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The paper is concerned with different classes of nonlinear Klein–Gordon and telegraph type equations with
variable coefficients

c(x)utt +d(x)ut = [a(x)ux]x +b(x)ux + p(x) f (u),

where f (u) is an arbitrary function. We seek exact solutions to these equations by the direct method of symme-
try reductions using the composition of functions u =U(z) with z = ϕ(x, t). We show that f (u) and any four of
the five functional coefficients a(x), b(x), c(x), d(x), and p(x) in such equations can be set arbitrarily, while the
remaining coefficient can be expressed in terms of the others. The study investigates the properties and finds
some solutions of the overdetermined system of PDEs for ϕ(x, t). Examples of specific equations with new
exact functional separable solutions are given. In addition, the study presents some generalized traveling wave
solutions to more complex, nonlinear Klein–Gordon and telegraph type equations with delay.

Keywords: nonlinear Klein–Gordon equations; nonlinear telegraph equations; symmetry reductions; functional
separable solutions; generalized traveling wave solutions; delay differential equations
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1. Introduction

1.1. Brief literature review

Nonlinear Klein–Gordon type equations play an important role in relativistic quantum mechanics,
field theory, nonlinear optics, plasma physics, and particle physics. These equations describe optical
fibers, ultra-short optical pulses, commensurate and incommensurate phase transitions, ferroelectric
transitions, crystal growth, dislocations, and others (e.g., see [1, 9, 16]). Nonlinear telegraph type
equations arise, for example, in the study of transmission lines, biological population dispersal, and
random walks [2, 19].
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Transformations, symmetries, and exact solutions to various classes of nonlinear Klein–Gordon
type equations of the form

utt = [ f1(u)ux]x + f2(u) (1.1)

have been dealt with in many studies (e.g., see [3, 5, 6, 15, 20, 23, 30, 31, 45, 53, 54, 63–66, 71, 72]
and the literature cited therein). To obtain exact exact solutions, the authors most frequently used
the classical and nonclassical symmetry methods [3,6,31,45,54,63,64] and well as the methods of
generalized and functional separation of variables [5, 20, 23, 54, 72].

In general, equation (1.1) admits traveling wave solutions, u=U(kx−λ t); if f2(u)= 0, it admits
self-similar solutions, u = U(x/t) [3]. Apart from these, equations of the form (1.1) are known to
have exact solutions where the functions f1(u) and f2(u) are expressed in terms of a single arbitrary
function ϕ(u) [54]. It is noteworthy that if f2(u) = 0, equation (1.1) can be linearized [6,53,71]; the
handbooks [53, 54] present a number of exact solutions in parametric form for arbitrary f1(u) and
f2(u) = 0.

Symmetries and some exact solutions to nonlinear Klein–Gordon type equations with variable
coefficients, that can be represented as the product of two functions dependent on x and u, respec-
tively, were considered in [25, 27, 29, 53, 54]. Nonlinear telegraph equations with variable coeffi-
cients of the same type were studied in [8,26,28,53,54]. For other more complex, related nonlinear
equations of the hyperbolic type and solutions, see, for example, [4, 22, 32, 33, 39, 61].

It is also noteworthy that a number of exact solutions to nonlinear delay Klein–Gordon equations
of the form

utt = auxx + f (u,w), w = u(x, t− τ), (1.2)

where τ > 0 is the delay time, were obtained in [41, 57].
The present paper focuses on exact solutions admitted by nonlinear Klein–Gordon and telegraph

type equations of a fairly general form, including related delay equations, that involve one or more
arbitrary functions. Nonlinear PDEs with arbitrary functions are most difficult to analyze symme-
tries and construct solutions by any methods. The most comprehensive review of the known exact
solutions to such PDEs is given in [54].

It is important to note that exact solutions to nonlinear equations of mathematical physics with
arbitrary functions possess significant generality and attract particular practical interest for the ver-
ification and accuracy evaluation of approximate analytical and numerical methods for the integra-
tion of related initial-boundary value problems.

