 : y4 < 0}

be the northern and southern hemispheres, respectively. The tangent space to S
3 at the point y is

denoted by TyS
3. Then we identify the tangent hyperplane

T(0,0,0,1)S
3 = {(x1,x2,x3,1) ∈ R

4 : (x1,x2,x3) ∈ R
3}

with R
3.

We consider the central projections

f+ : R3 = T(0,0,0,1)S
3 →H+ and f− : R3 = T(0,0,0,1)S

3 →H−,

defined by

f+(x) =
1

∆x
(x1,x2,x3,1) and f−(x) =− 1

∆x
(x1,x2,x3,1),

where ∆x = (1+∑3
i=1 x2

i )
1/2. Through these central projection R

3 is identified with the northern

and the southern hemispheres, respectively. The equator of the sphere S
3 is S2 = {y ∈ S

3 : y4 = 0}.

Clearly S
2 can be identified with the infinity of R3.

The diffeomorphisms f+ and f− define two copies of X , one D f+◦X in the northern hemisphere

and the other D f− ◦X in the southern one. Denote by X̄ the vector field on S
3 \S2 =H+∪H− such

that restricted to H+ coincides with D f+◦X and restricted to H− coincides with D f−◦X . We extend

analytically the polynomial vector field X̄ to the equator of S3, i.e. to the infinity of R3, in such a

way that the flow on the boundary is invariant. This is done defining the vector field

p(X)(y) = yn−1
4 X̄(y),

for all y ∈ S
3. This extended vector field p(X) is called the Poincaré compactification of X on the

Poincaré sphere S
3.

In what follows we shall work with the orthogonal projection of the closed northern hemisphere

to y4 = 0. Note that this projection is a closed ball B of radius one, whose interior is diffeomorphic

to R
3 and whose boundary S

2 corresponds to the infinity of R3. The projected vector field on B is

called the Poincaré compactification on the Poincaré ball B.

As S3 is a differentiable manifold, to compute the expression for p(X) we can consider the eight

local charts (Ui,Fi), (Vi,Gi) where Ui = {y ∈ S
3 : yi > 0} and Vi = {y ∈ S

3 : yi < 0} for i = 1,2,3,4;

the diffeomorphisms Fi : Ui → R
3 and Gi : Vi → R

3 for i = 1,2,3,4, are the inverses of the central
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projections from the origin to the tangent planes at the points (±1,0,0,0), (0,±1,0,0), (0,0,±1,0)

and (0,0,0,±1), respectively. The expression of p(X) on the local chart U1 is

zn
3(−z1P1 +P2,−z2P1 +P3,−z3P1), (A.1)

where Pi = Pi(1/z3,z1/z3,z2/z3), and the expressions of p(X) in U2 is

zn
3(−z1P2 +P1,−z2P2 +P3,−z3P2), (A.2)

where Pi = Pi(z1/z3,1/z3,z2/z3) in U2, and in U3 is

zn
3

(∆z)n−1
(−z1P3 +P1,−z2P3 +P2,−z3P3), (A.3)

where Pi = Pi(z1/z3,z2/z3,1/z3) in U3.

The expression for p(X) in U4 is zn+1
3 (P1,P2,P3) where the component Pi = Pi(z1,z2,z3). The

expression for p(X) in the local chart Vi is the same as in Ui multiplied by (−1)n−1. We remark that

all the points on the sphere at infinity in the coordinates of any local chart have z3 = 0.
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[2] G. Blé, V. Castellanos, J. Llibre, I. Quilantán, Integrability and global dynamics of the May-Leonard

model, Nonlinear Anal., 14 (2013), 280–293.

[3] A. Cima and J. Llibre, Bounded polynomial vector fields, Trans. Amer. Math. Soc., 318 (1990), 557–

579.

[4] P. Hartman, A lemma in the theory of structural stability of differential equations, Proc. Amer. Math.

Soc., 11, 610–620.

[5] F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar Differential Systems, ( Universitext

Springer, New York, 2006).

[6] P.G.L. Leach, J. Miritzis, Analytic behaviour of competition among three species, J. Nonlinear Math.

Phys., 13 (2006), 535-?548.

[7] J. Llibre and R.D.S. Oliveira, Quadratic systems with invariant straight lines of total multiplicity two

having Darboux invariants, Communications in Contemporary Mathematics, 17 (2015), 145001, pp 17.

[8] J. Llibre and C. Valls, Polynomial, rational and analytic first integrals for a family of 3-dimensional

Lotka-Volterra systems, Z. Angew. Math. Phys., 62 (2011), 761–777.

[9] J. Llibre and C. Valls, Proper rational and analytic first integrals for asymmetric 3-dimensional Lotka-

Volterra systems, J. Nonlinear Math. Phys., 24 (2017), 393–404.

[10] R.M. May and W.J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl.

Math., 29 (1975), 243–253.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

278


