ATLANTIS

Norberteuler Journalof Noninear Mathematical Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251
Journal Home Page: https://www.atlantis-press.com/journals/jnmp

Euler's triangle and the decomposition of tensor powers of the adjoint $s \ell(2)$-module

Askold M. Perelomov

To cite this article: Askold M. Perelomov (2020) Euler's triangle and the decomposition of tensor powers of the adjoint $s \ell(2)$-module, Journal of Nonlinear Mathematical Physics 27:1, 1-6, DOI: https://doi.org/10.1080/14029251.2020.1684001

To link to this article: https://doi.org/10.1080/14029251.2020.1684001

Published online: 04 January 2021

Letter to the Editor

Euler's triangle and the decomposition of tensor powers of the adjoint $\mathfrak{s l}(2)$-module

Askold M. Perelomov
Institute for Theoretical and Experimental Physics, 117259, Moscow, Russia
aperelomo@gmail.com

Received 6 June 2019

Accepted 2 July 2019

By considering a relation between Euler's trinomial problem and the problem of decomposing tensor powers of the adjoint $\mathfrak{s l}(2)$-module I derive some new results for both problems, as announced in arXiv:1902.08065.

1. Introduction

In 1765, Euler [1] investigated the coefficients of trinomial

$$
\begin{equation*}
\left(1+x+x^{2}\right)^{n}=\sum_{k=-n}^{n} a_{n}^{(k)} x^{n+k} \tag{1.1}
\end{equation*}
$$

For central trinomial coefficients $a_{n}^{(0)}$ he found the generating function and a two-term recurrence relation. For a discussion of properties of the $a_{n}^{(k)}$, see [3].

Let us change variable x by $\exp (i \theta)$ and rewrite the left-hand side of (1.1) as

$$
\left(1+x+x^{2}\right)^{n}=x^{n} X^{n}, \text { where } X=1+2 \cos \theta
$$

Note that X is the character χ_{1} of the adjoint $\mathfrak{s l}(2)$-module. In what follows, X^{n} denotes both the representation with character X^{n}, and the corresponding module.

So, Euler's problem is equivalent to the problem of multiplicities of weights in the representation with character X^{n}. I also consider, related to the above, the problem of decomposing X^{n} into irreducible $\mathfrak{s l}(2)$-modules.

2. Euler's triangle

It is evident that $a_{n}^{(-k)}=a_{n}^{(k)}$. So, it suffices to consider only quantities $a_{n}^{(k)}$ for $k \geq 0$. It is convenient to arrange these coefficients in a triangle. I give here the table of these numbers till $n=10$:

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10
0	$\mathbf{1}$										
1	$\mathbf{1}$	1									
2	$\mathbf{3}$	2	1								
3	$\mathbf{7}$	6	3	1							
4	$\mathbf{1 9}$	16	10	4	1						
5	$\mathbf{5 1}$	45	30	15	5	1					
6	$\mathbf{1 4 1}$	126	90	50	21	6	1				
7	$\mathbf{3 9 3}$	357	266	161	77	28	7	1			
8	$\mathbf{1 1 0 7}$	1016	784	504	266	112	36	8	1		
9	$\mathbf{3 1 3 9}$	2907	2304	1554	882	414	156	45	9	1	
10	$\mathbf{8 9 5 3}$	8350	6765	4740	2850	1452	615	210	55	10	1

Eq. (1.1) immediately implies the three-term recurrence relation

$$
\begin{equation*}
a_{n+1}^{(k)}=a_{n}^{(k-1)}+a_{n}^{(k)}+a_{n}^{(k+1)} . \tag{2.2}
\end{equation*}
$$

Introduce the generating function $F(t)$ for the central trinomial coefficients:

$$
F(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \text { where } a_{n}=a_{n}^{(0)}
$$

Theorem 2.1 (Euler 1765). The following statements hold.

