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The inverse scattering transform (IST) with nonzero boundary conditions at infinity is developed for a class of
2× 2 matrix nonlinear Schrödinger-type systems whose reductions include two equations that model certain
hyperfine spin F = 1 spinor Bose-Einstein condensates, and two novel equations that were recently shown to
be integrable, and that have applications in nonlinear optics and four-component fermionic condensates. In our
formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable
which allows us to develop the IST on the standard complex plane instead of a two-sheeted Riemann surface
or the cut plane with discontinuities along the cuts. Analyticity, symmetries and asymptotics of the scattering
eigenfunctions and scattering data are derived, and properties of the discrete spectrum are analyzed in detail.
In addition, the general behavior of the soliton solutions for all four reductions is discussed, and some novel
soliton solutions are presented.
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1. Introduction

In the last two decades there has been an increased focus in the study of multicomponent Bose-
Einstein condensates (BECs) within the field of atomic and nonlinear wave physics, with a particular
emphasis on spinor condensates, i.e., systems whose atoms are in a single hyperfine state but possess
internal spin degrees of freedom. Various multicomponent ultracold gases and condensates have
been realized experimentally using optical trapping techniques [21].

Spinor BECs formed by atoms with spin F are characterized by a macroscopic wave func-
tion with 2F + 1 components, and are associated with various phenomena not present in single-
component BECs, such as formation of spin domains, spin textures and topological states. Various
types of solitary wave structures (solitons) were first predicted to occur and then observed in focus-
ing and defocusing spinor BECs. These include gap (bright) solitons and dark solitons in optical
lattices, polar-core spin vortices, topological states, and topological Wigner crystals of half-solitons.
We refer the inquisitive reader to [19, 22, 36] for more details on the experimental examination of
spinor BECs.
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Many theoretical works have dealt with multicomponent vector solitons in F = 1 spinor BECs,
which are characterized by 3-component macroscopic wave functions. In particular, a completely
integrable model for homogeneous one-dimensional spin-1 BECs (i.e., a cigar-shaped spin-1 BEC
in the absence of external magnetic fields) was proposed by Wadati et al. in [15], and subsequently
extended and generalized in [7,10–12,16,24,33,40,41] to also include both attractive and repulsive
inter-atomic interactions, spin F = 2 condensates, as well as a finite, nonzero background. The
generalization to a nonzero background is particularly important for both kinds of nonlinearity
(attractive or repulsive), since in this context the BEC can exhibit domain wall solutions [20, 29],
dark-bright soliton complexes [3, 18, 27, 28, 30, 43], and in the attractive/focusing case also rogue
wave solutions [24, 35].

In [39] Tsuchida showed that the matrix NLS in [15] remains integrable under more general
reductions for the matrix potential, and in [34] the Inverse Scattering Transform (IST) was devel-
oped for this class of matrix nonlinear Schrödinger type systems, defined as

iQt +Qxx−2QRQ = 0 , R = ΣQ†
Ω , (1.1)

where: Q(x, t) is a 2× 2 matrix valued potential function; subscripts x, t denote partial derivatives
with respect to the spatial variable x and the time variable t, respectively; the matrices Σ and Ω are
constant 2× 2 Hermitian matrices, and Q† is the Hermitian conjugate of Q; the matrix potential
Q vanishes rapidly enough at space infinity. The purpose of this work is to develop the IST for
the above matrix equations with nonzero boundary conditions for Q, R as x→±∞. As mentioned
in [34,39], the system can be simplified by means of linear transformations Q→U1QU2 with U1, U2

constant, nonsingular matrices, which allows to choose the Hermitian matrices Σ,Ω in canonical
form, i.e., diagonal and with diagonal entries equal to 0 or ±1. In order to have a fully coupled
system, rather than a triangular one, one can further assume without loss of generality Σ and Ω to
be 2× 2 diagonal matrices with entries equal to ±1. Specifically, let σ3 be the third Pauli matrix,
and I2 denote the 2×2 identity matrix. Then one has the following four inequivalent reductions for
the system (1.1).

Case 1 - Defocusing (Σ = I2,Ω = I2):

i∂tq1 +∂
2
x q1−2q1

[
|q1|2 +2|q0|2

]
−2q2

0q∗−1 = 0 , (1.2a)

i∂tq−1 +∂
2
x q−1−2q−1

[
|q−1|2 +2|q0|2

]
−2q2

0q∗1 = 0 , (1.2b)

i∂tq0 +∂
2
x q1−2q0

[
|q1|2 + |q0|2 + |q−1|2

]
−2q1q∗0q∗−1 = 0 . (1.2c)

Case 2 - Focusing (Σ = I2,Ω =−I2):

i∂tq1 +∂
2
x q1 +2q1

[
|q1|2 +2|q0|2

]
+2q2

0q∗−1 = 0 , (1.3a)

i∂tq−1 +∂
2
x q−1 +2q−1

[
|q−1|2 +2|q0|2

]
+2q2

0q∗1 = 0 , (1.3b)

i∂tq0 +∂
2
x q1 +2q0

[
|q1|2 + |q0|2 + |q−1|2

]
+2q1q∗0q∗−1 = 0 . (1.3c)

Case 3 - mixed signs (Σ = σ3,Ω = σ3):

i∂tq1 +∂
2
x q1−2q1

[
|q1|2−2|q0|2

]
−2q2

0q∗−1 = 0 , (1.4a)

i∂tq−1 +∂
2
x q−1−2q−1

[
|q−1|2−2|q0|2

]
−2q2

0q∗1 = 0 , (1.4b)

i∂tq0 +∂
2
x q1−2q0

[
|q1|2−|q0|2 + |q−1|2

]
+2q1q∗0q∗−1 = 0 . (1.4c)
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Case 4 - mixed signs (Σ = σ3,Ω =−σ3):

i∂tq1 +∂
2
x q1 +2q1

[
|q1|2−2|q0|2

]
+2q2

0q∗−1 = 0 , (1.5a)

i∂tq−1 +∂
2
x q−1 +2q−1

[
|q−1|2−2|q0|2

]
+2q2

0q∗1 = 0 , (1.5b)

i∂tq0 +∂
2
x q1 +2q0

[
|q1|2−|q0|2 + |q−1|2

]
−2q1q∗0q∗−1 = 0 . (1.5c)

Cases 1 and 2 with nonzero boundary conditions have been considered in various previous
works [16, 33, 40], whereas cases 3 and 4 with nonzero boundary conditions are novel. In this
work, we will cover all four cases, showing that the results for cases 1 and 2 can be recovered as a
byproduct.

It is worth pointing out that cases 3 and 4 correspond to a “mixed sign” case for coupled NLS
systems where the nonlinearity in the norm is of Minkowski-type instead of the Euclidean-type
norm that appears in cases 1 and 2. Soliton solutions for the mixed sign vector NLS have been found
with both zero and nonzero boundary conditions in [9,17,31,38,42]. In the two-component case, the
“mixed sign” NLS models the dynamics of vector solitons in waveguide arrays. The “mixed sign”
two-component coupled NLS can also be used to model a series of drops of a binary BEC trapped
in an optical lattice. However, the matrix coupled situation is different. The signs of the coupling
constants now correspond to s-wave scattering lengths accounting for interspecies and intraspecies
atomic interactions of the condensates. Therefore, unlike cases 1 and 2, the PDEs in cases 3 and 4
cannot physically model three-component F = 1 BECs. Nevertheless, they can model two classes
of physical problems, nonlinear optics and four-component fermionic condensates. The interested
reader can find more details in references [13, 14, 34] concerning cases 3 and 4 in the context of
nonlinear optics. We refer the reader to references [25, 34] for more information regarding cases 3
and 4 in the context of four-component fermionic condensates.

In the following, the matrix potential Q(x, t) is chosen to be a symmetric matrix:

Q(x, t) =
(

q1(x, t) q0(x, t)
q0(x, t) q−1(x, t)

)
. (1.6)

Note that we could have also considered the off-diagonal entries to be q0(x, t) and −q0(x, t), but by
performing a change of variables on each diagonal component, i.e. q j →−q j for j = ±1, one can
easily check that the same equations as in the symmetric case are recovered. Note also that if one is
interested in four-component fermionic condensates, Q(x, t) is not necessarily symmetric, and the
corresponding results can be obtained by disregarding the second symmetry (see Sec. 2.4).

In order for the system (1.1) to allow for constant nonzero boundary conditions as x→ ±∞,
one can perform a simple gauge transformation Q(x, t) = Q̂(x, t)e∓2ik2

0t , where k0 is a real positive
constant. Dropping theˆfor simplicity, the equation then becomes

iQt +Qxx−2(QR−νk2
0I2)Q = 0 , (1.7)

where ν = 1 in cases 1 and 3, and ν =−1 in cases 2 and 4. We will then consider the system (1.7)
under constant nonzero boundary conditions (NZBC):

Q(x, t)→ Q± as x→±∞ . (1.8)

Assuming that for constant NZBC the derivative terms iQt and Qxx also vanish in the limit x→±∞,
the following constraints are imposed on the NZBC:

R±Q± = Q±R± = νk2
0I2 , (1.9)
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which are consistent with (1.7), they are time-independent, and are amenable to simple treatment
by IST. If we look at each individual component of the matrix Q±, we get the following equivalent
set of constraints for cases 1 and 2:

|q1,±|2 = |q−1,±|2 , |q0,±|2 = k2
0−|q1,±|2 = k2

0−|q−1,±|2 , q1,±q∗0,±+q0,±q∗−1,± = 0 , (1.10)

and for cases 3 and 4:

|q1,±|2 = |q−1,±|2 , |q0,±|2 = |q1,±|2− k2
0 = |q−1,±|2− k2

0 , q1,±q∗0,±−q0,±q∗−1,± = 0 . (1.11)

The paper is organized as follows. Section 2 covers the direct scattering problem for Eq. (1.7).
In Section 3 we develop the inverse scattering problem for the eigenfunctions as a Riemann-Hilbert
problem (RHP) with poles. We solve the RHP in the case of simple poles and reconstruct the poten-
tial in terms of the eigenfunctions and scattering data. In Section 4 we focus on reflectionless poten-
tials, i.e. pure soliton solutions and include several plots to illustrate the distinguished features of
the various solutions. In Section 5 we provide some concluding remarks.