1.2. The concept of “exact solution”

By the term “exact solution of a PDE in closed form” we understand a solution represented by
one or more analytical formulas written using a predefined bounded set of allowed functions and
mathematical operations. The allowed functions include the elementary functions and the functions
appearing in the equation (this is required when the equation includes arbitrary functions). The
allowed mathematical operations are the arithmetic operations, a finite number of function compo-
sitions, and the indefinite integral.

We will also look for exact solutions that are expressed in terms of solutions to ordinary differ-
ential equations or systems of such equations (to which the original PDE is reduced).
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Remark 1.1. In addition, for more complex, nonlinear partial differential equations with delay,
exact solutions will also include those that are expressed in terms of solutions to ordinary differential
equations with delay.

2. Construction of exact solutions to nonlinear telegraph equations

2.1. The class of equations. Reduction of a nonlinear telegraph equation to an ODE

We look at nonlinear telegraph equations with variable coefficients of the form

c(x)utt +d(x)ut = [a(x)ux]x +b(x)ux + p(x) f (u), (2.1)

where f (u) is an arbitrary function. Some of the five functional coefficients a = a(x), b = b(x),
c = c(x), d = d(x), and p = p(x) can be free, while the others will be expressed in terms of them
as a result of a subsequent analysis (the free coefficients can be chosen in different ways, as shown
below).

The nonlinear Klein–Gordon equation is the special case of equation (2.1) with b(x)≡ d(x)≡ 0.
For c(x) ≡ 0, equation (2.1) degenerates into a nonlinear convection–diffusion equation with

volume reaction. For symmetry reductions and exact solutions to similar and related nonlinear equa-
tions of the parabolic type, see, for example, [10–12,17,18,21,24,34–36,38,42,47–50,53–56,58–
60, 67–69].

We seek exact solutions to equation (2.1) using the direct method of symmetry reductions [13,
14] in the form of a composition of functions [48, 49]:

u =U(z), z = ϕ(x, t). (2.2)

Substituting (2.2) into (2.1) yields the equation[
a(x)ϕ2

x − c(x)ϕ2
t
]
U ′′zz +

{
[a(x)ϕx]x− c(x)ϕtt +b(x)ϕx−d(x)ϕt

}
U ′z + p(x) f (U) = 0. (2.3)

In the special case U(z) = z, equation (2.3) coincides with the original equation (2.1), which means
that no solution has been lost at this stage. Now let us require that the relations

p(x) = s(ϕ)[a(x)ϕ2
x − c(x)ϕ2

t ], (2.4)

c(x)ϕtt +d(x)ϕt = [a(x)ϕx]x +b(x)ϕx + k(ϕ)[a(x)ϕ2
x − c(x)ϕ2

t ] (2.5)

hold, where s(ϕ) and k(ϕ) are some functions (s 6≡ 0). Then the variables separate and equation
(2.3) reduces to the ordinary differential equation

U ′′zz− k(z)U ′z + s(z) f (U) = 0. (2.6)

For exact solutions to the nonlinear ordinary differential equation (2.6) with some specific func-
tions k(z), s(z), and f (U), see [52].

In the special case k(z) ≡ 0, in which equation (2.5) become linear, the general solution to
equation (2.6) with s(z) = 1 and any f (U) can be represented in implicit form:∫ [

C1−2
∫

f (U)dU
]−1/2

dU =C2± z, (2.7)

where C1 and C2 are arbitrary constants.
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Equations (2.4)–(2.6) allow one to effectively find exact solutions to a wide class of nonlinear
telegraph equations of the form (2.1).

Remark 2.1. In equation (2.1), two out of the five functional coefficients a(x), b(x), c(x), d(x), and
p(x) can be set equal to unity without loss of generality. In particular, dividing the equation by c
and changing from t and x to the new variables t and y =

∫√
c/adx, we arrive at the equation in a

canonical form utt +d1(y)ut = uyy +b1(y)uy + p1(y) f (u). It is not difficult to find a transformation
t, ȳ = ȳ(x) that would reduce equation (2.1) to another canonical form: utt +d2(ȳ)ut = [a2(ȳ)uȳ]ȳ +

p2(ȳ) f (u). However, analyzing the equation in the general form (2.1) is more convenient, since it
contains all its canonical and non-canonical forms.

