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We answered an old question: does there exist a mechanical system with 3 degrees of freedom, except for the
Coulomb system, which has 6 first integrals generating the Lie algebra o(4) by means of the Poisson brackets?
A system which is not centrally symmetric, but has 6 first integrals generating Lie algebra o(4), is presented. It
is shown also that not every mechanical system with 3 degrees of freedom has first integrals generating o(4).

1. Introduction

It is well-known (see, e.g., [8]) that in the Coulomb field, i.e., in the mechanical system with 3
degrees of freedom (3d mechanical system) with the Hamiltonian

H =
p2

2
− 1

r
, where p2 := ∑

i=1,2,3
p2

i , r :=

(
∑

i=1,2,3
q2

i

)1/2

, (1.1)

the symmetry group of canonical transformationsa keeping Hamiltonian (1.1) invariant has a sub-
group isomorphic to SO(4) acting in the domain H < 0. This fact, found by V. Fock [6], helps
to explain the structure of the spectrum of the hydrogen atom. Sometimes this symmetry is called
hidden.

An important property of this SO(4) is that the Casimirs of its Lie algebra o(4) restore the
Hamiltonian. The Hamiltonian in Eq. (1.1) describes, for example, the motion of two particles
interacting via gravity, and the motion of two charged particles with the charges of opposite sign.
The number of works investigating this Hamiltonian is huge.b It is therefore astonishing that the
literature does not give (at least, we could not find it) the definite answer to a natural question:
“does there exist a mechanical system with 3 degrees of freedom, except for the Coulomb system,
which has 6 first integrals generating the Lie algebra o(4)?” posed, e.g., in [10, 12]. Two different
answers to the question were given fifty years ago:

∗Corresponding author
aRecall, that the transformations of the phase space that preserve the Hamiltonian form of the Hamilton equations,
whatever the Hamiltonian function is, are called canonical.
bSee, for example, [3, 5, 11] and references therein.
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1) Mukunda [10] claimed that every mechanical system with 3 degrees of freedom has 6 first inte-
grals, generating Lie algebra o(4) by means of Poisson brackets.

2) Szymacha and Werle [12] claimed that there are no other mechanical systems with the same
property, assuming that o(4) contains the Lie algebra of spatial rotations of R3.

In this note, we showed that some 3d systems have 6 first integrals generating Lie algebra o(4),
and some have not.

To prove that not for every system with 3 degrees of freedom its the first integrals generate
o(4), we offer a simple necessary condition for existence of o(4) symmetry, see Section 4, and in
Section 5 we give an example for which this condition is violated.

In Section 6 we consider the Hamiltonian of a charged particle in an homogeneous electric field.
For this Hamiltonian, there exists a family of sextuples of first integrals such that every sextuple
generates (by means of the Poisson bracket) the Lie algebra o(4).

For each element of this o(4), we consider the corresponding hamiltonian flow (for details, see
the next section) and show that the set of these flows does not constitute the Lie group SO(4) of
canonical transformations.

To avoid misunderstanding, note that we consider the symmetry algebra (consisting of some
first integrals) of the system, not the Lie algebra of dynamical symmetry group introduced in [4],
which is also called non-invariance group, see [9].

2. Generalities (following [1])

Recall the definition of the symmetry group of canonical transformations keeping the Hamiltonian
invariant and the Lie algebra of this group. Let H(qi, pi), where i = 1, 2, 3, be a Hamiltonian of
some mechanical system. We will also denote the whole set of the qi and pi for i = 1, 2, 3 by
zα , where α = 1, . . . ,6. Let the first integral F of this system be a real function on some domain
UF ⊂ R6. Let (q, p) ∈UF ; the case F = H is not excluded. Then F generates a 1-dimensional Lie
group LF of canonical transformations (q, p) 7→ (qF(τ | q, p), pF(τ | q, p)) leaving the Hamiltonian
H and the domain UF invariant if

(qF(τ | q, p), pF(τ | q, p)) ∈UF for any τ ∈ R.

