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The existence of a new type of cusped solitary wave, which decays algebraically at infinity, for a nonlinear
equation modeling the free surface evolution of moderate amplitude waves in shallow water is established by
employing qualitative analysis for differential equations. Furthermore, the exact parametric representation as
well as its planar graph for such type of wave is also given.
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1. Introduction

The nonlinear evolution equation

ut +ux +6uux−6u2ux +12u3ux +uxxx−uxxt +14uuxxx +28uxuxx = 0 (1.1)

was established in [2] as a model for the propagation of surface waves of moderate amplitude
in shallow water regime. Here the dependent variable u represents the free surface elevation, the
independent variables t and x are non-dimensional time and space coordinates. It is worthwhile to
mention that Eq. (1.1) originates from the earlier equation in [14] and arises as an approximation of
the Euler equations in the context of homogeneous, inviscid gravity water waves propagating over
a flat bed.

As shown in [2], Eq. (1.1) approximates the governing equation to the same order as the
Camassa-Holm (CH) equation, which models the horizontal fluid velocity at a certain depth beneath
the fluid [8]. The great interest in the equations describing the moderate amplitude waves (e.g., the
CH equation), lies in the fact that they exhibit a wider range of nonlinear phenomena, such as
wave breaking and solitary waves with singularities, which the model equations derived within the
small amplitude shallow water regime (e.g., the KdV equation) do not have, despite the fact that
the governing equations for irrotational waves do admit peaked traveling waves (periodic, as well
as solitary), namely the celebrated Stokes waves of greatest height, see [4, 5, 25] for example. It
is shown in [3] that unlike the KdV and CH equations, Eq. (1.1) does not have a bi-Hamiltonian
integrable structure. The local well-posedness results in Sobolev space for the initial value problem
associated to Eq. (1.1) on the line and on the unit circle were reported in [17, 20, 27] and in [21],
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respectively. Further work on the well-posedness of Eq. (1.1) has been done in Besov space [24].
Moreover, some results on its wave breaking, global conservative solutions, low regularity solutions
and continuity and persistence properties of strong solutions can be found in [2,19,21,22,26,27,29].
Eq. (1.1) has been shown to admit various kinds of traveling wave solutions, including smooth soli-
tary wave, compacted solitary wave, cusped solitary wave, and smooth, peaked and cusped periodic
wave solutions [9,10,12,28]. Further, it is proved that the smooth solitary waves are orbitally stable
in [23] and that all symmetric waves are traveling waves in [11] for this equation.

In the present paper, we will use qualitative analysis method for differential equations, which
is proposed by Lenells [15, 16], to solve Eq. (1.1). We prove that Eq. (1.1) admits a type of cusped
solitary wave featured by decaying to zero algebraically at infinity. Such type of cusped solitary
wave is different from those with exponential decay appeared in the former literature and thus is
new for Eq. (1.1). Our work may help people to understand deeply the described physical process
and possible applications of Eq. (1.1).

The remainder of paper is organized as follows. In Sec. 2, we prove the existence of cusped
solitary wave with algebraic decay to Eq. (1.1) based on a weak formulation of Eq. (1.1). In Sec.
3, we give the exact parametric representation of such type of cusped solitary wave as well as its
planar graph.

2. Existence of cusped solitary wave with algebraic decay

For a traveling wave solution u(t,x) = φ(x− ct), with c representing the constant wave velocity,
Eq. (1.1) takes the form

(1− c)φx +6φφx−6φ
2
φx +12φ

3
φx +(c+1)φxxx +14(φφxxx +2φxφxx) = 0. (2.1)

Now we give the definition of solitary waves to Eq. (1.1).

Definition 2.1. A solitary wave to Eq. (1.1) is a nontrivial traveling wave solution to Eq. (1.1) of
the form φ(x− ct) ∈ H1(R) with c ∈ R and φ vanishing at infinity along with the first and second
derivatives of φ .