2. Direct Scattering

2.1. Lax Pair, Riemann Surface and Uniformization Coordinate

The MNLS equation (1.7) for a 2×2 potential matrix Q(x, t) can be recovered as the compatibility
condition (φxt = φtx) of the Lax pair:

φx =Uφ , φt =V φ , (2.1)

with

U(x, t,k) =−ikσ3 +Q, V (x, t,k) =−2ik2
σ3 +2kQ+ iσ3[Qx +νk2

0I4−Q2], (2.2a)

σ3 =

(
I2 02

02 −I2

)
, Q =

(
02 Q
R 02

)
, (2.2b)

where I2, I4 and 02 are the 2×2 identity matrix, 4×4 identity matrix and 2×2 zero matrix respec-
tively. In the usual manner, we will henceforth refer to the first equation of the Lax pair (2.1) as the
scattering problem.

It is useful to note for future reference that Q and σ3 anticommute, namely

Qσ3 =−σ3Q . (2.3)

Taking into account the boundary conditions (1.8), asymptotically the scattering problem
becomes

φx =U±φ , U± =−ikσ3 +Q±, with Q± =

(
02 Q±
R± 02

)
. (2.4)

It is useful to note that there is an equivalent 4× 4 constraint to the 2× 2 constraint (1.9) on the
NZBC (1.8)

R±Q± = Q±R± = νk2
0I2, ⇐⇒ Q2

± = νk2
0I4. (2.5)

The eigenvalues of U± are λ = ±i
√

k2−νk2
0, where each eigenvalue has a multiplicity of 2. We

need to account for the multivaluedness/branching of these eigenvalues, which we will accomplish
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by introducing a two-sheeted Riemann surface

λ
2 = k2−νk2

0, (2.6)

such that λ (k) is a single-valued on this surface. The branch points correspond to λ 2 = 0, namely
k =±

√
νk0. We note that the branch points are k =±k0 for cases 1 and 3, and k =±ik0 for cases 2

and 4.
For cases 1 and 3, let us introduce

k− k0 = r1eiθ1 on CI, (2.7a)

k+ k0 = r2eiθ2 on CII, (2.7b)

where CI denotes the first sheet of the Riemann surface and CII denotes the second sheet. We can
then define λ (k) on the two Riemann sheets in polar coordinates as

λ (k) =
√

r1r2ei(θ1+θ2)/2 on CI, (2.8a)

λ (k) =−
√

r1r2ei(θ1+θ2)/2 on CII, (2.8b)

so that choosing 0 ≤ θ1 < 2π and −π ≤ θ2 < π places the discontinuities of λ (k) on the real k-
axis for k ∈ (−∞,−k0)∪ (k0,∞). The Riemann surface is then obtained by gluing the upper branch
cut (k0,∞) of CI to the lower branch cut (−∞,−k0) of CII , and vice versa, so that λ (k) is now
continuous on the entire Riemann surface, including across the branch cut.

Similarly for cases 2 and 4, we introduce

k+ ik0 = r1eiθ1 on CI, (2.9a)

k− ik0 = r2eiθ2 on CII, (2.9b)

and define λ (k) on the two copies of the complex plane as

λ (k) =
√

r1r2ei(θ1+θ2)/2 on CI, (2.10a)

λ (k) =−
√

r1r2ei(θ1+θ2)/2 on CII, (2.10b)

so that choosing −π/2 ≤ θ j < 3π/2 for j = 1,2 places the branch cut on the imaginary k-axis for
k ∈ i[−k0,k0]. We again form the Riemann surface by gluing the two sheets CI and CII together
along the cut, which makes and make λ (k) continuous across the branch cut i[−k0,k0].

We will follow the same strategy as in [4, 6, 8, 32] by introducing a uniformization variable

z = k+λ , (2.11)

where the inverse transformation is

k =
1
2
(z+νk2

0/z), λ =
1
2
(z−νk2

0/z). (2.12)

Using these definitions of z,k and λ , we observe that in cases 1 and 3, the branch cuts of both
copies of the complex plane are mapped onto the real z-axis. The first Riemann sheet CI is mapped
onto the upper half of the complex z-plane and the second Riemann sheet CII is mapped onto the
lower half plane of the complex z-plane. A neighborhood of k = ∞ on both sheets is mapped onto
either a neighborhood of z = 0 or z = ∞ depending on the sign of Imk (cf. Fig. 1).
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Fig. 1: Left/Right: The complex z-plane, showing the regions D± where Imλ > 0 (gray) and Imλ <

0 (white), respectively. Also shown in the figures are the oriented contours for the Riemann-Hilbert
problem (red), and the symmetries of the discrete spectrum of the scattering problem.

In cases 2 and 4, we observe that the branch cut on both Riemann sheets is mapped onto the
circle C0 centered at z = 0 with radius k0 in the complex z-plane, i.e.

C0 = {z ∈ C : |z|= k0}. (2.13)

The first Riemann sheet CI is mapped onto the exterior of C0, and the second Riemann sheet CII is
mapped onto the interior of C0. Moreover, z(∞I) = ∞ and z(∞II) = 0, where ∞I signifies that k→∞

on CI , and ∞II denotes that k→ ∞ on CII (cf. Fig. 1).
Consequently, for cases 1 and 3, Imλ > 0 corresponds to the region D− in the z-plane, and

Imλ < 0 corresponds to the region D− in the z-plane, where

ν = 1 : D+ = {z ∈ C : Imz > 0}, D− = {z ∈ C : Imz < 0}. (2.14)

Similarly, for cases 2 and 4, Imλ > 0 corresponds to D+ and Imλ < 0 corresponds to D− such that

ν =−1 : D+ = {z ∈ C : (|z|2− k2
0) Imz > 0}, D− = {z ∈ C : (|z|2− k2

0) Imz < 0}. (2.15)

The regions D+ and D− are represented in Figure 1, where D+ is depicted as the gray region and
D− is depicted as the white region. For cases 1 and 3, we observe that D+ is the UHP of the z-plane
and D− is the LHP of the z-plane. For cases 2 and 4, we observe that the region D+ includes the
exterior of C0 in the upper-half z-plane and the interior of C0 in the lower-half z-plane. Conversely,
the region D− includes the interior of C0 in the upper-half z-plane and the exterior of C0 in the
lower-half z-plane.

We will show in the next section that the sign of Imλ determines the region of analyticity of
the Jost eigenfunctions. From now on, it will be more convenient to express all k dependence as z
dependence where appropriate.
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2.2. Jost Solutions and Analyticity

The Jost solutions are defined as the asymptotic eigenvector solutions of the asymptotic scattering
problem (2.4). We can write the asymptotic eigenvector matrix as

X±(k) = I2−
i

k+λ
σ3Q± ≡ I2−

i
z
σ3Q±, (2.16)

such that

U±X± =−iλX±σ3. (2.17)

We observe that

detX±(z) =
(

2λ

λ + k

)2

= (γ(z))2, γ(z) = 1−ν
k2

0
z2 , (2.18a)

X−1
± (z) =

1
γ(z)

(
I2 +

i
z
σ3Q±

)
, (2.18b)

where the inverse matrices X−1
± are defined for values of z where γ(z) 6= 0, i.e. away from the branch

points: z 6=±k0 in cases 1 and 3 (ν = 1), and z 6=±ik0 in cases 2 and 4 (ν =−1).
We will now consider the time dependence of the eigenfunctions. The time evolution of the

eigenfunctions is dictated by the second equation in (2.1), which asymptotically as x→±∞ yields
φt =V±φ with V± =−2ik2σ3 +2kQ±, taking into account the boundary conditions (1.8), the con-
straint (2.5), and the fact that Qx→ 02 as x→±∞. One can easily verify that

V±X± =−2ikλX±σ3, (2.19)

noting that 2kλ = (z2−k4
0/z2)/2. Therefore the eigenvector matrix X± is a simultaneous asymptotic

solution of both equations in the Lax pair.
We then define the Jost solutions as the

Φ(x, t,z)≡ (ϕ(x, t,z), ϕ̄(x, t,z)) = X−(z)e−iθ(x,t,z)σ3 + o(1) as x→−∞, (2.20a)

Ψ(x, t,z)≡ (ψ̄(x, t,z),ψ(x, t,z)) = X+e−iθ(x,t,z)σ3 + o(1) as x→ ∞, (2.20b)

where

θ(x, t,z)≡ λ (z)(x+2k(z)t), (2.21)

and ϕ(x, t,z), ϕ̄(x, t,z), ψ̄(x, t,z) and ψ(x, t,z) are 4×2 matrices. It is also useful to note the asymp-
totic behavior of Φ(x, t,z) and Ψ(x, t,z) for each 2×2 block:

ϕ(x, t,z)∼
(

I2
i
z R−

)
e−iθ(x,t,z) as x→−∞, (2.22a)

ϕ̄(x, t,z)∼
(
− i

z Q−
I2

)
eiθ(x,t,z) as x→−∞, (2.22b)

ψ̄(x, t,z)∼
(

I2
i
z R+

)
e−iθ(x,t,z) as x→+∞, (2.22c)

ψ(x, t,z)∼
(
− i

z Q+

I2

)
eiθ(x,t,z) as x→+∞. (2.22d)
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As usual, the continuous spectrum of the scattering problem corresponds to values of (k,λ ), or,
equivalently, z, such that the all four eigenfunctions above are bounded for all x ∈R, which requires
λ (k) ∈ R. Correspondingly, we denote the continuous spectrum in k as Σk = R\ [−k0,k0] for cases
1 and 3 (ν = 1), and Σk = R∪ i(−k0,k0) for cases 2 and 4 (ν =−1). In the z-plane, the continuous
spectrum is Σz = R for ν = 1 and Σz = R∪C0 for ν =−1.

