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By considering a relation between Euler’s trinomial problem and the problem of decomposing tensor powers
of the adjoint s[(2)-module I derive some new results for both problems, as announced in arXiv:1902.08065.

1. Introduction

In 1765, Euler [1] investigated the coefficients of trinomial

(I4x+2)y =Y allwtt, (1.1)

k=—n

For central trinomial coefficients a,(f)) he found the generating function and a two-term recurrence

(k)

relation. For a discussion of properties of the a; ’, see [3].

Let us change variable x by exp(i6) and rewrite the left-hand side of (1.1) as
(14+x+x*)"=x"X", where X =142 cos6.

Note that X is the character x; of the adjoint s[(2)-module. In what follows, X" denotes both
the representation with character X", and the corresponding module.

So, Euler’s problem is equivalent to the problem of multiplicities of weights in the represen-
tation with character X". I also consider, related to the above, the problem of decomposing X"
into irreducible s((2)-modules.
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2. Euler’s triangle

It is evident that a(fk) = a,(zk). So, it suffices to consider only quantities a,(lk) for k > 0. It is convenient

to arrange these coefficients in a triangle. I give here the table of these numbers till n = 10:

n\k 0 1 2 3 4 5 6 7 & 9 10
0 1

1 1 1

2 3 2 1

3 7 6 3 1

4 19 16 10 4 1

5 51 45 30 15 5 1 @D
6 141 126 90 50 21 6 1

7 393 357 266 161 77 28 7 1

8 1107 1016 784 504 266 112 36 8 1

9 3139 2907 2304 1554 882 414 156 45 9 1

10 8953 8350 6765 4740 2850 1452 615 210 55 10 1

Eq. (1.1) immediately implies the three-term recurrence relation

W =al ™ 1l +allth. 2.2)

a, 1 =an n n
Introduce the generating function F(¢) for the central trinomial coefficients:

F(t)= Z a,t", where a, = a,(f”.
n=0

Theorem 2.1 (Euler 1765). The following statements hold.

1) The generating function F (t) has the form

t) = S (2.3)

Flo= V=2 =32)

2) For the a,, the following two-term recurrence relation takes place
na, = 2n—1)a,_1+3(n—1)a,_». (2.4)
We give here a very short proof of item 1); it is different from Euler’s.

Proof. Note that

1 T
an:E/ X"d6, where X =1+2cos8.
0

So,
1 (7 do
Ft)=—| ——m—.
(®) n/o 1—t—2tcos0
Evaluating this integral we obtain formula (2.3). U

Item 2) is a special subcase of the following more general statement.
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Theorem 2.2. For the aE,k) , there is the following two-term recurrence relation

=) al =n2n—1)a", +3n(n—1)a,. (2.5)
Proof. We have
1 T
:—/ X" coskBdo,
T Jo
and
“x @ K k6|d6—=0= [ cosko @ K| X" | de.
/0 [<d92+ )cos } = _/o cos [<d92+ ) ]
But,
d2Xn 2yn n—1 n—2
FTD =—nX"+n2n—1)X" +3n(n—1)X""".
This implies formula (2.5). Il

Theorem 2.3. For the a,(zk), there are the following two-term recurrence relations:

ka), = (n+1) (a " —aft), (2.6)
(n—k+1)a¥V = ka® + (n+k+1)ac, 2.7)
(n—k+1)a¥, = (n+ 1)@ + 245, (2.8)
(n+k+1)a", = (n+1) (@ + 2457, (2.9)

Proof. From the identity

T d
/0 [de (X" sinkG)] 46 =0,

we obtain relation (2.6). Combining this relation with (2.2), we obtain relations (2.7)—(2.9). [l

Note that eq. (2.2) implies

. 2
a;(1 ) = % (ans1 —an), aﬁ, )= % (@ni2 = 2an41 —an),
al) = 1 (an43 — 3ani2 +2ay), a,) = 3 (ana — 4,13+ 20,40 +4anyy —ay).