1) The generating function $F(t)$ has the form

$$
\begin{equation*}
F(t)=\frac{1}{\sqrt{\left(1-2 t-3 t^{2}\right)}} \tag{2.3}
\end{equation*}
$$

2) For the a_{n}, the following two-term recurrence relation takes place

$$
\begin{equation*}
n a_{n}=(2 n-1) a_{n-1}+3(n-1) a_{n-2} . \tag{2.4}
\end{equation*}
$$

We give here a very short proof of item 1); it is different from Euler's.
Proof. Note that

$$
a_{n}=\frac{1}{\pi} \int_{0}^{\pi} X^{n} d \theta, \text { where } X=1+2 \cos \theta
$$

So,

$$
F(t)=\frac{1}{\pi} \int_{0}^{\pi} \frac{d \theta}{1-t-2 t \cos \theta}
$$

Evaluating this integral we obtain formula (2.3).
Item 2) is a special subcase of the following more general statement.

Theorem 2.2. For the $a_{n}^{(k)}$, there is the following two-term recurrence relation

$$
\begin{equation*}
\left(n^{2}-k^{2}\right) a_{n}^{(k)}=n(2 n-1) a_{n-1}^{(k)}+3 n(n-1) a_{n-2}^{(k)} . \tag{2.5}
\end{equation*}
$$

Proof. We have

$$
a_{n}^{(k)}=\frac{1}{\pi} \int_{0}^{\pi} X^{n} \cos k \theta d \theta
$$

and

$$
\int_{0}^{\pi} X^{n}\left[\left(\frac{d^{2}}{d \theta^{2}}+k^{2}\right) \cos k \theta\right] d \theta=0=\int_{0}^{\pi} \cos k \theta\left[\left(\frac{d^{2}}{d \theta^{2}}+k^{2}\right) X^{n}\right] d \theta .
$$

But,

$$
\frac{d^{2} X^{n}}{d \theta^{2}}=-n^{2} X^{n}+n(2 n-1) X^{n-1}+3 n(n-1) X^{n-2} .
$$

This implies formula (2.5).
Theorem 2.3. For the $a_{n}^{(k)}$, there are the following two-term recurrence relations:

$$
\begin{gather*}
k a_{n+1}^{(k)}=(n+1)\left(a_{n}^{(k-1)}-a_{n}^{(k+1)}\right) \tag{2.6}\\
(n-k+1) a_{n}^{(k-1)}=k a_{n}^{(k)}+(n+k+1) a_{n}^{(k+1)}, \tag{2.7}\\
(n-k+1) a_{n+1}^{(k)}=(n+1)\left(a_{n}^{(k)}+2 a_{n}^{(k+1)}\right) \tag{2.8}\\
(n+k+1) a_{n+1}^{(k)}=(n+1)\left(a_{n}^{(k)}+2 a_{n}^{(k-1)}\right) \tag{2.9}
\end{gather*}
$$

Proof. From the identity

$$
\int_{0}^{\pi}\left[\frac{d}{d \theta}\left(X^{n} \sin k \theta\right)\right] d \theta=0
$$

we obtain relation (2.6). Combining this relation with (2.2), we obtain relations (2.7)-(2.9).
Note that eq. (2.2) implies

$$
\begin{array}{ll}
a_{n}^{(1)}=\frac{1}{2}\left(a_{n+1}-a_{n}\right), & a_{n}^{(2)}=\frac{1}{2}\left(a_{n+2}-2 a_{n+1}-a_{n}\right), \\
a_{n}^{(3)}=\frac{1}{2}\left(a_{n+3}-3 a_{n+2}+2 a_{n}\right), & a_{n}^{(4)}=\frac{1}{2}\left(a_{n+4}-4 a_{n+3}+2 a_{n+2}+4 a_{n+1}-a_{n}\right) .
\end{array}
$$

Corollary 2.1. Explicit expressions for quantities $a_{n}^{(n-k)}$ for k small can be obtained from eqs. (2.5) and (2.7) and we have

$$
a_{n}^{(n-k)}=\frac{1}{k!} Q_{k}(n),
$$

where $Q_{k}(n)$ is a degree k polynomial in n.