It is convenient to define modified eigenfunctions related to these Jost solutions (2.20a), (2.20b)
that have simpler asymptotic behavior as x→±∞:

M (x, t,z)≡ (M(x, t,z),M̄(x, t,z)) = Φ(x, t,z)eiθ(x,t,z)σ3 , (2.23a)

N (x, t,z)≡ (N̄(x, t,z),N(x, t,z)) = Ψ(x, t,z)eiθ(x,t,z)σ3 , (2.23b)

such that

lim
x→−∞

M (x, t,z) = lim
x→−∞

Φ(x, t,z)eiθ(x,t,z)σ3 = X−, z ∈ Σz, (2.24a)

lim
x→∞

N (x, t,z) = lim
x→∞

Ψ(x, t,z)eiθ(x,t,z)σ3 = X+, z ∈ Σz. (2.24b)

Following the same strategy as in [4], one can express the modified eigenfunctions M,M̄,N, N̄
as solutions of suitable Volterra-type integral equations, and show that under some mild integra-
bility conditions of Q(x, t)−Q± for x ∈ (xo,∓∞) and any fixed t ≥ 0, the modified eigenfunctions
M(x, t,z) and N(x, t,z) can be analytically extended to D+ in the z-plane. Similarly, the modified
eigenfunctions M̄(x, t,z) and N̄(x, t,z) can be analytically extended to D+ in the z-plane.

2.3. Scattering Coefficients

Using Jacobi’s formula, we conclude that any solution φ(x, t,z) of (2.1) satisfies ∂x(detφ) =

∂t(detφ) = 0 since U and V are traceless. Then it follows from (2.24a) and (2.24b) that

detΦ(x, t,z) = detΨ(x, t,z) = detX± = (γ(z))2, x, t ∈ R, z ∈ Σz. (2.25)

Therefore, for all z ∈ Σ0 := Σ\{±
√

νk0}, Φ and Ψ are both fundamental solutions of the scattering
problem. Hence there exists a proportionality matrix S(z) between the two fundamental solutions,
such that

Φ(x, t,z) = Ψ(x, t,z)S(z), S(z) =
(

a(z) b̄(z)
b(z) ā(z)

)
, x, t ∈ R, z ∈ Σ0, (2.26)

where S(z) is referred to as the scattering coefficient matrix. Column-wise, (2.26) can be expressed
by

ϕ = ψb+ ψ̄a, ϕ̄ = ψ ā+ ψ̄ b̄, (2.27)

where a,b, ā, b̄ are the 2×2 block matrices of the scattering coefficient matrix S(z). Since Φ and Ψ

are both simultaneous solutions of (2.1), the scattering coefficients are independent of both x and t.
Furthermore, (2.25) and (2.26) imply that detS(z) = 1. In turn, from (2.27) it also follows that:

deta(z) = Wr(ϕ,ψ)/Wr(ψ̄,ψ)≡ det(ϕ,ψ)/detΨ = det(ϕ,ψ)/(γ(z))2, (2.28a)

det ā(z) = Wr(ψ̄, ϕ̄)/Wr(ψ̄,ψ)≡ det(ψ̄, ϕ̄)/detΨ = det(ψ̄, ϕ̄)/(γ(z))2, (2.28b)

where Wr(u,v) denotes the Wronskian determinant of 4×2 vector functions u and v. In the scalar
case, one can show that a(z) can be analytically extended to D+, and ā(z) in D−. In the matrix case,
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(2.28a) and (2.28b) only imply that deta(z) can be analytically extended to D+, and det ā(z) can
be analytically extended to D−. However, following the same strategy outlined in [6, 8, 33], which
makes use of the integral equations for the modified eigenfunctions, one can obtain an integral
representation for the scattering coefficient matrix which allows to establish analyticity of the 2×2
block a(z) to D+, and of ā(z) can be analytically extended to D−. Note that it is also possible to
establish the analyticity of a(z) and ā(z) using the symmetries of the scattering data, which will be
shown in Section 2.4.

We observe that the matrices X±(z) are singular at the branch points z =±
√

νk0, where (2.18b)
implies that X−1

± (z) have simple poles at the branch points. Consequently, in general the scattering
coefficients a(z), ā(z),b(z), b̄(z) also have simple poles at the branch points. The behavior of the
scattering coefficients at the branch points will be discussed in Section 2.4.

Lastly, for z ∈ Σ0, (2.23a), (2.23b), and (2.27) imply that

M(x, t,z)a−1(z) = N̄(x, t,z)+ e2iθ(x,t,z)N(x, t,z)ρ(z), (2.29a)

M̄(x, t,z)ā−1(z) = N(x, t,z)+ e−2iθ(x,t,z)N̄(x, t,z)ρ̄(z), (2.29b)

where we observe that M(x, t,z)a−1(z) is meromorphic in D+, M̄(x, t,z)ā−1(z) is meromorphic in
D−, and ρ(z), ρ̄(z) are the reflection coefficients defined as

ρ(z) = b(z)a−1(z), ρ̄(z) = b̄(z)ā−1(z), z ∈ Σ0, (2.30)

and Σ0 is as introduced after Eq. (2.25).

2.4. Symmetries

When an initial-value problem (IVP) is solved using IST, symmetries in the potential lead to sym-
metries in the Jost solutions, which lead to symmetries in the scattering data. In the case of zero
boundary conditions (ZBC), there are two symmetries in the scattering data that follow the symme-
tries in the potential: (i) R = ΣQ†Ω; and (ii) Q = QT . With respect to the uniformization variable z,
R = ΣQ†Ω corresponds to z→ z∗ ⇐⇒ (k,λ )→ (k∗,λ ∗), which we will refer to as the first symme-
try (conjugation symmetry on same sheet). The fact that the potential is assumed to be symmetric,
i.e. Q = QT , will be referred to as the third symmetry (transpose symmetry).

In the case of NZBC, things are a little more complicated since λ (k) changes sign from one
Riemann sheet to another, namely λII(k) = −λI(k). In terms of the uniformization variable, this
corresponds to z→ νk2

0/z, which reflects the fact that the z-plane is a double covering of the Rie-
mann surface for (k,λ ), and which does not arise in the case of ZBC. This additional symmetry will
be referred to as the second symmetry (symmetry across sheets). For the remainder of Section 2.4,
we will discuss in detail how all three symmetries affect both the eigenfunctions and the scattering
data.

2.4.1. First Symmetry: (k,λ )→ (k∗λ ∗)

Let us introduce for z ∈ Σz the bilinear combinations

f (x, t,z) = Φ
†(x, t,z∗)JνΦ(x, t,z), g(x, t,z) = Ψ

†(x, t,z∗)JνΨ(x, t,z), (2.31)
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where

Jν =

(
Ω−1 02

02 −Σ

)
. (2.32)

Since Φ and Ψ are both solutions of the scattering problem in (2.1), it can be easily verified that
fx = ft = gx = gt = 0, i.e. f ,g are independent of x and t. If we evaluate limx→±∞ f (x, t,z) and
limx→±∞ g(x, t,z), we obtain the following relations:

Φ
†(x, t,z∗)JνΦ(x, t,z) = Ψ

†(x, t,z∗)JνΨ(x, t,z) = γ(z)Jν , (2.33)

implying

Φ
−1(x, t,z) =

1
γ(z)

JνΦ
†(x, t,z∗)Jν , Ψ

−1(x, t,z) =
1

γ(z)
JνΨ

† ∗ (x, t,z∗)Jν . (2.34)

We can then solve (2.26) to obtain:

S(z) = Ψ
−1(x, t,z)Φ(x, t,z)≡ 1

γ(z)
JνΨ

†(x, t,z∗)JνΦ(x, t,z). (2.35)

We will use the following notation to denote the 2×2 blocks of the eigenfunction matrices Φ and
Ψ:

Φ(x, t,z) =
(

ϕup ϕ̄up

ϕdn ϕ̄dn

)
, Ψ(x, t,z) =

(
ψ̄up ψup

ψ̄dn ψdn

)
. (2.36)

We can then write the relation (2.35) in terms of each 2×2 block:

γ(z)a(z) = Ω
−1

ψ̄
†
up(z

∗)Ω−1
ϕup(z)−Ω

−1
ψ̄

†
dn(z

∗)Σϕdn(z), (2.37a)

γ(z)ā(z) = Σψ
†
dn(z

∗)Σϕ̄dn(z)−Σψ
†
up(z

∗)Ω−1
ϕ̄up(z), (2.37b)

γ(z)b(z) = Σψ
†
dn(z

∗)Σϕdn(z)−Σψ
†
up(z

∗)Ω−1
ϕup(z), (2.37c)

γ(z)b̄(z) = Ω
−1

ψ̄
†
up(z

∗)Ω−1
ϕ̄up(z)−Ω

−1
ψ̄

†
dn(z

∗)Σϕ̄dn(z) , (2.37d)

where the x, t dependence of the eigenfunctions on the right-hand side has been omitted for short-
ness. The relations above provide an alternative way to show that a(z) can be analytically extended
to D+ and ā(z) can be analytically extended to D−, on account of the corresponding analyticity
properties of the eigenfunctions in terms of which they are expressed.