Remark 2.2. Denoting a(x) = A(x) and b(x) = B(x)− a′x(x), we can rewrite equation (2.1) in the
alternative form c(x)utt +d(x)ut = A(x)uxx +B(x)ux + p(x) f (u).

Remark 2.3. In equations (2.1) and (2.3)–(2.5), the functions a(x), b(x), c(x), d(x), and p(x) can
be replaced with functions of two arguments: a(x, t), b(x, t), c(x, t), d(x, t), and p(x, t). All reasoning
will remain the same.

2.2. The determining system of equations and its properties. The direct procedure for
seeking exact solutions

In the generic case, equations (2.4) and (2.5) with prescribed functions a = a(x), b = b(x), c = c(x),
d = d(x), p= p(x), k(ϕ), and s(ϕ) make up an overdetermined nonlinear system of equations for ϕ .
This system will be referred to as the determining system of equations.

Nonlinear transformations

ϕ = F(ψ) (2.8)

preserve the form of equations (2.4) and (2.5), while the functional coefficients k(ϕ) and s(ϕ) will
change by the rule

k(ϕ) =⇒ k(F(ψ))F ′ψ(ψ)+
F ′′ψψ(ψ)

F ′ψ(ψ)
, s(ϕ) =⇒ s(F(ψ))[F ′ψ(ψ)]2. (2.9)

The degenerate case k(ϕ)≡ 0 corresponds to the linear hyperbolic equation with variable coef-
ficients (2.5). If k(ϕ) 6≡ 0, the substitution

ψ =C1

∫
K(ϕ)dϕ +C2, K(ϕ) = exp

[∫
k(ϕ)dϕ

]
, (2.10)

where C1 and C2 are arbitrary constants, linearizes equation (2.5) to give

c(x)ψtt +d(x)ψt = [a(x)ψx]x +b(x)ψx. (2.11)

In the special case k(ψ) = k = const, one can use the substitution

ϕ = k−1 ln |ψ|, (2.12)

which follows from (2.10).
Since transformations of the form (2.8) only change the functional coefficients k(ϕ) and s(ϕ) in

equations (2.4) and (2.5), the function F can be chosen, without loss of generality, so as to simplify
one of these equations.
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The direct procedure for constructing exact solutions to nonlinear equations of the form (2.1)
assumes the functions a(x), b(x), c(x), d(x), and f (u) to be given while the functions u = u(x) and
p = p(x) to be unknown. Then, by setting k(ϕ) and s(ϕ) somehow, one needs first to find particular
solitons p(x) and ϕ = ϕ(x, t) to equations (2.4) and (2.5); recall that the latter equation can be
linearized, as shown above. After that, taking into account (2.4), one obtains the corresponding
solution to equation (2.1) by formula (2.2), with the function U(z) being a solution to the ordinary
differential equation (2.6).

Solutions to the linear equations (2.5), with k(ϕ) ≡ 0, and (2.11) can be obtained using the
method of separation of variables. In particular, equation (2.11) with d(x) ≡ 0 admits the exact
solutions

ψ = αt2 +β t +ζ (x), [a(x)ζ ′x]
′
x +b(x)ζ ′x−2αc(x) = 0; (2.13)

ψ = [α exp(−λ t)+β exp(λ t)]ζ (x), [a(x)ζ ′x]
′
x +b(x)ζ ′x−λ

2c(x)ζ = 0, (2.14)

ψ = [α cos(λ t)+β sin(λ t)]ζ (x), [a(x)ζ ′x]
′
x +b(x)ζ ′x +λ

2c(x)ζ = 0, (2.15)

where α , β , λ are arbitrary constants. The ODE in (2.13) is easy to integrate with the substitution
w(x) = ζx. A number of solutions to the linear equations of (2.14) and (2.15) with various specific
a(x), b(x), and c(x) can be found in [52]. For other exact solutions to equations (2.11) with specific
a(x), b(x), and c(x), see [51].

In subsequent sections, without pretending to an exhaustive analysis of the overdetermined sys-
tem (2.4), (2.5), we will show how this system allows us to construct exact solutions to equations of
the form (2.1), once suitable functional coefficients k(ϕ) and s(ϕ) are selected.