The transformations are defined by the relations

dqF
i

dτ
= {qF

i , F}= ∂F(qF , pF)

∂ pF
i

, (2.1)

d pF
i

dτ
= {pF

i , F}=−∂F(qF , pF)

∂qF
i

, (2.2)

qF
i (0 | q, p) = qi, pF

i (0 | q, p) = pi, (2.3)

where {·, ·} is the Poisson bracketc in R6:

{F, G} := ∑
i=1,2,3

(
∂F
∂qi

∂G
∂ pi
− ∂F

∂ pi

∂G
∂qi

)
= ∑

α,β=1,...,6

∂F
∂ zα

ωαβ

∂G
∂ zβ

. (2.4)

cThe definition (2.4) has the opposite sign as compared with the one given in [8], but coincides with the definition of the
Poisson bracket given in [1, 2, 7, 13].
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Here the symplectic form ω is of shape ω =

(
03 13

−13 03

)
, where 13 and 03 are 3× 3 matrices. We

call the transformations Eq. (2.1)–(2.3) the Hamiltonian flow, generated by the Hamiltonian F , and
denote it LF . If a certain finite set of first integrals F = {Fα | α = 1,2, . . .} has the same domain
U invariant under the action of all Hamiltonian flows LFα

, then these flows generate a Lie group.
The Lie algebra of this group coincides with the Lie algebra generated by the set F by means of
the bracket (2.4).

3. The case of the Coulomb field (following [8])

Here we briefly consider the mechanical system (1.1) with the Hamiltonian

H =
p2

2
− 1

r
, where p2 := ∑

i=1,2,3
p2

i , r :=

(
∑

i=1,2,3
qi

)1/2

. (3.1)

This Hamiltonian has two well-known triples of first integrals: one consists of the coordinates Li of
the angular momentum vector, the other one consists of the coordinates of the Runge-Lenz vector
Ri, defined in the domain

U = {z ∈ R6 | H(z)< 0},

or in any of the domains Emin < H < Emax < 0, for any pair of numbers Emin < Emax < 0 by the
formulas

Li := ∑
j,k=1,2,3

εi jkq j pk, (3.2)

Ri := (−2H)−1/2

(
∑

j,k=1,2,3
εi jkL j pk +

qi

r

)
, (3.3)

where εi jk is an anti-symmetric tensor such that ε123 = 1.
These first integrals satisfy the following commutation relations:

{H,Li}= 0,
{H,Ri}= 0,

(3.4)

and

{Li,L j}= ∑k=1,2,3 εi jkLk,

{Ri,R j}= ∑k=1,2,3 εi jkLk,

{Li,R j}= ∑k=1,2,3 εi jkRk.

(3.5)

Due to relations (3.4) and by definition of the domain U , the later is invariant under the action of
Hamiltonian flows generated by the first integrals Li and Ri.

The relations (3.5) show that these first integrals generate the Lie algebra o(4).
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Since o(4)' o(3)⊕o(3), we can introduce two commuting triples of first integrals

Gi := 1
2(Li +Ri), where i = 1,2,3,

G3+i := 1
2(Li−Ri), where i = 1,2,3,

(3.6)

satisfying the commutation relations

{Gi, G j} = ∑k=1,2,3 εi jkGk, where i, j = 1,2,3,

{G3+i, G3+ j} = ∑k=1,2,3 εi jkG3+k, where i, j = 1,2,3,

{Gi, G3+ j} = 0, where i, j = 1,2,3.

(3.7)

4. Restrictions on the rank

Let some 3d mechanical system have the Hamiltonian H and 6 first integrals Gα satisfying the
commutation relations Eq. (3.7).

Consider two 6×6 matrices: the Jacobi matrix J with elements

Jβ

α :=
∂Gα

∂ zβ

, where α, β = 1, . . . , 6, (4.1)

and the matrix P with elements

Pαβ := {Gα , Gβ}, where α, β = 1, . . . , 6. (4.2)

Then definition (4.1) of Jacobi matrix and (2.4) of brackets imply that

Pαβ = ∑
γ,δ=1,...,6

Jγ

αωγδ Jδ

β
. (4.3)

Suppose that G2
1 +G2

2 +G2
3 6= 0 and G2

4 +G2
5 +G2

6 6= 0. Then the matrix P has two independent
vectors in its kernel

(G1, G2, G3, 0, 0, 0) and (0, 0, 0, G4, G5, G6) (4.4)

due to relations (3.7), and so rank(P) = 4.
Since the symplectic form ω is non-degenerate, the relation Eq. (4.3) and degeneracy of the

matrix P imply that

rank(P)≤ rank(J)< 6. (4.5)

So either rank(J) = 4 or rank(J) = 5. Both these cases can be realized: rank(J) = 5 for the
Coulomb system while rank(J) = 4 for some of the systems described in Section 6.