It follows from the analog of Theorem 2.4 in [33] that γ(z)S(z) with γ(z) defined in (2.18a) is
continuous for all z∈ Σz, including the branch points. However, as stated earlier, the 2×2 scattering
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coefficients a(z), ā(z),b(z), b̄(z) in general have simple poles at the branch points z =±
√

νk0, with

Res
z=±k0

a(z) =±k0

2

[
Ω
−1

ψ̄
†
up(x, t,±k0)Ω

−1
ϕup(x, t,±k0)−Ω

−1
ψ̄

†
dn(x, t,±k0)Σϕdn(x, t,±k0)

]
,

(2.38a)

Res
z=±k0

ā(z) =±k0

2

[
Σψ

†
dn(x, t,±k0)Σϕ̄dn(x, t,±k0)−Σψ

†
up(x, t,±k0)Ω

−1
ϕ̄up(x, t,±k0)

]
,

(2.38b)

lim
z→±k0

(z∓ k0)b(z) =±
k0

2

[
Σψ

†
dn(x, t,±k0)Σϕdn(x, t,±k0)−Σψ

†
up(x, t,±k0)Ω

−1
ϕup(x, t,±k0)

]
,

(2.38c)

lim
z→±k0

(z∓ k0)b̄(z) =±
k0

2

[
Ω
−1

ψ̄
†
up(x, t,±k0)Ω

−1
ϕup(x, t,±k0)−Ω

−1
ψ̄

†
dn(x, t,±k0)Σϕdn(x, t,±k0)

]
,

(2.38d)

for cases 1 and 3 (ν = 1), and

Res
z=±ik0

a(z) =± ik0

2

[
Ω
−1

ψ̄
†
up(x, t,∓ik0)Ω

−1
ϕup(x, t,±ik0)−Ω

−1
ψ̄

†
dn(x, t,∓ik0)Σϕdn(x, t,±ik0)

]
,

(2.39a)

Res
z=±ik0

ā(z) =± ik0

2

[
Σψ

†
dn(x, t,∓ik0)Σϕ̄dn(x, t,±ik0)−Σψ

†
up(x, t,∓ik0)Ω

−1
ϕ̄up(x, t,±ik0)

]
,

(2.39b)

lim
z→±ik0

(z∓ ik0)b(z) =±
ik0

2

[
Σψ

†
dn(x, t,∓ik0)Σϕdn(x, t,±ik0)−Σψ

†
up(x, t,∓ik0)Ω

−1
ϕup(x, t,±ik0)

]
,

(2.39c)

lim
z→±ik0

(z∓ ik0)b̄(z) =±
ik0

2

[
Ω
−1

ψ̄
†
up(x, t,∓ik0)Ω

−1
ϕup(x, t,±ik0)−Ω

−1
ψ̄

†
dn(x, t,∓ik0)Σϕdn(x, t,±ik0)

]
,

(2.39d)

for cases 2 and 4 (ν =−1). Furthermore, we observe that if deta(z) 6= 0,det ā(z) 6= 0 for z ∈ Σz, the
reflection coefficients ρ(z) and ρ̄(z) both have a removable singularity at the branch points and so
they are defined for all z ∈ Σz. Consequently, the equations (2.29a) can also be considered for all
z ∈ Σz.

If we examine the 2× 2 blocks of (2.33), we find the following conjugation symmetries for
Φ(z):

ϕ
†
up(z

∗)Ω−1
ϕup(z)−ϕ

†
dn(z

∗)Σϕdn(z) = γ(z)Ω−1, (2.40a)

ϕ
†
up(z

∗)Ω−1
ϕ̄up(z)−ϕ

†
dn(z

∗)Σϕ̄dn(z) = 02, (2.40b)

ϕ̄
†
up(z

∗)Ω−1
ϕup(z)− ϕ̄

†
dn(z

∗)Σϕdn(z) = 02, (2.40c)

ϕ̄
†
up(z

∗)Ω−1
ϕ̄up(z)− ϕ̄

†
dn(z

∗)Σϕ̄dn(z) =−γ(z)Σ, (2.40d)
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and similar conjugation symmetries for the 2×2 blocks of the eigenfunction matrix Ψ:

ψ̄
†
up(z

∗)Ω−1
ψ̄up(z)− ψ̄

†
dn(z

∗)Σψ̄dn(z) = γ(z)Ω−1, (2.41a)

ψ̄
†
up(z

∗)Ω−1
ψup(z)− ψ̄

†
dn(z

∗)Σψdn(z) = 02, (2.41b)

ψ
†
up(z

∗)Ω−1
ψ̄up(z)−ψ

†
dn(z

∗)Σψ̄dn(z) = 02, (2.41c)

ψ
†
up(z

∗)Ω−1
ψup(z)−ψ

†
dn(z

∗)Σψdn(z) =−γ(z)Σ. (2.41d)

The relation (2.33) also implies that:

S†(z∗)JνS(z) = Jν , z ∈ Σz. (2.42)

If we then consider Eq. (2.42) block by block, we find the corresponding conjugation symmetries
for the scattering coefficients:

a†(z∗)Ω−1a(z)−b†(z∗)Σb(z) = Ω
−1, (2.43a)

a†(z∗)Ω−1b̄(z)−b†(z∗)Σā(z) = 02, (2.43b)

b̄†(z∗)Ω−1a(z)− ā†(z∗)Σb(z) = 02, (2.43c)

b̄†(z∗)Ω−1b̄(z)− ā†(z∗)Σā(z) =−Σ. (2.43d)

The reflection coefficients (2.30) then satisfy the conjugation symmetry

ρ̄(z) = Ω
−1

ρ
†(z∗)Σ−1, (2.44)

where we have used the fact that Ω = Ω−1 and Σ = Σ−1. We also observe that

a(z)Ωa†(z∗) = [Ω−1−ρ
†(z∗)Σρ(z)]−1, ā(z)Σ−1ā†(z∗) = [Σ− ρ̄

†(z∗)Ω−1
ρ̄(z)]−1. (2.45)

It follows from (2.42) that

S−1(z) = JνS†(z∗)Jν , S−1(z) =
(

c̄(z) d(z)
d̄(z) c(z)

)
. (2.46)

which provides a relationship between the 2×2 blocks of S(z) and the 2×2 blocks of S−1:

c̄(z) = Ω
−1a†(z∗)Ω−1, (2.47a)

d(z) =−Ω
−1b†(z∗)Σ, (2.47b)

d̄(z) =−Σb̄†(z∗)Ω−1, (2.47c)

c(z) = Σā†(z∗)Σ. (2.47d)

The analogues of (2.28a) and (2.28b) for Ψ(x, t,z) = Φ(x, t,z)S−1(z) are

detc(z) = Wr(ϕ,ψ)/Wr(ϕ, ϕ̄)≡ det(ϕ,ψ)/(γ(z))2, (2.48a)

det c̄(z) = Wr(ψ̄, ϕ̄)/Wr(ϕ, ϕ̄)≡ det(ψ̄, ϕ̄)/(γ(z))2, (2.48b)

which allows us to conclude that

detc(z) = deta(z) for z ∈ D+, det c̄(z) = det ā(z) for z ∈ D−. (2.49)
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Taking into account (2.48a) and (2.48b) we finally obtain the following relations:

deta(z) = det ā†(z∗)≡ (det ā(z∗))∗, z ∈ D+, (2.50a)

det ā(z) = deta†(z∗)≡ (deta(z∗))∗, z ∈ D−. (2.50b)

2.4.2. Second Symmetry: (k,λ )→ (k,−λ )

As mentioned above, the second symmetry relates values of eigenfunctions and scattering data from
one Riemann sheet to the other. In terms of the uniformization variable:

(k,λ )→ (k,−λ ) ⇐⇒ z→
νk2

0
z

, (2.51)

which follows from the definitions of λ and z in (2.12). Applying the symmetry z→ νk2
0/z to the

matrices X± we find the following relation:

X±(z) =−
i
z
X±

(
νk2

0
z

)
σ3Q±. (2.52)

If we take into account that θ(νk2
0/z) = −θ(z) and Q±e−iθ(z)σ3 = eiθ(z)σ3Q±, which is a direct

consequence of (2.3), we get

Φ(x, t,z) =− i
z
Φ(x, t,νk2

0/z)σ3Q−, Ψ(x, t,z) =− i
z
Ψ(x, t,νk2

0/z)σ3Q
+
, z ∈ Σz. (2.53)

Explicitly, each 4×2 column satisfies

ϕ(x, t,z) =
i
z
ϕ̄(x, t,νk2

0/z)R−, ϕ̄(x, t,z) =− i
z
ϕ(x, t,νk2

0/z)Q−, (2.54a)

ψ̄(x, t,z) =
i
z
ψ(x, t,νk2

0/z)R+, ψ(x, t,z) =− i
z
ψ̄(x, t,νk2

0/z)Q+, (2.54b)

Moreover, from (2.26) and (2.53) it follows that for all z ∈ Σz:

S(νk2
0/z) = σ3Q

+
S(z)Q−1

− σ3 ≡
ν

k2
0

σ3Q
+

S(z)Q−σ3, (2.55)

where we use the fact that Q−1
± = νQ±/k2

0 to achieve the last equality. If we then examine these
results for each 2×2 block, we obtain

a(νk2
0/z) =

ν

k2
0

Q+ā(z)R−, ā(νk2
0/z) =

ν

k2
0

R+a(z)Q−, (2.56a)

b(νk2
0/z) =− ν

k2
0

R+b̄(z)R−, b̄(νk2
0/z) =− ν

k2
0

Q+b(z)Q−. (2.56b)

Finally, the above relations imply the corresponding symmetries for the reflection coefficients:

ρ(νk2
0/z) =−R+ρ̄(z)Q−1

+ ≡−
ν

k2
0

R+ρ̄(z)R+ for all z ∈ Σz, (2.57a)

ρ̄(νk2
0/z) =−Q+ρ(z)R−1

+ ≡−
ν

k2
0

Q+ρ(z)Q+ for all z ∈ Σz. (2.57b)

Even though the symmetries (2.57a) and (2.57b) are only valid for z ∈ Σz, whenever the specific
columns and scattering coefficients involved are analytic, they can be extended to the appropriate
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regions of the z-plane using the Schwarz reflection principle. We also note that in cases 2 and 4, even
the symmetries of the non-analytic scattering coefficients involve the map z→ z∗. This is because
unlike what happens in cases 1 and 3, the continuous spectrum is not just a subset of the real z-axis.