2.3. The case of kkk(((ϕϕϕ))) === kkk and sss(((ϕϕϕ))) === 111. Generalized traveling wave solutions

The nonlinear telegraph equations (2.1) admit generalized traveling wave solutions (2.2) with

ϕ(x, t) = t +
∫

g(x)dx. (2.16)

The function g(x) can be either preset or determined in a subsequent analysis, depending on the
goal (see below). Substituting (2.16) into (2.4) and (2.5) followed by setting s(ϕ) = 1 and k(ϕ) =
k = const, we obtain

p(x) = a(x)g2(x)− c(x), (2.17)

d(x) = [a(x)g(x)]′x +b(x)g(x)+ k[a(x)g2(x)− c(x)]. (2.18)

Equation (2.18) relates the first four functional coefficients of equations (2.1) and the function
g = g(x) appearing in (2.16); it is a differential relation with respect to a and g and an algebraic
relation with respect to b, c and d. Equation (2.17) is algebraic; it serves to determine the functional
coefficient p(x).

If the four functions a(x), b(x), c(x), and d(x) are assumed to be given, relation (2.18) with
k 6= 0 represents a Riccati equation for g = g(x), which can be written as

a(x)g′x + ka(x)g2 +[b(x)+a′x(x)]g− kc(x)−d(x) = 0. (2.19)

A wide list of exact solutions to this equation for various specific a(x), b(x), c(x), and d(x) can be
found in [52]. Below we will look at two cases.
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Degenerate case. If k = 0, the Riccati equation (2.19) degenerates into a linear equation, whose
general solution is

g(x) =
E(x)
a(x)

[∫ d(x)
E(x)

dx+m
]
, E(x) = exp

[
−
∫ b(x)

a(x)
dx
]
, (2.20)

where m is an arbitrary constant.

Example 2.1. Suppose that one of the equation coefficients is arbitrarily dependent on the space
variable, a = a(x), while the other three are constant, b(x) = d(x) = 0 and c(x) = 1. By for-
mula (2.20) we get g(x) = m/a(x). Inserting this into (2.16) and (2.17), we find that ϕ(x) =
t +m

∫ dx
a(x) and p(x) = m2

a(x) −1. Hence, the nonlinear Klein–Gordon type equation

utt = [a(x)ux]x +
[ m2

a(x)
−1
]

f (u), (2.21)

which involves two arbitrary functions, a(x) and f (u), admits the functional separable solution

u =U(z), z = t +m
∫ dx

a(x)
, (2.22)

with the function U(z) determined by the solvable autonomous ordinary differential equation

U ′′zz + f (U) = 0. (2.23)

This equation is obtained by substituting k = 0 and s = 1 in (2.6); its general solution can be repre-
sented in the implicit form (2.7).

For instance, by setting a(x) = eλx in (2.21), we get the nonlinear equation

utt = (eλxux)x +(m2e−λx−1) f (u), (2.24)

which admits a generalized traveling wave solution for arbitrary f (u).

Example 2.2. Let us look at the case of a= a(x), b(x) = 0, and c(x) = d(x) = 1. By formulas (2.20)
with m = 0, we get g(x) = x/a(x). Substituting this into (2.16) and (2.17) gives ϕ(x) = t +

∫ xdx
a(x)

and p(x) = x2

a(x) −1. It follows that the nonlinear telegraph equation

utt +ut = [a(x)ux]x +
[ x2

a(x)
−1
]

f (u) (2.25)

involving two arbitrary functions, a(x) and f (u), admits the functional separable solution

u =U(z), z = t +
∫ xdx

a(x)
, (2.26)

where U(z) is a function determined by the solvable differential equation (2.23).

Example 2.3. Now we set a = a(x), b = −ax(x), c(x) = 1, and d(x) = 0 and use formulas (2.20)
to get g(x) = m. Substituting into (2.16) and (2.17) gives ϕ(x) = t +mx and p(x) = m2a(x)−1. It
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follows that the Klein–Gordon type equation

utt = a(x)uxx +
[
m2a(x)−1

]
f (u), (2.27)

which involves two arbitrary functions, a(x) and f (u), admits the exact solution

u =U(z), z = t +mx, (2.28)

with the function U(z) described by the solvable autonomous ordinary differential equation (2.23).

