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By considering a relation between Euler’s trinomial problem and the problem of decomposing tensor powers
of the adjoint sl(2)-module I derive some new results for both problems, as announced in arXiv:1902.08065.

1. Introduction

In 1765, Euler [1] investigated the coefficients of trinomial

(1+ x+ x2)n =
n

∑
k=−n

a(k)n xn+k. (1.1)

For central trinomial coefficients a(0)n he found the generating function and a two-term recurrence
relation. For a discussion of properties of the a(k)n , see [3].

Let us change variable x by exp(iθ) and rewrite the left-hand side of (1.1) as

(1+ x+ x2)n = xn Xn, where X = 1+2 cosθ .

Note that X is the character χ1 of the adjoint sl(2)-module. In what follows, Xn denotes both
the representation with character Xn, and the corresponding module.

So, Euler’s problem is equivalent to the problem of multiplicities of weights in the represen-
tation with character Xn. I also consider, related to the above, the problem of decomposing Xn

into irreducible sl(2)-modules.
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2. Euler’s triangle

It is evident that a(−k)
n = a(k)n . So, it suffices to consider only quantities a(k)n for k≥ 0. It is convenient

to arrange these coefficients in a triangle. I give here the table of these numbers till n = 10:

n\k 0 1 2 3 4 5 6 7 8 9 10
0 1
1 1 1
2 3 2 1
3 7 6 3 1
4 19 16 10 4 1
5 51 45 30 15 5 1
6 141 126 90 50 21 6 1
7 393 357 266 161 77 28 7 1
8 1107 1016 784 504 266 112 36 8 1
9 3139 2907 2304 1554 882 414 156 45 9 1
10 8953 8350 6765 4740 2850 1452 615 210 55 10 1

(2.1)

Eq. (1.1) immediately implies the three-term recurrence relation

a(k)n+1 = a(k−1)
n +a(k)n +a(k+1)

n . (2.2)

Introduce the generating function F(t) for the central trinomial coefficients:

F(t) =
∞

∑
n=0

an tn, where an = a(0)n .

Theorem 2.1 (Euler 1765). The following statements hold.

1) The generating function F(t) has the form

F(t) =
1√

(1−2t−3t2)
. (2.3)

2) For the an, the following two-term recurrence relation takes place

nan = (2n−1)an−1 +3(n−1)an−2. (2.4)

We give here a very short proof of item 1); it is different from Euler’s.

Proof. Note that

an =
1
π

∫
π

0
Xn dθ , where X = 1+2cosθ .

So,

F(t) =
1
π

∫
π

0

dθ

1− t−2t cosθ
.

Evaluating this integral we obtain formula (2.3). �

Item 2) is a special subcase of the following more general statement.
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Theorem 2.2. For the a(k)n , there is the following two-term recurrence relation

(n2− k2)a(k)n = n(2n−1)a(k)n−1 +3n(n−1)a(k)n−2. (2.5)

Proof. We have

a(k)n =
1
π

∫
π

0
Xn coskθ dθ ,

and ∫
π

0
Xn
[(

d2

dθ 2 + k2
)

coskθ

]
dθ = 0 =

∫
π

0
coskθ

[(
d2

dθ 2 + k2
)

Xn
]

dθ .

But,

d2Xn

dθ 2 =−n2Xn +n(2n−1)Xn−1 +3n(n−1)Xn−2.

This implies formula (2.5). �

Theorem 2.3. For the a(k)n , there are the following two-term recurrence relations:

k a(k)n+1 = (n+1)
(
a(k−1)

n −a(k+1)
n

)
, (2.6)

(n− k+1)a(k−1)
n = ka(k)n +(n+ k+1)a(k+1)

n , (2.7)

(n− k+1)a(k)n+1 = (n+1)(a(k)n +2a(k+1)
n ), (2.8)

(n+ k+1)a(k)n+1 = (n+1)(a(k)n +2a(k−1)
n ). (2.9)

Proof. From the identity ∫
π

0

[
d

dθ
(Xn sinkθ)

]
dθ = 0,

we obtain relation (2.6). Combining this relation with (2.2), we obtain relations (2.7)–(2.9). �

Note that eq. (2.2) implies

a(1)n = 1
2 (an+1−an), a(2)n = 1

2 (an+2−2an+1−an),

a(3)n = 1
2 (an+3−3an+2 +2an), a(4)n = 1

2 (an+4−4an+3 +2an+2 +4an+1−an) .

Corollary 2.1. Explicit expressions for quantities a(n−k)
n for k small can be obtained from eqs. (2.5)

and (2.7) and we have

a(n−k)
n =

1
k!