The recurrence relation for these polynomials follows from eq. (2.7):

$$
Q_{k+1}(n)=(n-k) Q_{k}(n)+k(2 n-k+1) Q_{k-1}(n) .
$$

Here are the explicit expressions for the first ten polynomials.

$$
\begin{aligned}
& Q_{0}=1 ; \quad Q_{1}=n ; \quad Q_{2}=n(n+1) ; \quad Q_{3}=(n-1) n(n+4) ; \\
& Q_{4}=(n-1) n\left(n^{2}+7 n-6\right) ; \\
& Q_{5}=(n-2)(n-1) n(n+1)(n+12) ; \\
& Q_{6}=(n-2)(n-1) n\left(n^{3}+18 n^{2}+17 n-120\right) ; \\
& Q_{7}=(n-3)(n-2)(n-1) n\left(n^{3}+27 n^{2}+116 n-120\right) ; \\
& Q_{8}=(n-3)(n-2)(n-1) n(n+1)(n+10)\left(n^{2}+23 n-84\right) ; \\
& Q_{9}=n(n-1)(n-2)(n-3)(n-4)\left(n^{4}+46 n^{3}+467 n^{2}+86 n-3360\right) ; \\
& Q_{10}=n(n-1)(n-2)(n-3)(n-4)\left(n^{5}+55 n^{4}+665 n^{3}-895 n^{2}-16626 n+15120\right) .
\end{aligned}
$$

3. Decomposition of X^{n} into irreducible representations

This problem is equivalent to expanding X^{n} in terms of characters of $\mathfrak{s l}(2)$-modules:

$$
X^{n}=\sum_{k=0}^{n} b_{n}^{(k)} \chi_{k}(\theta) .
$$

These characters are well known (see, for example, [4]):

$$
\chi_{k}=1+2 \cos (\theta)+2 \cos (2 \theta)+\cdots+2 \cos (k \theta) .
$$

They are orthogonal

$$
\frac{1}{\pi} \int_{0}^{\pi} \chi_{k}(\theta) \chi_{l}(\theta)(1-\cos (\theta)) d \theta=\delta_{k, l}
$$

and we have

$$
b_{n}^{(k)}=\frac{1}{\pi} \int_{0}^{\pi} X^{n} f_{k}(\theta) d \theta, \text { where } f_{k}(\theta)=\cos (k \theta)-\cos ((k+1) \theta) .
$$

This implies the basic relation

$$
b_{n}^{(k)}=a_{n}^{(k)}-a_{n}^{(k+1)},
$$

and a three-term recurrence relation similar to relation (2.2)

$$
b_{n+1}^{(k)}=b_{n}^{(k-1)}+b_{n}^{(k)}+b_{n}^{(k+1)} \quad \text { for } n \geq 2, k \geq 1,
$$

as well as the following relations

$$
\begin{aligned}
& b_{n}=b_{n}^{(0)}=\frac{1}{2}\left(3 a_{n}-a_{n+1}\right), \\
& b_{n}^{(3)}=b_{n+3}-2 b_{n+2}-b_{n+1}^{(1)}+b_{n}, b_{n}^{(4)}=b_{n+1}, b_{n}^{(2)}=b_{n+4}-3 b_{n+3}+3 b_{n-1} .
\end{aligned}
$$

The triangle for the numbers $b_{n}^{(k)}$ analogous to the triangle (2.1) is as follows.