Corollary 2.1. Explicit expressions for quantities an for k small can be obtained from egs. (2.5)
and (2.7) and we have

—k 1
ay' ™ = S Oun),
where Qi(n) is a degree k polynomial in n.
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The recurrence relation for these polynomials follows from eq. (2.7):

Okt1(n) = (n—k)Qx(n) +k(2n —k+1) k-1 (n).

Here are the explicit expressions for the first ten polynomials.

Q I, Qi=n, Oy=nn+1); QO3=(n—1)n(n+4);

= (n—1)n(n*>+7Tn—6);

=n-2)(n—1)n(n+1)(n+12);

:(n 2)(n—1)n(n®+18n> +17n— 120);
(n 3)(n—2)(n—1)n(n®+27n> 4 1160 — 120);
n—3)(n—2)(n—1)n(n+1)(n+10)(n?> +23n — 84);

= n(n 1)(n—2)(n—3)(n—4) (n* +46n 4+ 467n> 4 86n — 3360);

3. Decomposition of X" into irreducible representations

This problem is equivalent to expanding X" in terms of characters of s[(2)-modules:

n
x" =Y o\ x(0)
k=0
These characters are well known (see, for example, [4]):

X =14+2cos(0)+2cos(20) +---+2cos(kB).

They are orthogonal

= [ 1(0)0(0) (1~ cos(0))d6 = &,
and we have
b = ;/OnX”fk(G)dB, where f;(0) = cos(kB) —cos((k+1)6).
This implies the basic relation
b}(1k) _ aglk) _ aslk+1) ’
and a three-term recurrence relation similar to relation (2.2)
pY = b b forn>2,k>1,

as well as the following relations

bo=bY =13a,—an1), b =bur1, B =buro—bur1 —ba,
b = b3 — 2byis — bt + by, b = bys— 3byas +3by_y .
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(k)

The triangle for the numbers b, ’ analogous to the triangle (2.1) is as follows.

n\k 0 1 2 3 4 5 6 7 8 9 10
0 1
1 0 1
2 1 1 1
3 1 3 2 1
4 3 6 6 1
5 6 15 15 10 4 1 3.1
6 15 36 40 29 15 5 1
7 36 091 105 84 49 21 6 1
8 91 232 280 238 154 76 28 17 1
9 232 603 750 672 468 258 111 36 8 1
10 603 1585 2025 1890 1398 837 405 155 45 9 1
Theorem 3.1. The generating function G(t) =Y. but" is of the form
1 v1—=73t
Glt)y=—|1-—=].
2t (1+1)
Proof. Taking into account the identity
l—cos(6) 1 1 1 -3¢
1—t—2tcos(0) 2t 1 —t—2tcos(0)
we reduce the proof to the proof for F(z) . We also have the recurrence relation
(n+1)b, = (n—1)(2by—1 +3by—2)
which follows from eq. (2.4) and the equality b, = a, — asll). O
Theorem 3.2. There is a four-term recurrence relation
An,kbr(lk) +Bn7kb,(1k_)1 +Cn7kb,(/lk_)2 + Dn,kb,(qk_):,‘ + En,kbflk_)4 = 07
where
A= (1 = (k+1)%)(n* = k?);
Bux=—-2n(2n—1)(n+k)(n—k—1);
Cox = —2n(n—1)(n*—2n+3 - 3k(k+1)); (3.2)
Dyy=6n(n—1)(n—2)(2n— 3)
En,k:9n(n_1)( )(
Proof. We have
1 T
_ 2 / X"£,(6)d, (3.3)
T Jo

where
X =1+2cos(0), fi(6)=cos(kO)—cos((k+1)8),
Co-published by Atlantis Press and Taylor & Francis
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and

d? 2 d? 2
Arfi(0) =0, where Ay = | — +k —+(k+1 .
fi(6) k <d92 > <d92 ( ) >

Integrating by parts in (3.3) we get (3.2) and

= [ @) @xnae <o,

(]
Theorem 3.3. There is the following three-term recurrence relation
(k+ 1) (n+1— k)b = (k(k+1) —n— 1)bP +k(n+k+2)bY.
Proof. This follows from eq. (2.7) and the relation bﬁlk) = a,gk) — aﬁlkH). O
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