Taking account of φ(x), φx(x) and φxx(x)→ 0 as |x| → ∞, integration of Eq. (2.1) over (−∞,x]
leads to

(φ −ρ)φxx +
1
2

φ
2
x +

1
14

φ(3φ
3−2φ

2 +3φ +1− c) = 0, (2.2)

with ρ =−(c+1)/14. Notice that Eq. (2.2) can be written in the form

((φ −ρ)2)xx = φ
2
x −

1
7

φ(3φ
3−2φ

2 +3φ +1− c). (2.3)

To deal with the regularity of the solitary waves, we give the following lemma, which is inspired
by the study of traveling waves of Camassa-Holm equation [15].

Lemma 2.1. Assume that φ is a solitary wave to Eq. (1.1). Then we have

φ
k ∈C j(R) for k ≥ 2 j, j ≥ 1. (2.4)

Therefore

φ ∈C∞(R\φ
−1(ρ)). (2.5)
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Proof. Let ψ = φ −ρ and denote

p(ψ) =−1
7
(ψ +ρ)[3(ψ +ρ)3−2(ψ +ρ)2 +3(ψ +ρ)+1− c].

Thus p(ψ) is a polynomial in ψ and then Eq. (2.3) can be written as

(ψ2)xx = ψ
2
x + p(ψ). (2.6)

From the assumption, it follows that (ψ2)xx ∈ L1
loc(R). Therefore (ψ2)x is absolutely continuous

and ψ2 ∈C1(R). Note that ψ +ρ ∈ H1(R)⊂C(R). Moreover,

(ψk)xx = (kψ
k−1

ψx)x =
k
2

(
ψ

k−2(ψ2)x

)
x

= k(k−2)ψk−2
ψ

2
x +

k
2

ψ
k−2(ψ2)xx

= k(k−2)ψk−2
ψ

2
x +

k
2

ψ
k−2[ψ2

x + p(ψ)]

= k
(

k− 3
2

)
ψ

k−2
ψ

2
x +

k
2

ψ
k−2 p(ψ). (2.7)

For k ≥ 3 the right-hand side of (2.7) is in L1
loc(R). Therefore

ψ
k ∈C1(R) for k ≥ 2. (2.8)

Thus (2.4) holds for j = 1. Next, we assume that

ψ
k ∈C j−1(R) for k ≥ 2 j−1 and j ≥ 2.

Then for k ≥ 2 j we have

ψ
k−2

ψ
2
x =

1
2 j−1

(
2 j−1

ψ
2 j−1−1

ψx

) 1
k−2 j−1

[(
k−2 j−1)

ψ
k−2 j−1−1

ψx

]
=

1
2 j−1(k−2 j−1)

(
ψ

2 j−1
)

x

(
ψ

k−2 j−1
)

x
∈C j−2(R).

Also we have ψk−2 p(ψ) ∈C j−1(R). Therefore the right-hand side of (2.7) is in C j−2(R). Hence, in
view of the relation ψ = φ −ρ , by induction on j, we know (2.4) holds.

Furthermore, it follows from (2.8) that

kψ
k−1

ψx = (ψk)x ∈C(R).

This implies that ψx ∈ C(R \ψ−1(0)) and thus ψ ∈ C1(R \ψ−1(0)). Now, we assume that ψ ∈
C j(R\ψ−1(0)) for j ≥ 1. Then for k ≥ 2 j+1, we have ψk ∈C j+1(R). Thus

kψ
k−1

ψx = (ψk)x ∈C j(R),

which shows that ψx ∈ C j(R \ψ−1(0)). Hence, ψ ∈ C j+1(R \ψ−1(0)). Thus, due to the relation
ψ = φ −ρ , by induction on j, we know (2.5) holds. �
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Setting x0 = min{x : φ(x) = ρ}, then we have x0 ≤+∞. In view of Lemma 2.1, it follows that a
solitary wave φ is smooth on (−∞,x0) and hence Eq. (2.3) holds pointwise on (−∞,x0). Therefore
we may multiply both sides of Eq. (2.3) by 2φx and integrate on (−∞,x0) for x < x0 to get

φ
2
x =

φ 2[6φ 3−5φ 2 +10φ −5(c−1)]
70(ρ−φ)

:= F(φ). (2.9)

We notice that F(φ)≥ 0 if φ is a solution to Eq. (2.9).