Remark 2.4. Solution (2.28) is a noninvariant traveling wave solution to equation (2.27), which
means that it cannot be obtained using the group analysis of the equation. The function a(x) in
equation (2.27) can be replaced with a(x, t).

Nondegenerate case. If k = const (k 6= 0), the change of variable

g =
1
k

y′x
y

(2.29)

converts (2.19) to a second-order linear differential equation

a(x)y′′xx +[b(x)+a′x(x)]y
′
x− k[kc(x)+d(x)]y = 0. (2.30)

An extensive list of exact solutions to this equation for various specific a(x), b(x), c(x), and d(x)
can be found in [52].

Example 2.4. In the case of a = c = 1 and b = d = 0, the general solution of equation (2.30) is

y =C1 cosh(kx)+C2 sinh(kx), (2.31)

where C1 and C2 are arbitrary constants. By setting C1 = 1, C2 = 0, and k = 1 in (2.31), we find
using formula (2.29) that

g(x) = tanhx.

Inserting this into (2.16) and (2.17), we get

ϕ(x) = t + lncoshx, p(x) =−1/cosh2 x.

It follows that the nonlinear Klein–Gordon type equation

utt = uxx−
1

cosh2 x
f (u) (2.32)

with arbitrary f (u) admits the functional separable solution

u =U(z), z = t + lncoshx, (2.33)

where U(z) is a function satisfying the autonomous ordinary differential equation

U ′′zz−U ′z + f (U) = 0. (2.34)

The order of equation (2.34) can be reduced by one with the substitution U ′z =Φ(U), which leads
to an Abel equation of the second kind in the canonic form. For exact solutions to equation (2.34)
with certain specific f (U), see [52].
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Other ways of constructing exact solutions. We now discuss other possibilities to construct exact
solutions to equations of the form (2.1) with k(ϕ) = k and s(ϕ) = 1 without integrating the Riccati
equation (2.19). To this end, we preset the function g(x) as well as any three out of the four functions
a(x), b(x), c(x), and d(x) (treat these functions to be free), while the remaining function will be
expressed in terms of them using (2.19). Table 1 lists possible situations and gives formulas for the
function expressed via the others. The form of the nonlinear telegraph equation is determined by
the substitution of p(x) = a(x)g2(x)− c(x) in (2.1).

Table 1. Different ways of setting the functional coefficients in (2.1) with p(x) = a(x)g2(x)− c(x).

No Preset free functions Function expressed via the free ones

1 a = a(x), b = b(x), d = d(x), g = g(x) c(x) = k−1[ag′x + kag2 +(b+a′x)g−d]

2 a = a(x), c = c(x), d = d(x), g = g(x) b(x) = g−1(kc+d−ag′x)−a′x− kag

3 a = a(x), b = b(x), c = c(x), g = g(x) d(x) = ag′x + kag2 +(b+a′x)g− kc

4 b = b(x), c = c(x), d = d(x), g = g(x) a(x) = g−1E
[∫

(kc+d−bg)E−1dx+C1
]

Note: k and C1 are arbitrary constants, g−1 = 1/g, and E = exp
(
−k
∫

gdx
)
.

Example 2.5. For an alternative representation of exact solutions to the equation in question, we
use the fourth way of setting the functional coefficients (see Table 1) with b = d = 0 and c = 1. Two
cases are possible.

1. Degenerate case, k = 0. From row 4 of Table 1, we get a(x) =C1g−1(x) and p(x) =C1g(x)−1.
Up to notation, this leads to equation (2.21) and its solution (2.22).