5. Not all 333ddd mechanical systems have o(((444))) symmetry

To give an example of a 3d mechanical system without o(4) symmetry, consider the Hamiltonian

H = H1 +H2 +H3, where Hi =
1
2

p2
i +

ω2
i

2
q2

i (5.1)

and where the ωi for i = 1,2,3 are incommensurable.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

165



S. Bouarroudj and S.E. Konstein / SO(4)-symmetry of mechanical systems with 3 degrees of freedom

Evidently, each of the functions Hi is a first integral.
Let us show that each first integral of this system is a function of the Hi, where i = 1,2,3.

Indeed, let F be a first integral. So, F is constant on every trajectory defined for the system under
consideration by relations

qi =

√
2

ωi
ri sin(ωit +ϕi), pi =

√
2ri cos(ωit +ϕi) for i = 1,2,3, (5.2)

where the ri and ϕi are constants specifying the trajectory. Since every trajectory given by Eq. (5.2)
is everywhere dense on the torus

T (r1,r2,r3) :=
{

z ∈ R6 | 1
2

p2
i +

ω2
i

2
q2

i = r2
i for i = 1,2,3

}
, (5.3)

it follows that F is constant on every torus T (r1,r2,r3), and hence F is a function of the ri. This
implies F = F(H1,H2,H3).

Now suppose that the system has 6 first integrals Gα satisfying commutation relations (3.7)
of the Lie algebra o(4). Then, since Gα = Gα(H1,H2,H3), it follows that the Jacobi matrix J in
Eq. (4.1) is of rank ≤ 3, and so due to Eq. (4.3) the matrix P, see Eq. (4.2), is of rank ≤ 3. But
this fact contradicts the easy to verify fact that if G2

1 +G2
2 +G2

3 6= 0 and G2
4 +G2

5 +G2
6 6= 0, then

rank(P) = 4.
So, no sextuple of the first integrals of the system under consideration generates o(4).

6. An example of non-Coulomb 333ddd mechanical system with Lie algebra o(((444))) of the first
integrals

Consider a particle in an homogeneous field with potential −q3. This is a system with 3 degrees of
freedom with Hamiltonian

H =
p2

2
−q3. (6.1)

Let

U := {z ∈ R6 | p2
1 < a2

1, p2
2 < a2

2}, (6.2)

where each as is any smooth function of Hamiltonian H. We denote the boundary of U by ∂U and
the closure of U by Ū .

Then the real functions

G1 = p1,

G2 =
√

a2
1− p2

1 cos(q1− p1 p3),

G3 =
√

a2
1− p2

1 sin(q1− p1 p3),

G4 = p2,

G5 =
√

a2
2− p2

2 cos(q2− p2 p3),

G6 =
√

a2
2− p2

2 sin(q2− p2 p3),

(6.3)

are the first integrals defined in Ū and smooth in U . Let A be the space generated by Gα . The space
A , with Poisson brackets as an operation, is the Lie algebra isomorphic to o(4). It is subject to a
direct verification that the integrals (6.3) indeed satisfy the relations (3.7) for generators of o(4).
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The Casimirs, defined by the formulas

K1 := ∑
i=1,2,3

G2
i , K2 := ∑

i=1,2,3
G2

3+i

are equal to

K1 = a2
1, K2 = a2

2

and do not define the Hamiltonian only if the as are constant. In the case where the as are constant,
the Jacobi matrix for the functions (6.3) has rank 4 at the generic point. Otherwise, rank(J) = 5 at
the generic point.