2.4.3. Third Symmetry: Q→ QT

The third symmetry follows from the fact that we assume the potential Q(x, t) to be a symmetric
matrix. We observe the following equivalent relation in terms of Q:

Q = QT ⇐⇒ Q =−σ2QT
σ2, where σ2 =

(
02 −iI2

iI2 02

)
. (2.58)

Proceeding similarly as in the first symmetry, we define

f̃ (x, t,z) = Φ
T (x, t,z)σ2Φ(x, t,z), g̃(x, t,z) = Ψ

T (x, t,z)σ2Ψ(x, t,z). (2.59)

One can verify that f̃ and g̃ are both independent of x as follows:

∂x f̃ = Φ
T [−ikσ3σ2 +QT

σ2− ikσ2σ3 +σ2Q]Φ = 02, (2.60)

since σ3σ2 = −σ2σ3 and QT
σ2 = −σ2Q. A similar result holds for g̃. Evaluating the limits as

x→±∞ we obtain

Φ
T (x, t,z)σ2Φ(x, t,z) = Ψ

T (x, t,z)σ2Ψ(x, t,z) = γ(z)σ2, (2.61)

which implies that

ST (z)σ2S(z) = σ2, z ∈ Σz. (2.62)

In terms of the 2×2 blocks the above symmetry reads:

bT (z)a(z) = aT (z)b(z), āT (z)b̄(z) = b̄T (z)ā(z), (2.63a)

aT (z)ā(z)−bT (z)b̄(z) = I2, āT (z)a(z)− b̄T (z)b(z) = I2. (2.63b)

The first two relations imply that

ρ
T (z) = ρ(z), ρ̄

T (z) = ρ̄(z), (2.64)

which shows that the reflection coefficients must be symmetric. We also obtain from the last rela-
tions the following identities:

a(z)āT (z) = [I2− ρ̄(z)ρ(z)]−1, ā(z)aT (z) = [I2−ρ(z)ρ̄(z)]−1, (2.65)

where we have used the (2.64) symmetry relation. It follows from (2.62) that S−1(z)−σ2ST (z)σ2
for z ∈ Σz. Examining the 2×2 blocks of this relation gives the following results:

c(z) = aT (z), c̄(z) = āT (z), d(z) =−b̄T (z), d̄(z) =−bT (z). (2.66)

Finally, if we combine this result with (2.47a), (2.47b), (2.47c) and (2.47d) we get

ā(z) = Ω
−1a∗(z∗)Ω−1, b̄(z) = Σb∗(z∗)Ω−1, z ∈ Σz, (2.67)

which gives a similar relation for the reflection coefficient,

ρ̄(z) = Σρ
∗(z∗)Ω, z ∈ Σz . (2.68)
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2.5. Discrete Spectrum and Residue Conditions

The discrete spectrum is the set of all values z ∈ C\Σz where the scattering problem allows eigen-
functions in L2(R). We will show below that these values are the zeros of deta(z) in D+ and the
zeros of det ā(z) in D−. In general, one cannot exclude the possibility of spectral singularities, i.e.,
zeros that occur on the continuous spectrum Σz. This is a highly nontrivial issue even in the case of
zero boundary conditions (see [44]), and to the best of our knowledge no result is currently avail-
able in the literature regarding the location of spectral singularities (or sufficient constraints on the
potential for their absence) in the case of nonzero boundary conditions. In the following we will
assume that deta(z) 6= 0 and det ā(z) 6= 0 for all z ∈ Σz.

If deta(z) = 0 at a discrete eigenvalue z = zn then the eigenfunctions ϕ(x, t,zn) and ψ(x, t,zn)

become linearly dependent, which can be expressed in general as:

ϕ(x, t,zn)ηn = ψ(x, t,zn)ξn, zn ∈ D+, (2.69)

for some nonzero complex vectors ξn,ηn ∈ C \ {0}. We note that such vectors are not uniquely
defined. Due to the first symmetry, we have a corresponding discrete eigenvalue z∗n ∈ D− such that
det ā(z∗n) = 0, which produces a linear dependence for the eigenfunctions in D− as follows:

ϕ̄(x, t,z∗n)η̄n = ψ̄(x, t,z∗n)ξ̄n, z∗n ∈ D−, (2.70)

for some nonzero complex vectors ξ̄n, η̄n ∈ C\{0}. If we assume that ranka(zn) = 0, then deta(z)
has a double zero at z = zn and we can make a stronger linear dependence assertion:

ϕ(x, t,zn) = ψ(x, t,zn)bn, ϕ̄(x, t,z∗n) = ψ̄(x, t,z∗n)b̄n, (2.71)

where bn, b̄n are nonzero constant 2×2 matrices. This stronger statement implies that at z = zn each
of the two columns of ψ is a linear combination of the two columns of ϕ , and similarly for z∗n.

Suppose that deta(z) has a finite number N of zeros z1, . . . ,zN in D+∩{z ∈ C : Im > 0}. That
is, let deta(zn) = 0 for n = 1, . . . ,N. Taking into account the symmetries we have that

deta(zn) = 0 ⇐⇒ det ā(z∗n) = 0 ⇐⇒ det ā(νk2
0/zn) = 0 ⇐⇒ deta(νk2

0/z∗n) = 0. (2.72)

For each n, . . . ,N we therefore have a quartet of discrete eigenvalues, which means that the discrete
spectrum is given by the set

Z = {zn,z∗n,νk2
0/zn,νk2

0/z∗n}N
n=1. (2.73)

Let us follow the strategy in [34] and define

P(x, t,z) = (ϕ(x, t,z),ψ(x, t,z)), P̄(x, t,z) = (ψ̄(x, t,z), ϕ̄(x, t,z)). (2.74)

We observe that P(x, t,z) is analytic in D+ and P̄(x, t,z) is analytic in D−. As is proved in [34],
ranka(zn) = 0 corresponds to rankP(x, t,zn) = 2 and ranka(zn) = 1 corresponds to rankP(x, t,zn) =

3. Next we derive the residue conditions that will be needed for the inverse problem for both sce-
narios: (i) rankP(x, t,zn) = 3; and (ii) rankP(x, t,zn) = 2.

2.5.1. Norming Constants and Residue Conditions when rankP(x, t,zn) = 3

We first consider the case where zn ∈ D+ is a simple zero of deta(z) with (deta)′(zn) 6= 0, where
the prime denotes differentiation with respect to z, and rankP(x, t,zn) = 3. Then the first symmetry
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implies that det ā(z∗n) = 0 with (det ā)′(z∗n) 6= 0. Let χn ∈C4 \{0} be a right null vector of P(x, t,zn),
i.e. χn ∈ kerP(x, t,zn), and let

χn =

(
χ

up
n

χdn
n

)
χ

up
n ,χdn

n ∈ C2. (2.75)

Then from (2.74) it follows that

ϕ(x, t,zn)χ
up
n +ψ(x, t,zn)χ

dn
n = 04×2, (2.76)

and therefore any right null vector of P(x, t,zn) implies (2.69), with ηn = χ
up
n and ξn =−χdn

n . Note
that ηn,ξn 6= 0, because the first two columns as well as the last two columns of P(x, t,zn) are linearly
independent. Vice versa, given ηn and ξn as in (2.69), the 4×1 vector χn = (ηn,−ξn)

T belongs to
kerP(x, t,zn). Similar statements can be proved for z∗n ∈ D− and P̄(x, t,z∗n). If ηn,ξn ∈ C2 \ {0}
satisfy (2.69), then χn = (ηn,−ξn)

T is a right null vector of A(k) = P̄†(x, t,z∗n)JνP(x, t,zn), which
implies that

a(zn)ηn = 02×1, ā†(z∗n)Σ
−1

ξn = 02×1, (2.77)

showing that ηn belongs to kera(zn) and Σ−1ξn belongs to ker ā†(z∗n). The converse is also true,
i.e. vectors in kera(zn) and ker ā†(z∗n) provide vectors that satisfy (2.69). The analog can easily be
shown for any nonzero vector χ̄n = (ξ̄n,−η̄n) ∈ ker P̄(x, t,z∗n), for which (2.70) holds; moreover,

a†(zn)Ωξ̄n = 02×1, ā(z∗n)η̄n = 02×1, (2.78)

so that Ω ξ̄n ∈ kera†(zn) and η̄n ∈ ker ā(z∗n). For any m× m matrix K, one has det(cofK) =

(detK)m−1, where cofK is the adjugate matrix of K. Thus if α(z) denotes the adjugate matrix of
a(z), for which a(z)α(z) = α(z)a(z) = deta(z)I2, it follows that

detα(z) = deta(z), (2.79)

and hence detα(z) and deta(z) have a zero of the same order for each zn. Moreover, since they
are both 2× 2 matrices, one obviously has ranka(z) = rankα(z), and therefore, as a consequence
of the fact that ranka(zn) = 1 ⇐⇒ rankP(x, t,zn) = 3, we conclude α(zn) 6= 02×2 because we are
assuming rankP(x, t,zn) = 3. Similarly, denoting by ᾱ(z) the adjugate matrix of ā(z), it follows that
det ā(z) has a zero of the same order as det ᾱ(z) for each z∗n ∈D−. Since a(zn)α(zn) = α(zn)a(zn) =

deta(zn)I2 = 02×2 and ā(z∗n)ᾱ(z∗n) = ᾱ(z∗n)ā(z
∗
n) = det ā(z∗n)I2 = 02×2, each column of α(zn) is both

a left null vector and a right null vector of a(zn), and each column of ᾱ(z∗n) is both a left and right
null vector of ā(z∗n). Of course, the two columns of α(zn) and ᾱ(z∗n) are proportional to each other,
since detα(zn) = det ᾱ(z∗n) = 0. Therefore, one can choose two vectors in kerP(x, t,zn) with the first
two components of each vector given by the first and second columns of α(zn), and the remaining
two components, column-wise, denoted by −cn as follows:

04×2 = P(x, t,zn)

(
α(zn)

−cn

)
⇐⇒ ϕ(x, t,zn)α(zn) = ψ(x, t,zn)cn. (2.80)

Following a similar strategy for ϕ̄ and ψ̄ , we obtain

04×2 = P̄(x, t,z∗n)
(
−c̄n

ᾱ(z∗n)