2. Nondegenerate case, k 6= 0. From row 4 of Table 1 with k 6= 0 and C1 = 0, we get a(x) =
kg−1E

∫
E−1 dx. Introducing the function h(x) =

∫
E−1 dx, computing its derivative, and taking into

account that E = exp
(
−k
∫

gdx
)
, we express g in terms of h. We find after simple rearrangements

that g = k−1h′′xx/h′x, a = k2h/h′′xx, and p = h(h′x)
−2h′′xx−1. It follows that the equation

utt = [a(x)ux]x + p(x) f (u), a(x) = k2 h
h′′xx

, p(x) =
hh′′xx

(h′x)2 −1, (2.35)

where f (u) and h = h(x) are arbitrary functions and k 6= 0 is an arbitrary constant, admits the
generalized functional separable solution

u =U(z), z = t +
1
k

ln |h′x|.

The function U(z) is determined by the ordinary differential equation U ′′zz− kU ′z + f (U) = 0.

By setting, for instance, h = sinhx and k = 1 in (2.35), we obtain equation (2.32) and its exact
solution (2.33).
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2.4. The case of ddd(((xxx))) === 000, kkk(((ϕϕϕ))) === kkk000///ϕϕϕ , and sss(((ϕϕϕ))) === sss000///ϕϕϕ . Generalized separable
solutions

If d(x) = 0, k(ϕ) = k0/ϕ , and s(ϕ) = s0/ϕ , the overdetermined system (2.4)–(2.5) admits solutions
of the form

ϕ(x, t) = θ(x)− (t + t0)2, (2.36)

where t0 is an arbitrary constant. The function θ = θ(x) is determined by the ordinary differential
equation

a(x)(θ ′x)
2 = 4c(x)θ . (2.37)

Equations (2.4) and (2.5) then reduce to

p(x) = 4s0c(x), (2.38)

[a(x)θ ′x]
′
x +b(x)θ ′x +(4k0 +2)c(x) = 0. (2.39)

Let us look at the special case b(x) = 0 in more detail. We assume the function c = c(x) to be
given. Then the function p(x) is determined by formula (2.38), while a = a(x) and θ = θ(x) are
found from equations (2.37) and (2.39). Omitting the intermediate calculations, we obtain
if k1 = 4k0 +2 6= 0,

a(x) =
1

4C1c(x)
I

4
k1

+2
, θ =C1I−

4
k1 , I =C2− k1

∫
c(x)dx; (2.40)

if k0 =− 1
2 :

a(x) =
C2

1
4C2c(x)E(x)

, θ =C2E(x), E(x) = exp
[

4
C1

∫
c(x)dx

]
, (2.41)

where C1 and C2 are arbitrary constants.

Example 2.6. With b(x) = 0, c(x) = p(x) = 1, s0 = 1
4 , and k0 = − 1

2 , relation (2.38) is satisfied
identically, while formulas (2.41) become

a(x) =
C2

1
4C2

exp
(
− 4

C1
x
)
, θ(x) =C2 exp

(
4

C1
x
)
. (2.42)

Setting C1 =−4/λ and C2 = 4/λ 2 in (2.42), we arrive at the nonlinear Klein–Gordon type equation

utt = (eλxux)x + f (u). (2.43)

For arbitrary f (u), it admits a functional separable solution of the form

u =U(z), z = 4λ
−2e−λx− t2, (2.44)

where U(z) is a function satisfying the nonautonomous ordinary differential equation

4zU ′′zz +2U ′z + f (U) = 0. (2.45)

Remark 2.5. Solution (2.44) to equation (2.43) was obtained in [53].
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Solution 7. Now we set a(x) = c(x) = p(x) = 1 and s0 =
1
4 , in which case equation (2.38) is satisfied

identically, while solutions to equations (2.37) and (2.39) are given by

b(x) =− 2k0

x+C1
, θ(x) = (x+C1)

2,

where C1 is an arbitrary constant. To C1 = 0 and k0 =− 1
2 (n−1) there corresponds an n-dimensional

nonlinear Klein–Gordon equation with radial symmetry [53]:

utt = uxx +
n−1

x
ux + f (u).

It admits a solution of the form u =U(z) with z = x2− (t + t0)2 and x being the radial coordinate.