Remark 2.1. As has been already pointed out in [15], a continuous function φ is said to have a
cusp at x0 if φ is smooth locally on both sides of x0 and limx↑x0 φx(x) = − limx↓x0 φx(x) = ±∞. A
solitary wave to Eq. (1.1) with a cusp on its crest or trough is called a cusped solitary wave. In
addition, it should be pointed out that cusped waves are also relevant for the governing equations
for water waves, since the limiting form of the Gerstner waves is a cycloidal profile with upward
cusps, see [3, 13] for the case of gravity water waves and [6, 7, 18] for equatorial waves.

To determine the cusped solitary waves to Eq. (1.1), we also need the following lemma.

Lemma 2.2. The solution to Eq. (2.9) has the following asymptotic properties:

(i) If F(φ) has a simple pole at ρ , where φ(x0) = ρ , then

φ(x)−ρ = α|x− x0|2/3 +O((x− x0)
4/3) as x→ x0, (2.10)

φx(x) =


2
3

α|x− x0|−1/3 +O((x− x0)
1/3) as x ↓ x0,

− 2
3

α|x− x0|−1/3 +O((x− x0)
1/3) as x ↑ x0,

(2.11)

for some constant α , thus φ has a cusp.
(ii) If φ approaches a triple zero m of F(φ) so that F(m) = F ′(m) = F ′′(m) = 0, F ′′′(m) 6= 0,

then

φ −m∼ β (
√
|F ′′′(m)|/24|x|)−2, as x→ ∞, (2.12)

for some constant β . Thus φ → m algebraically as x→ ∞.

Proof. Since the proof of (i) can be found in [15], then here we only consider the proof of (ii).
Since m is a triple zero of F(φ), then it follows from (2.9) that

φ
2
x =

F ′′′(m)

3!
(φ −m)3 +O((φ −m)4) as φ → m.

Furthermore, we have

dx
dφ

=±
√

3!√
F ′′′(m)(φ −m)3 +O((φ −m)4)

.

Since √
F ′′′(m)(φ −m)3 +O((φ −m)4) = |φ −m|

3
2 (
√
|F ′′′(m)|+O(|φ −m|))
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and

1√
|F ′′′(m)|+O(|φ −m|)

=
1√
|F ′′′(m)|

+O(|φ −m|),

then we have

±dx =

[ √
3!√

|F ′′′(m)|
|φ −m|−

3
2 +O((|φ −m|)−

1
2 )

]
dφ .

Integration gives

|x|= 2
√

6√
|F ′′′(m)|

|φ −m|−
1
2 +O(|φ −m|

1
2 ),

from which we get (2.12) and therefore we know φ decays algebraically to m at infinity. �

Based on the above derivation, now we give the following theorem on existence of cusped
solitary wave with algebraic decay to Eq. (1.1).

Theorem 2.1. If c= 1, then Eq. (1.1) admits an anti-cusped solitary wave φ < 0 with minx∈R φ(x)=
−1/7 and an algebraic decay to zero at infinity

φ(x) = O

((
1
2
|x|
)−2

)
as |x| → ∞. (2.13)

Proof. If c = 1, then Eq. (2.9) becomes

φ
2
x =

3
35
·
−φ 3

(
φ 2− 5

6 φ + 5
3

)
φ + 1

7

:= F1(φ). (2.14)

Hence we know that φ(x)< 0 near−∞. Since φ(x)→ 0 as x→−∞, there exists some x̄ sufficiently
large negative so that φ(x̄) =−ε < 0, with ε sufficiently small, and φx(x̄)< 0. By the standard ODE
theory, we can establish a unique solution φ(x) on [x̄−L, x̄+L] for some L > 0.