)
⇐⇒ ϕ̄(x, t,z∗n)ᾱ(zn) = ψ̄(x, t,z∗n)c̄n. (2.81)
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Since in this case, we are assuming kerP(x, t,zn) is one-dimensional (because rankP(x, t,zn) =

3), then the two columns of the matrix multiplying P(x, t,zn) in (2.80) must be proportional to each
other, which then implies rankcn = 1. Also, considering that α(z) = a−1(z)/deta(z) if zn is a simple
zero of deta(z), we have

Res
z=zn

[ϕ(x, t,z)a−1(z)] = ϕ(x, t,zn)α(zn)Res
z=zn

[
1

deta(z)

]
. (2.82)

Then using (2.80), ϕ(x, t,z) = e−iθ(x,t,z)M(x, t,z), ψ(x, t,z) = eiθ(x,t,z)N(x, t,z) and a−1(z) =

α(z)/deta(z) we get

Res
z=zn

[M(x, t,zn)a−1(z)] = e2iθ(x,t,zn)N(x, t,zn)cnRes
z=zn

[
1

deta(z)

]
, (2.83)

where

Res
z=zn

[
1

deta(z)

]
= lim

z→zn

[
z− zn

deta(z)

]
=

1
(deta)′(zn)

. (2.84)

Defining Cn = cn/(deta)′(zn) we can express (2.83) as follows:

Res
z=zn

[M(x, t,zn)a−1(z)] = e2iθ(x,t,zn)N(x, t,zn)Cn, detCn = 0, (2.85a)

where detCn = 0 follows from detcn = 0 by construction. Equation (2.85) defines the norming
constant Cn associated with a simple discrete eigenvalue zn, i.e. a simple zero of deta(z), in the rank
3 case for P(x, t,zn), i.e. when a(zn) 6= 02×2. Similarly, one obtains

Res
z=z∗n

[M̄(x, t,z)ā−1(z)] = e−2iθ(x,t,z∗n)N̄(x, t,z∗n)C̄n, detC̄n = 0, (2.85b)

where C̄n = c̄n/(det ā)′(z∗n) and ϕ̄(x, t,z∗n)ᾱ(z∗n) = ψ̄(x, t,z∗n)c̄n. As mentioned above, detα(z) and
deta(z) both have a zero of the same order at each zn ∈D+, and similarly det ᾱ(z) and det ā(z) both
have a zero of the same order at each z∗n ∈ D−.

Our next task will be to determine the residue conditions and the symmetry in the norming
constants for any two eigenvalues in each quartet that are related by the second symmetry. It is
helpful to introduce the following notation:

ϕ(x, t, ẑn)α(ẑn) = ψ(x, t, ẑn)ĉn, ẑn = νk2
0/z∗n, (2.86a)

ϕ̄(x, t, ẑ∗n)ᾱ(ẑ∗n) = ψ̄(x, t, ẑ∗n) ˆ̄cn, ẑ∗n = νk2
0/zn, (2.86b)

where ĉn, ˆ̄cn are constant 2×2 matrices. From (2.56a) it follows that

α(zn) =
ν

k2
0

cof(R−)ᾱ(ẑ∗n)cof(Q+), ᾱ(z∗n) =
ν

k2
0

cof(Q−)α(ẑn)cof(R+), (2.87a)

α(ẑn) =
ν

k2
0

cof(R−)ᾱ(z∗n)cof(Q+), ᾱ(ẑ∗n) =
ν

k2
0

cof(Q−)α(zn)cof(R+), (2.87b)

where cof(Q±),cof(R±) are the cofactor (or adjugate) matrices of Q±,R±.
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Using (2.54a), (2.87a) and (2.86b) we have on one hand

ϕ(x, t,zn)α(zn) =
iν detR−

k2
0zn

ψ̄(x, t, ẑ∗n) ˆ̄cn cof(Q+), (2.88)

and on the other hand using (2.54a) and (2.80) we have

ϕ(x, t,zn)α(zn) = ψ(x, t,zn)cn =−
i

zn
ψ̄(x, t, ẑ∗n)Q+cn. (2.89)

Comparing these two results we obtain

ˆ̄cn =−
νk2

0
detQ+ detR−

Q+cnQ+. (2.90)

Similarly, using (2.54b), (2.87a), (2.86a) and (2.81) we obtain

ĉn =−
νk2

0
detQ− detR+

R+c̄nR+. (2.91)

Furthermore, differentiating (2.56a) with respect to z and evaluating at z= z∗n and z= zn respectively,
we have

(deta)′(ẑn) =−ν

(
z∗n
k0

)2 detQ+ detR−
k4

0
(det ā)′(z∗n), (2.92a)

(det ā)′(ẑ∗n) =−ν

(
zn

k0

)2 detQ− detR+

k4
0

(deta)′(zn). (2.92b)

Assuming that deta(ẑn) has a simple pole, then det ā(ẑ∗n) also has a simple pole and it follows that

Res
z=ẑn

[M(x, t,z)a−1(z)] = e2iθ(x,t,ẑn)N(x, t, ẑn)Ĉn, (2.93a)

Res
z=ẑ∗n

[M̄(x, t,z)ā−1(z)] = e−2iθ(x,t,ẑ∗n)N̄(x, t, ẑ∗n)
ˆ̄Cn, (2.93b)

where Ĉn = ĉn/(deta)′(ẑn) and ˆ̄Cn = ˆ̄cn/(det ā)′(ẑ∗n). We can now finally observe the following
symmetry relations for Ĉn and ˆ̄Cn:

Ĉn =
k8

0R+c̄nR+

detQ+ detR+ detQ− detR−(z∗n)2(det ā)′(z∗n)
=

1
(z∗n)2 R+C̄nR+, (2.94a)

ˆ̄Cn =
k8

0Q+cnQ+

detQ+ detR+ detQ− detR−(zn)2(deta)′(zn)
=

1
(zn)2 Q+CnQ+, (2.94b)

noting that detQ± detR± = k4
0.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

147



A.K. Ortiz and B. Prinari / IST and Solitons for Square Matrix NLS Equations with NZBC

2.5.2. Norming Constants and Residue Conditions when rankP(x, t,zn) = 2

We now consider rankP(x, t,zn) = rank P̄(x, t,z∗n) = 2, which implies that a(zn) = ā(z∗n) = 02×2. As
mentioned before, in this scenario a stronger condition of proportionality between the eigenfunc-
tions holds, namely:

ϕ(x, t,zn) = ψ(x, t,zn)bn, (2.95a)

ϕ̄(x, t,z∗n) = ψ̄(x, t,z∗n)b̄n, (2.95b)

where b̂n,
ˆ̄bn are constant 2× 2 matrices. We will start by assuming that zn is still a simple zero of

deta(z) so that (deta)′(zn) 6= 0. According to this assumption we can then write

Res
z=zn

[M(x, t,z)a−1(z)] = e2iθ(x,t,zn)N(x, t,zn)Cn, Cn =
bnα(zn)

(deta)′(zn)
. (2.96)

However, a(zn) =α(zn) = 02×2, which implies that Cn = 0. This means that if rankP(x, t,zn) = 2, no
nontrivial norming constant exists for a simple pole of deta(zn). We now must assume that deta(zn)

has at least a double pole, so that (deta)′(zn) = 0. If deta(z) has a second order zero at zn, in a
neighborhood of zn we can write a−1(z) as

a−1(z) =
1

(z− zn)2 τn,2 +
1

z− zn
τn,1 + ã(z), (2.97)

where ã(z) is analytic at zn. We now calculate τn,1 and τn,2:

τn,2 = lim
z→zn

(z− zn)
2a−1(z) =

2α(zn)

(deta)′′(zn)
, (2.98a)

τn,1 = lim
z→zn

d
dz

[(z− zn)
2a−1(z)] =

2α ′(zn)

(deta)′′(zn)
− 2(deta)′′′(zn)α(zn)

3((deta)′′(zn))2 . (2.98b)

If rankP(x, t,zn) = 3, then α(zn) 6= 02×2, which implies that τn,2 6= 02×2 and detτn,2 = 0 because
detα(zn) = 0. On the other hand τn,1 may or may not be zero, and it is possible to have detτn,1 6= 0.
However, if rankP(x, t,zn) = 2, this implies that α(zn) = τn,2 = 02×2, which means that even though
deta(z) has a double zero at zn, a−1(z) only has a simple zero at zn. Furthermore, since α(zn) = 0,
we conclude that

τn,1 =
2α ′(zn)

(deta)′′(zn)
. (2.99)

We are then able to calculate the following residue conditions:

Res
z=zn

[M(x, t,z)a−1(z)] = e2iθ(x,t,zn)N(x, t,zn)Cn, Cn =
2bnα ′(zn)

(deta)′′(zn)
, (2.100a)

Res
z=z∗n

[M̄(x, t,z)ā−1(z)] = e−2iθ(x,t,z∗n)N̄(x, t,z∗n)C̄n, C̄n =
2b̄nᾱ ′(z∗n)
(det ā)′′(z∗n)

. (2.100b)

In order to establish the symmetries in the norming constants that relate eigenvalues paired by the
second symmetry, we proceed as in the case when rankP(x, t,zn)= 3. The proportionality conditions
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for the eigenfunctions at ẑn and ẑ∗n in the rank 2 case read:

ϕ(x, t, ẑn) = ψ(x, t, ẑn)b̂n, (2.101a)

ϕ̄(x, t, ẑ∗n) = ψ̄(x, t, ẑ∗n)
ˆ̄bn. (2.101b)

Using (2.54a) and (2.101b) we have on one hand

ϕ(x, t,zn) =
i

zn
ϕ̄(x, t, ẑ∗n)R− =

i
zn

ψ̄(x, t, ẑ∗n)
ˆ̄bnR−, (2.102)

and on the other hand using (2.54b) and (2.71) we have

ϕ(x, t,zn) = ψ(x, t,zn)bn =−
i

zn
ψ̄(x, t, ẑ∗n)Q+bn. (2.103)

Comparing these two results we obtain:

ˆ̄bn =−Q+bn(Q
†
−)
−1

σ3 ≡−
ν

k2
0

Q+bnQ−. (2.104)