Qk(n),

where Qk(n) is a degree k polynomial in n.
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The recurrence relation for these polynomials follows from eq. (2.7):

Qk+1(n) = (n− k)Qk(n)+ k(2n− k+1)Qk−1(n).

Here are the explicit expressions for the first ten polynomials.

Q0 = 1; Q1 = n; Q2 = n(n+1); Q3 = (n−1)n(n+4);

Q4 = (n−1)n(n2 +7n−6);

Q5 = (n−2)(n−1)n(n+1)(n+12);

Q6 = (n−2)(n−1)n(n3 +18n2 +17n−120);

Q7 = (n−3)(n−2)(n−1)n(n3 +27n2 +116n−120);

Q8 = (n−3)(n−2)(n−1)n(n+1)(n+10)(n2 +23n−84);

Q9 = n(n−1)(n−2)(n−3)(n−4)(n4 +46n3 +467n2 +86n−3360);

Q10 = n(n−1)(n−2)(n−3)(n−4)(n5 +55n4 +665n3−895n2−16626n+15120).

3. Decomposition of Xn into irreducible representations

This problem is equivalent to expanding Xn in terms of characters of sl(2)-modules:

Xn =
n

∑
k=0

b(k)n χk(θ) .

These characters are well known (see, for example, [4]):

χk = 1+2cos(θ)+2cos(2θ)+ · · ·+2cos(kθ) .

They are orthogonal

1
π

∫
π

0
χk(θ)χl(θ)(1− cos(θ))dθ = δk,l ,

and we have

b(k)n =
1
π

∫
π

0
Xn fk(θ)dθ , where fk(θ) = cos(kθ)− cos((k+1)θ) .

This implies the basic relation

b(k)n = a(k)n −a(k+1)
n ,

and a three-term recurrence relation similar to relation (2.2)

b(k)n+1 = b(k−1)
n +b(k)n +b(k+1)

n forn≥ 2, k ≥ 1 ,

as well as the following relations

bn = b(0)n = 1
2(3an−an+1), b(1)n = bn+1, b(2)n = bn+2−bn+1−bn,

b(3)n = bn+3−2bn+2−bn+1 +bn, b(4)n = bn+4−3bn+3 +3bn−1 .
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The triangle for the numbers b(k)n analogous to the triangle (2.1) is as follows.

n\k 0 1 2 3 4 5 6 7 8 9 10
0 1
1 0 1
2 1 1 1
3 1 3 2 1
4 3 6 6 3 1
5 6 15 15 10 4 1
6 15 36 40 29 15 5 1
7 36 91 105 84 49 21 6 1
8 91 232 280 238 154 76 28 7 1
9 232 603 750 672 468 258 111 36 8 1
10 603 1585 2025 1890 1398 837 405 155 45 9 1

(3.1)

Theorem 3.1. The generating function G(t) = ∑
∞
n=0 bntn is of the form

G(t) =
1
2t

(
1−
√

1−3t√
(1+ t)

)
.

Proof. Taking into account the identity

1− cos(θ)
1− t−2t cos(θ)

=
1
2t

(
1− 1−3t

1− t−2t cos(θ)

)
we reduce the proof to the proof for F(t) . We also have the recurrence relation

(n+1)bn = (n−1)(2bn−1 +3bn−2)

which follows from eq. (2.4) and the equality bn = an−a(1)n . �

Theorem 3.2. There is a four-term recurrence relation

An,kb(k)n +Bn,kb(k)n−1 +Cn,kb(k)n−2 +Dn,kb(k)n−3 +En,kb(k)n−4 = 0 ,

where

An,k = (n2− (k+1)2)(n2− k2);
Bn,k =−2n(2n−1)(n+ k)(n− k−1);
Cn,k =−2n(n−1)(n2−2n+3−3k(k+1));
Dn,k = 6n(n−1)(n−2)(2n−3);
En,k = 9n(n−1)(n−2)(n−3).

(3.2)

Proof. We have

b(k)n =
1
π

∫
π

0
Xn fk(θ)dθ , (3.3)

where

X = 1+2cos(θ), fk(θ) = cos(kθ)− cos((k+1)θ),
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and

Ak fk(θ) = 0, where Ak =

(
d2

dθ
2 + k2

)(
d2

dθ
2 +(k+1)2

)
.

Integrating by parts in (3.3) we get (3.2) and

1
π

∫
π

0
fk(θ)(AkXn)dθ = 0.

�

Theorem 3.3. There is the following three-term recurrence relation

(k+1)(n+1− k)b(k−1)
n = (k(k+1)−n−1)b(k)n + k(n+ k+2)b(k+1)

n .

Proof. This follows from eq. (2.7) and the relation b(k)n = a(k)n −a(k+1)
n . �
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