6.1. Non-invariance of the domain UUU under the flows L GGG

For λ2 and λ3 real, such that
√

λ 2
2 +λ 2

3 = 1, λ2 = cosϕ , and λ3 =−sinϕ , we see that G := λG1 +

λ2G2 +λ3G3 is of the shape

G = λ p1 +Qcos(q1− p1 p3 +ϕ), where Q :=
√

a2
1− p2

1. (6.4)

Set

QH :=
∂Q
∂H

=
a1

Q
da1

dH

so that

{zα , Q}= QH{zα , H}− p1

Q
{zα , p1},

{zα , H}= ∑
i
{zα , pi}pi−{zα , q3}.

Introduce a new variable u instead of q1:

u := q1− p1 p3 +ϕ. (6.5)

Let z(τ0) ∈U . The equations of the Hamiltonian flow LG are then of the form

d
dτ

zα = {zα ,G}, i.e.,

d
dτ

p3 = QH cos(u)

d
dτ

q3 = Qp1 sin(u)+QH p3 cos(u)

d
dτ

p2 = 0,
d

dτ
q2 = QH p2 cos(u) (6.6)

d
dτ

p1 = Qsin(u),

d
dτ

q1 = λ +Qp3 sin(u)− p1

Q
cos(u)+QH p1 cos(u).

Since {G,H} = 0, it is clear that dH
dτ

= 0 and das
dτ

= 0 along the trajectories z(τ) defined by
Eqs. (6.6).
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Proposition 6.1. For any z(τ0) ∈U, there exists a first integral Gz ∈A such that the Hamiltonian
flow LGz leads the point z(τ0) to the boundary of U for a finite time.

Proof. We have

d
dτ

u = λ − p1

Q
cos(u), (6.7)

d
dτ

p1 = Qsin(u), (6.8)

d
dτ

Q =−p1 sin(u), (6.9)

and hence

d2

dτ2 p1 =−p1 sin2(u)+Qcos(u)(λ − p1

Q
cos(u))

=−p1 +λQcos(u)

The system (6.7)–(6.9) can be solved explicitly for any λ , but further on we consider only the
case λ = 0. In this case

d2

dτ2 p1 =−p1. (6.10)

and

p1 = pmax
1 sin(τ +ψ), (6.11)

where pmax
1 ≥ 0 and ψ are constant on the trajectories.

We have

(pmax
1 )2 = p2

1 +

(
d

dτ
p1

)2

= p2
1 +(a2

1− p2
1)sin2(u)

= a2
1 sin2(u)+ p2

1 cos2(u) = a2
1− (a2

1− p2
1)cos2(u)

and

(pmax
1 )2 = a2

1− (a2
1− p2

1(τ))cos2(u(τ)) (6.12)

for any τ since pmax
1 is constant on every trajectory.

If cos(u(τ0)) 6= 0 and p2
1(τ0)< a2

1(τ0), then

(pmax
1 )2 = a2

1− (a2
1− p2

1(τ0))cos2(u(τ0))< a2
1. (6.13)

Eqs. (6.13) and equality (6.11) imply that

p2
1(τ)< a2

1(τ) for any τ (6.14)

i.e., z(τ) ∈U for any τ ∈ R. Besides, conditions (6.12) and (6.13) imply that

cos(u(τ)) 6= 0 for any τ.

Now, observe that for every z(τ0) it is possible to choose λ2 and λ3 (i.e., ϕ) so that cos(u(τ0)) = 0.
Then, for this ϕ , we have (pmax

1 )2 = a2
1 and Q(π/2−ψ) = 0, i.e., z(π/2−ψ) ∈ ∂U . �
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Remark 6.1. The proof of Proposition 6.1 shows also that for each fixed ϕ , the domain

Uϕ := {z ∈U | cos(q1− p1 p3 +ϕ) 6= 0} (6.15)

is invariant under the action of Hamiltonian flow LQcos(q1−p1 p3+ϕ) acting on Uϕ as 1-dimensional
Lie group.

Remark 6.2. There is no domain Ucommon⊂U invariant under Hamiltonian flows LQcos(q1−p1 p3+ϕ)

for all ϕ ∈ [0, 2π). Indeed, Ucommon ⊂
⋂

ϕ Uϕ , and
⋂

ϕ Uϕ = ∅ since for any z ∈ U there exists
ϕ ∈ [0, 2π) such that cos(q1− p1 p3 +ϕ) = 0.
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