2.5. The case ddd(((xxx))) === 000. Solutions to the determining system in the multiplicative form
ϕϕϕ === ξξξ (((xxx)))ttt

We look for compatible solutions to the determining system (2.4)–(2.5) in the form

ϕ = ξ (x)t. (2.46)

A simple analysis shows that solution (2.46) satisfies both equation (2.4) and (2.5) if and only if the
following conditions hold:

p = s0cξ
2, k(ϕ) =

k0ϕ

A2ϕ2−1
, s(ϕ) =

s0

A2ϕ2−1
, (2.47)

where A, k0, and s0 are some constants (which can be varied). The functions a = a(x), b = b(x),
c = c(x), and ξ = ξ (x) are connected by two differential-algebraic relations

a(ξ ′x)
2 = A2cξ

4, (aξ
′
x)
′
x +bξ

′
x + k0cξ

3 = 0. (2.48)

Any two of the four functions in (2.48) can be treated as given (arbitrarily) and the other two as
unknown.

Let us look at the special case of b(x) = 0 and c(x) = 1. Eliminating a from (2.48), we arrive at
the following differential equation for ξ :

ξ ξ
′′
xx = (k0A−2 +4)(ξ ′x)

2. (2.49)

Equation (2.49) is autonomous and generalized homogeneous. Its general solution is

ξ =

C1(x+C2)
− A2

k0+3A2 if k0 6=−3A2,

C1eλx if k0 =−3A2,
(2.50)

where C1, C2, and λ are arbitrary constants. The function a is expressed via ξ as a = A2ξ 4(ξ ′x)
−2,

which follows from the first equation of (2.48).

Example 2.7. By setting A =C1 = s0 = 1, k0 =−3, λ = 1/2, b(x) = 0, and c(x) = 1 in (2.47) and
(2.50), we get ξ (x) = ex/2 and a(x) = p(x) = ex. It follows that the nonlinear Klein–Gordon type
equation

utt = (exux)x + ex f (u)

with arbitrary f (u) admits an exact invariant solution of the form u =U(z) with z = ex/2t.
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2.6. Relationship of the direct method of symmetry reductions with other methods

1. Relationship with the method of differential constraints. The direct method of symmetry reduc-
tions can be reformulated in terms of the method of differential constraints [70] (this was proved
in [44] for the general case), which is based on the compatibility theory of PDEs. To show this, we
differentiate formula (2.2), for example, with respect to t to obtain the differential relation

ut = η(x, t)Ψ(u), (2.51)

where η(x, t) = ϕt(x, t) and the function Ψ(u) is defined parametrically by the relations u = U(z)
and Ψ =U ′z(z).

Relation (2.51) can be treated as a first-order differential constraint, which can be used to find
exact solutions of equation (2.1) through a compatibility analysis of the overdetermined pair of
equations (2.1) and (2.51) with the single unknown u. At the initial stage, all functions included
on the right-hand sides of (2.51) are considered arbitrary, and the specific form of these functions
is determined in the subsequent analysis. In the general case, any PDE that depends on the same
variables as the original equation can be treated as a differential constraint.

For a description of the method of differential constraints and its relationship with other methods
as well as a number of specific examples of its application, see, for example, [5, 21, 37, 44, 54, 70].

It is important to note that the construction of exact solutions by the method of differential
constraints is based on a compatibility analysis of PDEs and is carried out in several steps; in three
of the steps, one has to solve nonlinear differential equations (e.g., see [49,54] for details). Examples
of using differential constraints of the form (2.51) can be found in [46].

2. Relationship with the nonclassical method of symmetry reductions. The first-order differential
constraint (2.51) is a special case of the invariant surface condition [7], which characterizes the non-
classical method of symmetry reduction. (In general, an invariant surface condition is a quasilinear
first-order PDE of general form.) This method, just like the method of different constraints, also
relies on a compatibility analysis of two PDEs; specific examples of its use can be found, for exam-
ple, in [7,14,40,43,54,62]. For first-order differential constraints, the results of applying the method
of differential constraints and the nonclassical method of symmetry reduction coincide (provided
that the differential constraint coincides with the invariant surface condition).