Similarly, from (2.54a), (2.54b), (2.101a) and (2.71) it follows that

b̂n =−R+b̄nQ−1
− ≡−

ν

k2
0

R+b̄nR−. (2.105)

Moreover, differentiating (2.56a) with respect to z twice and evaluating at z = z∗n and z = zn respec-
tively we have

(deta)′′(ẑn) =

(
z∗n
k0

)4 detQ+ detR−
k4

0
(det ā)′′(z∗n), (2.106a)

(det ā)′′(ẑ∗n) =
(

zn

k0

)4 detQ− detR+

k4
0

(deta)′′(zn), (2.106b)

where we have used the fact that (deta)′(zn) = 0 and (det ā)′(z∗n) = 0. Differentiating (2.87a) with
respect to z, it follows that

α
′(ẑn) =−

(z∗n)
2

k4
0

cof(R−)ᾱ ′(z∗n)cof(Q+), ᾱ
′(ẑ∗n) =−

(zn)
2

k4
0

cof(Q−)α ′(zn)cof(R+). (2.107)

Combining these relations we then have

Res
z=ẑn

[M(x, t,z)a−1(z)] = e2iθ(x,t,ẑn)N(x, t, ẑn)Ĉn, Ĉn =
2b̂nα ′(ẑn)

(deta)′′(ẑn)
, (2.108a)

Res
z=ẑ∗n

[M̄(x, t,z)ā−1(z)] = e−2iθ(x,t,ẑ∗n)N̄(x, t, ẑ∗n)
ˆ̄Cn,

ˆ̄Cn =
2ˆ̄bnᾱ ′(ẑ∗n)
(det ā)′′(ẑ∗n)

. (2.108b)

Using (2.104), (2.105), (2.106a), (2.106b) and (2.107), we recover the same symmetry relations for
Ĉn and ˆ̄Cn as we did in the rank 3 case:

Ĉn =
1

(z∗n)2 R+C̄nR+,
ˆ̄Cn =

1
(zn)2 Q+CnQ+. (2.109)

We note that ˆ̄Cn = Ω−1Ĉ†
nΣ−1, which is consistent with (3.19) under the first symmetry, which we

will prove in Section 3.2.
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2.6. Asymptotics as z→ 0 and z→ ∞

The asymptotic behaviors of the eigenfunctions and the scattering data are necessary to properly
formulate the inverse problem. Furthermore, the next-to-leading-order behavior of the eigenfunc-
tions will allow us to reconstruct the potential from the solution of the Riemann-Hilbert problem
for the eigenfunctions.

We note that the limit as k→ ∞ corresponds to z→ ∞ in CI and to z→ 0 in CII , and both limits
will be needed. The asymptotic expansion of the eigenfunctions in terms of z can be obtained via
standard WKB expansions. The modified eigenfunctions µ = φeiθσ3 explicitly satisfy

∂xµ = (−ikσ3 +Q)µ + iλ µσ3, (2.110)

which we can express in terms of the uniformization variable z through use of (2.12). Then, using
the fact that Φ(x, t,z)eiθ(x,t,z)σ3 = (M(x, t,z),M̄(x, t,z)) we have

∂xMup =−
iνk2

0
z

Mup +QMdn, ∂xMdn = RMup + izMdn, (2.111a)

∂xM̄up =−izM̄up +QM̄dn, ∂xM̄dn = RM̄up +
iνk2

0
z

M̄dn, (2.111b)

where the subscripts up,dn denote the upper and lower 2×2 blocks respectively of the matrices M
and M̄. We can anchor the WKB expansion as: Mup = I2 +A1/z+h.o.t., and Mdn = B1/z+B2/z2 +

h.o.t. (h.o.t. denotes higher order terms), where A1,B1, . . . are 2× 2 matrix functions of x and t to
be determined. Plugging the WKB ansatz into the above differential equations, and matching equal
powers of z yields: B1 = iR and ∂xA1 = i(QR−νk2

0I2), which then gives

M(x, t,z) =
(

I2 +
i
z

∫ x
−∞

[Q(x′, t)R(x′, t)−νk2
0I2]dx′+O(1/z2)

i
z R(x, t)+O(1/z2)

)
z→ ∞, z ∈ D+, (2.112)

where we have taken the boundary conditions for M as x→−∞ into account, and we have implic-
itly assumed that the limits z→ ∞ and x→−∞ commute. Similarly, we can find the asymptotic
expansion for M̄, as well as N and N̄ as z→ ∞ in the appropriate region of analyticity:

M̄(x, t,z) =
(

− i
z Q(x, t)+O(1/z2)

I2− i
z

∫ x
−∞

[R(x′, t)Q(x′, t)−νk2
0I2]dx′+O(1/z2)

)
z→ ∞, z ∈ D−, (2.113a)

N̄(x, t,z) =
(

I2 +
i
z

∫
∞

x [Q(x′, t)R(x′, t)−νk2
0I2]dx′+O(1/z2)

i
z R(x, t)+O(1/z2)

)
z→ ∞, z ∈ D−, (2.113b)

N(x, t,z) =
(

− i
z Q(x, t)+O(1/z2)

I2− i
z

∫
∞

x [R(x′, t)Q(x′, t)−νk2
0I2]dx′+O(1/z2)

)
z→ ∞,z ∈ D+. (2.113c)

Similarly, asymptotics as z→ 0 in the proper region D± yields:

M(x, t,z) =
(

νQR−/k2
0 +O(z)

iR−/z+O(1)

)
, M̄(x, t,z) =

(
−iQ−/z+O(1)

νRQ−/k2
0 +O(z)

)
, (2.114a)

N̄(x, t,z) =
(

νQR+/k2
0 +O(z)

iR+/z+O(1)

)
, N(x, t,z) =

(
−iQ+/z+O(1)

νRQ+/k2
0 +O(z)

)
. (2.114b)

The above equations will allow us to reconstruct the potential Q(x, t) from the solution of the inverse
problem for the eigenfunctions.
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Lastly, inserting the above asymptotic expansions for the Jost eigenfunctions into (2.26), we
show that as z→ ∞ in the appropriate analytic regions of the complex z-plane,

S(z) = I2 +O(1/z). (2.115)

The asymptotics above hold with Imz ≥ 0 and Imz ≤ 0 for a(z) and ā(z), respectively, and with
z ∈ Σz for b(z) and b̄(z). Similarly, we can show that as z→ 0

S(z) =
ν

k2
0

(
Q+R− 02

02 R+Q−

)
+O(z), (2.116)

where the asymptotics for the block diagonal entries of S(z) can be extended analytically to D+ for
a(z), and to D− for ā(z), while the asymptotics for the off-diagonal blocks hold only for z ∈ Σz.

3. Inverse Scattering Problem

The inverse problem amounts to constructing a map from the scattering data back to the
potential Q(x, t). The scattering data include the reflection coefficients ρ(z), ρ̄(z) (actually,
only of them is needed because of their symmetries, cf. (2.44)), the discrete eigenvalues Z =

{zn,z∗n,νk2
0/zn,νk2

0/z∗n}N
n=1, and the corresponding norming constants {Cn,C̄n,Ĉn,

ˆ̄Cn}N
n=1 (also for

the norming constans the symmetries allow to reduce the number of independent norming constants
to only one per quartet of eigenvalues). In the IST method, we first use the scattering data to recover
the modified eigenfunctions, then we recover the potential Q(x, t) in terms of the asymptotic behav-
ior in the spectral parameter of these eigenfunctions. The Lax pair provides conditions on Q(x, t)
such that the modified eigenfunctions N(x, t,z) and N̄(x, t,z) exist and are analytic as functions of
the scattering parameter z in the regions D+ and D− respectively. Similarly, under the same condi-
tions on the potentials, the matrix functions M(x, t,z)a−1(z) and M̄(x, t,z)ā−1(z) are meromorphic
functions of z in the regions D+ and D− respectively. Hence, in the inverse problem we assume that
the unknown modified eigenfunctions are sectionally meromorphic. With this assumption, the equa-
tions that relate the eigenfunctions on the continuous spectrum Σz can be considered as the jump
conditions of a Riemann-Hilbert problem across the contour Σz. In order to recover the sectionally
meromorphic eigenfunctions from the scattering data, we convert the Riemann-Hilbert into a sys-
tem of linear algebraic integral equations with the use of the analog of Plemelj’s formulas. We then
finally recover the potential Q(x, t) in terms of the large z asymptotics of the modified eigenfunction
N(x, t,z) or N̄(x, t,z).