It is easy to see that φ 2− 5
6 φ + 5

3 is decreasing when φ < 0. Furthermore,[
−φ 3

φ + 1
7

]′
=

φ 2
(
−3

7 −2φ
)(

φ + 1
7

)2 < 0 for − ε < φ < 0.

Thus F1(φ) decreases for φ ∈ (−ε,0). Since φx(x̄)< 0, then φ decreases near x̄. So F1(φ) increases
near x̄. Therefore from (2.14), φx decreases near x̄, and then both φ and φx decrease on [x̄−L, x̄+L].
Since

√
F1(φ) is locally Lipschitz in φ for −1/7 < φ ≤ 0, we can easily continue the local solution

to (−∞, x̄−L] with φ(x)→ 0 as x→−∞. On [x̄+L,+∞), we can solve the initial value problem{
ϕx =−

√
F1(ϕ),

ϕ(x̄+L) = φ(x̄+L)

all the way until ϕ = −1/7, which is a simple pole of F1(ϕ). In view of (2.10) and (2.11), we can
construct an anti-cusped solitary wave solution with a cusp singularity at φ =−1/7.

Moreover, since φ = 0 is the triple zero of F1(φ) and F ′′′1 (0) = −6, then we know from (ii) of
Lemma 2.2 that (2.13) holds. �
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3. Expression of cusped solitary wave with algebraic decay

In this section we turn our focus to finding the parametric presentation of anti-cusped solitary wave
for c = 1, whose existence is guaranteed by Theorem 2.1. We will use some symbols on the elliptic
functions and elliptic integrals, see [1]. sn(·,k), cn(·,k) and dn(·,k) are Jacobian elliptic functions
with the modulus k. cn−1(u,k) is the inverse function of cn(u,k). E(·,k) is the Legendre’s incom-
plete elliptic integral of the second kind.

Since φ is negative, even with respect to x̄ and increasing on (x̄,+∞), then for x > x̄ it follows
from Eq. (2.14) that

dφ

dx
=

√
3
35
· −φ

φ +1/7

√
(0−φ)(φ +1/7)

[
(φ −5/12)2 +(

√
215/12)2

]
. (3.1)

The substitution of

dx =

√
35
3
· φ +1/7
−φ

dτ (3.2)

into Eq. (3.1) and integration with the initial condition φ(τ)|τ=0 =−1/7 leads to

τ =
∫

τ

0
dt =

∫
φ

−1/7

1√
(0− t)(t +1/7)

[
(t−5/12)2 +(

√
215/12)2

] dt

=
1
ω

cn−1
(

7(λ +1)φ +1
7(λ −1)φ −1

,k
)
,

where ω =
4√590√

14
, λ = 3

√
590

70 , k =
√

1
2 −

29
√

590
1416 , then it follows that

φ =
1+ cn(ωτ,k)

7[(λ −1)cn(ωτ,k)− (λ +1)]
. (3.3)

Inserting (3.3) into (3.2) and solving the resulting equation with the initial value x(τ)|τ=0 = x̄ yields

x− x̄ =
∫ x

x̄
dt = 2

√
35
3

λ

ω

∫
τ

0

(
1

1+ cn(ωt,k)
− 1

2

)
dωt

= 2

√
35
3

λ

ω

[
1
2

ωτ +
sn(ωτ,k)dn(ωτ,k)

1+ cn(ωτ,k)
−E(ωτ,k)

]
.

Thus we obtain the exact anti-cusped solitary wave of parametric form with algebraic decay for
c = 1 to Eq. (1.1) as follows:

φ(τ) =
1+ cn(ωτ,k)

7[(λ −1)cn(ωτ,k)− (λ +1)]
,

x(τ) = x̄±2

√
35
3

λ

ω

[
1
2

ωτ +
sn(ωτ,k)dn(ωτ,k)

1+ cn(ωτ,k)
−E(ωτ,k)

]
.

(3.4)

The profile of (3.4) with x̄ = 0 is shown in Fig. 1.
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Fig. 1. The planar graph of anti-cusped solitary wave.
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