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10
0	$\mathbf{1}$										
1	$\mathbf{0}$	1									
2	$\mathbf{1}$	1	1								
3	$\mathbf{1}$	3	2	1							
4	$\mathbf{3}$	6	6	3	1						
5	$\mathbf{6}$	15	15	10	4	1					
6	$\mathbf{1 5}$	36	40	29	15	5	1				
7	$\mathbf{3 6}$	91	105	84	49	21	6	1			
8	$\mathbf{9 1}$	232	280	238	154	76	28	7	1		
9	$\mathbf{2 3 2}$	603	750	672	468	258	111	36	8	1	
10	$\mathbf{6 0 3}$	1585	2025	1890	1398	837	405	155	45	9	1

Theorem 3.1. The generating function $G(t)=\sum_{n=0}^{\infty} b_{n} t^{n}$ is of the form

$$
G(t)=\frac{1}{2 t}\left(1-\frac{\sqrt{1-3 t}}{\sqrt{(1+t)}}\right)
$$

Proof. Taking into account the identity

$$
\frac{1-\cos (\theta)}{1-t-2 t \cos (\theta)}=\frac{1}{2 t}\left(1-\frac{1-3 t}{1-t-2 t \cos (\theta)}\right)
$$

we reduce the proof to the proof for $F(t)$. We also have the recurrence relation

$$
(n+1) b_{n}=(n-1)\left(2 b_{n-1}+3 b_{n-2}\right)
$$

which follows from eq. (2.4) and the equality $b_{n}=a_{n}-a_{n}^{(1)}$.
Theorem 3.2. There is a four-term recurrence relation

$$
A_{n, k} b_{n}^{(k)}+B_{n, k} b_{n-1}^{(k)}+C_{n, k} b_{n-2}^{(k)}+D_{n, k} b_{n-3}^{(k)}+E_{n, k} b_{n-4}^{(k)}=0,
$$

where

$$
\begin{align*}
& A_{n, k}=\left(n^{2}-(k+1)^{2}\right)\left(n^{2}-k^{2}\right) \\
& B_{n, k}=-2 n(2 n-1)(n+k)(n-k-1) ; \\
& C_{n, k}=-2 n(n-1)\left(n^{2}-2 n+3-3 k(k+1)\right) ; \tag{3.2}\\
& D_{n, k}=6 n(n-1)(n-2)(2 n-3) \\
& E_{n, k}=9 n(n-1)(n-2)(n-3)
\end{align*}
$$

Proof. We have

$$
\begin{equation*}
b_{n}^{(k)}=\frac{1}{\pi} \int_{0}^{\pi} X^{n} f_{k}(\theta) d \theta \tag{3.3}
\end{equation*}
$$

where

$$
X=1+2 \cos (\theta), \quad f_{k}(\theta)=\cos (k \theta)-\cos ((k+1) \theta)
$$

and

$$
A_{k} f_{k}(\theta)=0, \text { where } A_{k}=\left(\frac{d^{2}}{d \theta^{2}}+k^{2}\right)\left(\frac{d^{2}}{d \theta^{2}}+(k+1)^{2}\right) .
$$

Integrating by parts in (3.3) we get (3.2) and

$$
\frac{1}{\pi} \int_{0}^{\pi} f_{k}(\theta)\left(A_{k} X^{n}\right) d \theta=0
$$

Theorem 3.3. There is the following three-term recurrence relation

$$
(k+1)(n+1-k) b_{n}^{(k-1)}=(k(k+1)-n-1) b_{n}^{(k)}+k(n+k+2) b_{n}^{(k+1)} .
$$

Proof. This follows from eq. (2.7) and the relation $b_{n}^{(k)}=a_{n}^{(k)}-a_{n}^{(k+1)}$.

Acknowledgments

I am thankful to D. Leites who improved my English in this letter.

References

[1] Euler L., Observationes analyticae, Novi Comm. Acad. Sci. Petropolitanae, 11, 124-143 (1765/1767) reprinted in: Opera Omnia. Teubner, Leipzig, Series (1), Vol. 15, (1911) p. 54; see also http://eulerarchive.maa.org/docs/originals/E326.pdf
[2] Perelomov A. M., Euler's triangle and the decomposition of tensor powers of adjoint representation of A_{1} Lie algebra, arXiv:1902.08065v1 [math.GM] (2019).
[3] Riordan J., An Introduction to Combinatorial Analysis, Reidel (1974).
[4] Weyl H., The Classical Groups. Their Invariants and Representations, Princeton (1939).