In practice, it is technically much easier to use the direct method of symmetry reduction, which
requires fewer steps where intermediate differential equations must be solved with the intermediate
equations being simpler, than the method of differential constraints or the nonclassical method of
symmetry reductions. In all cases, a complicating factor is the presence of arbitrary functions if
included in the equation in question; it is precisely such equations that are dealt with in the present
study.

3. Exact solutions to nonlinear delay telegraph equations

3.1. Nonlinear delay equations admitting generalized traveling wave solutions

The results obtained in Section 2 can be extended to the case of more complex, nonlinear delay
telegraph equations of the form

c(x)utt +d(x)ut = [a(x)ux]x +b(x)ux + p(x) f (u,w), w = u(x, t− τ), (3.1)
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where τ is a constant representing the delay time and f (u,w) is an arbitrary function of two argu-
ments.

Below we show how solutions to the nonlinear telegraph equation without delay (2.1), which
are defined by formulas (2.2) and (2.16), can be used to construct exact solutions to the nonlinear
telegraph equation with delay (3.1). Suppose equation (2.1) admits a generalized traveling wave
solution of the form

u =U(z), z = t +θ(x), (3.2)

with the function U(z) satisfying the ordinary differential equation (2.6). Then the delay equation
(3.1) admits solution (3.2) with U(z) satisfying the delay ordinary differential equation

U ′′zz− k(z)U ′z + s(z) f (U,W ) = 0, W =U(z− τ). (3.3)

Equations (2.21), (2.24), (2.25), (2.27), (2.32), and (2.35) admit solutions of the form (3.2).
Therefore, such solutions are also admitted by the more complex nonlinear telegraph equations that
are obtained from the above ones by replacing f (u) with f (u,w).

Example 3.1. The nonlinear Klein–Gordon type equation with delay

utt = [a(x)ux]x +
[ m2

a(x)
−1
]

f (u,w), w = u(x, t− τ), (3.4)

which is a generalization of equation (2.21), admits, for arbitrary a(x) and f (u,w), the generalized
traveling wave solution

u =U(z), z = t +m
∫ dx

a(x)
, (3.5)

with the function U(z) described by the autonomous ordinary differential equation with delay

U ′′zz + f (U,W ) = 0, W =U(z− τ). (3.6)

Note that if f (U,W ) =Ug(W/U), equation (3.6) admits a solution of the form U =Ceλ z, where
C is an arbitrary constant and λ is a root of the transcendental equation λ 2 +g(e−τλ ) = 0.

Example 3.2. The nonlinear telegraph equation with delay

utt +ut = [a(x)ux]x +
[ x2

a(x)
−1
]

f (u,w), w = u(x, t− τ),

which is a generalization of equation (2.25), admits, for arbitrary a(x) and f (u,w), the generalized
traveling wave solution

u =U(z), z = t +
∫ xdx

a(x)
,

with the function U(z) described by the ordinary differential equation with delay (3.6).
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3.2. Nonlinear delay equations that admit multiplicative separable solutions

The nonlinear telegraph equations with delay

c(x)utt +d(x)ut = [a(x)ux]x +b(x)ux +uF(x,w/u), w = u(x, t− τ), (3.7)

which involves five arbitrary functions a(x), b(x), c(x), d(x), and F(x,v), admits an exact solution
in the multiplicative form u = eλ tξ (x), where λ is an arbitrary constant and ξ = ξ (x) is a function
satisfying the linear ordinary differential equation

[a(x)ξ ′x]
′
x +b(x)ξ ′x +[F(x,e−λτ)−λ

2c(x)−λd(x)]ξ = 0.

Some exact solutions to these equations can be found in [52].
In the special case d(x) = 0, equation (3.7) also admits exact solutions of the form

u = sin(βnt +C)ξ (x),

where βn = πn/τ (n = 1, 2, . . . ) and C is an arbitrary constant.

4. Brief conclusions

We have described several classes of nonlinear Klein–Gordon and telegraph type equations with
variable coefficients that admit functional separable solutions. The focus was on fairly general equa-
tions that involve one or more arbitrary functions. A number of specific equations with solutions
have been presented. A few generalized traveling wave solutions have been obtained for more com-
plex, nonlinear telegraph equations with delay.
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