3.1. Riemann-Hilbert Problem

As outlined above, we begin the formulation of the inverse problem with (2.29a), which we now
consider to be a relation between eigenfunctions analytic in D+ and those analytic in D−. Then we
introduce the sectionally meromorphic matrices

µ
+(x, t,z) = (Ma−1,N), µ

−(x, t,z) = (N̄,M̄ā−1), (3.1)

where the superscripts ± distinguish between analyticity in D+ and D− respectively. From (2.29a)
we then obtain the jump condition

µ
−(x, t,z) = µ

+(x, t,z)(I4−G(x, t,z)) z ∈ Σz, (3.2)
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where the jump matrix is

G(x, t,z) =
(

02 −e−2iθ(x,t,z)ρ̄(z)
e2iθ(x,t,z)ρ(z) ρ(z)ρ̄(z)

)
. (3.3)

Equations (3.1), (3.2) and (3.3) define a matrix, multiplicative, homogeneous Riemann-Hilbert
problem (RHP). To complete the formulation of the RHP we need a normalization condition, which
in this case is the asymptotic behavior of µ± as z→ ∞. Using the asymptotic behavior of the Jost
eigenfunctions and scattering coefficients, it is easy to verify that

µ
± = I2 +O(1/z), z→ ∞. (3.4)

On the other hand,

µ
± =−(i/z)σ3Q

+
+O(1), z→ 0. (3.5)

To solve the RHP, we need to regularize it by subtracting out the asymptotic behavior and the
pole contributions from a−1(z) and ā−1(z), which are assumed to have a finite number of simple
poles in the appropriate regions of analyticity and off Σz. We recall that discrete eigenvalues come in
quartets. It is convenient to define ζn = zn for n = 1, . . . ,N and ζn = νk2

0/z∗n for n = N+1, . . . ,2N, as
well as Cn = Ĉn for n = N+1, . . . ,2N and C̄n =

ˆ̄Cn for n = N+1, . . . ,2N. Subtracting the asymptotic
behavior and simple poles from Ma−1 we achieve the following function that is regular and analytic
in D+:

Ma−1− (Ma−1)0− (Ma−1)∞−
2N

∑
j=1

Res
z=ζ j

(Ma−1)

z−ζ j
, (3.6)

where (Ma−1)0 denotes the residue as z→ 0 (which is required because MA−1 has a simple pole
at z = 0) and (Ma−1)∞ denotes the asymptotic behavior as z→ ∞. We now subtract the asymptotic
behavior from N̄ to achieve the following function that is regular and analytic in D−:

N̄− (N̄)0− (N̄)∞, (3.7)

where (N̄)0 denotes the residue as z→ 0 and (N̄)∞ denotes the asymptotic behavior as z→ ∞. We
observe that the asymptotic behavior of Ma−1 and N̄ are the same at zero and at infinity, namely:

(Ma−1)0 = (N̄)0 =

(
02

iR+/z

)
, (Ma−1)∞ = (N̄)∞ =

(
I2

02

)
. (3.8)

The above identities allow us to express (2.29a) as

Ma−1− (Ma−1)0− (Ma−1)∞−
2N

∑
j=1

Res
z=ζ j

(Ma−1)

z−ζ j
= N̄− (N̄)0− (N̄)∞−

2N

∑
j=1

Res
z=ζ j

(Ma−1)

z−ζ j
+ e2iθ Nρ,

(3.9)
where the dependence of M,a,N, N̄,ρ on x, t, and z has been omitted for brevity. We now define the
analog of Cauchy projectors P± on Σz as follows:

P±[ f ](z) =
1

2πi

∫
Σz

f (ζ )
ζ − (z± i0)

dζ , (3.10)
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where
∫

Σz
denotes the integral along the oriented contours shown in Fig. 1, and the notation z± i0

indicates that, when z∈ Σz, the limit is taken from the left/right of it. Now recall Plemelj’s formulas:
if f± are analytic in D± and are O(1/z) as z→ ∞, one has P± f± =± f± and P+ f− = P− f+ = 0.
Applying P− to both sides of (3.9) we get

0 =−N̄ +(N̄)0 +(N̄)∞ +
2N

∑
j=1

Res
z=ζ j

(Ma−1)

z−ζ j
+

1
2πi

∫
Σz

e2iθ(ζ )N(ζ )ρ(ζ )

ζ − (z− i0)
dζ . (3.11)

Similarly, subtracting the asymptotic behaviors and simple poles from (2.113a) and applying
the P+ projector gives

0 = N− (N)0− (N)∞−
2N

∑
j=1

Res
z=ζ j

(M̄ā−1)

z−ζ ∗j
+

1
2πi

∫
Σz

e−2iθ(ζ )N̄(ζ )ρ̄(ζ )

ζ − (z+ i0)
dζ , (3.12)

where ζ ∗j = ẑ∗j for j = N +1, . . . ,2N.

3.2. Residue Conditions and Reconstruction Formula

Equations (3.11) and (3.12) are integral equations for z ∈ D± which also depend on the residues of
Ma−1 and M̄ā−1 at their poles in D±, which have been computed in Section 2.5. Using (2.85) (or
their equivalent (2.100)), we can now solve (3.11) for N̄ as follows:

N̄ = (x, t,z)
(

I2

iR+/z

)
+

2N

∑
j=1

e2iθ(x,t,ζ j)N(x, t,ζ j)C j

z−ζ j
+

1
2πi

∫
Σz

e2iθ(x,t,ζ )N(x, t,ζ )ρ(ζ )
ζ − (z− i0)

dζ . (3.13)

Similarly, we can solve (3.12) for N

N(x, t,z) =
(
−iQ+/z

I2

)
+

2N

∑
j=1

e−2iθ(x,t,ζ ∗j )N̄(x, t,ζ ∗j )C̄ j

z−ζ ∗j
− 1

2πi

∫
Σz

e−2iθ(x,t,ζ )N̄(x, t,ζ )ρ̄(ζ )
ζ − (z+ i0)

dζ ,

(3.14)
where C̄ j =

ˆ̄C j for j = N +1, . . . ,2N.
Now we must reconstruct the potential from the solution of the RHP. From (2.113c), we have

the asymptotic behavior of the upper 2×2 block of N(x, t,z) as z→ ∞:

Nup(x, t,z) =−
i
z
Q(x, t)+O(1/z2), z→ ∞. (3.15)

Then if we look at only the upper 2×2 blocks of (3.14) we obtain

Nup(x, t,z) =−iQ+/z+
2N

∑
j=1

e−2iθ(x,t,ζ ∗j )N̄up(x, t,ζ ∗j )C̄ j

z−ζ ∗j
− 1

2πi

∫
Σz

e−2iθ(ζ )N̄up(x, t,ζ )ρ̄(ζ )
ζ − (z+ i0)

dζ .

(3.16)
Evaluating (3.15) and (3.16) at z = ζn and comparing allows to reconstruct the potential Q(x, t) as

Q(x, t) = Q++ i
2N

∑
j=1

e−2iθ(x,t,ζ ∗j )N̄up(x, t,ζ ∗j )C̄ j−
1

2π

∫
Σz

e−2iθ(x,t,ζ )N̄up(x, t,ζ )ρ̄(ζ )dζ . (3.17)
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Similarly, we can recover R(x, t) using the lower 2×2 block of N̄. Comparing the lower components
of (2.113b) and the lower components of (3.13) we obtain

R(x, t) = R+− i
2N

∑
j=1

e2iθ(x,t,ζ j)Ndn(x, t,ζ j)C j +
1

2π

∫
Σz

e2iθ(x,t,ζ )Ndn(x, t,ζ )ρ(ζ )dζ . (3.18)

We note that the time dependence of the solution has already been taken into account since the Jost
eigenfunctions are simultaneously solutions of both parts of the Lax pair.

The above reconstruction formulas allow us to prove the first and third symmetries for the norm-
ing constants that we claimed earlier. If we take the Hermitian conjugate of (3.17), solve (3.18) for
Q† and compare, we conclude that

C̄n = Ω
−1C†

nΣ
−1, n = 1, . . . ,2N, (3.19)

noting that Ndn ∼ I2 and N̄up ∼ I2 as x→ ∞. We observe consistency between the first symmetry
applied to the norming constants and the first symmetry applied to the reflection coefficients as in
(2.44). Similarly, if we impose the third symmetry (i.e., QT = Q), we take the transpose of (3.17),
equate this to (3.17) and obtain

CT
n =Cn, C̄T

n = C̄n, n = 1, . . . ,2N. (3.20)

3.3. Reflectionless Potentials

We are interested in potentials Q(x, t) where the reflection coefficient ρ(z) is identically zero for
z ∈ Σz, which implies that ρ̄(z) is also zero for z ∈ Σz. Under this assumption of reflectionless
potentials, we have

Q(x, t) = Q++ i
2N

∑
j=1

e−2iθ(x,t,ζ ∗j )N̄up(x, t,ζ ∗j )C̄ j. (3.21)

From (3.21) we observe that we only need N̄up(x, t,) to reconstruct Q(x, t). Evaluating (3.13) at
z = ζ ∗n and (3.14) at z = ζn we then obtain

N̄up(x, t,ζ ∗n ) = I2 +
2N

∑
j=1

e2iθ(x,t,ζ j)Nup(x, t,ζ j)C j

ζ ∗n −ζ j
, (3.22a)

Nup(x, tζn) =−
i

ζn
Q++

2N

∑
j=1

e−2iθ(x,t,ζ ∗j )N̄up(x, t,ζ ∗j )C̄ j

ζn−ζ ∗j
. (3.22b)

Substituting (3.22b) into (3.22a) we have

N̄up(x, t,ζ ∗n ) = I2− iQ+

2N

∑
j=1

e2iθ(x,t,ζ j)C j

ζ j(ζ ∗n −ζ j)
+

2N

∑
j=1

2N

∑
l=1

e2i(θ(x,t,ζ j)−θ(x,t,ζ ∗l ))

(ζ ∗n −ζ j)(ζ j−ζ ∗l )
N̄up(x, t,ζ ∗l )C̄lC j. (3.23)

We observe that even though discrete eigenvalues appear in quartets, the reflectionless potential
Q(x, t) can be reconstructed using only 2N terms, where N is the number of discrete eigenvalues.
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4. Soliton Solutions

We will now derive the one-soliton solutions for all four cases of the matrix NLS equation with
nonzero boundary conditions by assuming there exists only one quartet of discrete eigenvalues
z1, ẑ1, z∗1, ẑ∗1. In this case, the reconstruction formula (3.21) for the potential Q(x, t) reduces to:

Q(x, t) = Q++ ie−2iθ(x,t,z∗1)N̄up(x, t,z∗1)C̄1 + ie−2iθ(x,t,ẑ∗1)N̄up(x, t, ẑ∗1)
ˆ̄C1, (4.1)

and the linear system (3.23) for the eigenfunctions yields:

N̄up(x, t,z∗1) = (B+ED−1C)(A−FD−1C)−1, (4.2a)

N̄up(x, t, ẑ∗1) = (E +BA−1F)(D−CA−1F)−1, (4.2b)

where the matrices A, B, C, D, E and F are defined as follows:

A = I2−
e2i(θ(z1)−θ(z∗1))

(z∗1− z1)(z1− z∗1)
C̄1C1−

e2i(θ(ẑ1)−θ(z∗1))

(z∗1− ẑ1)(ẑ1− z∗1)
C̄1Ĉ1, (4.3a)

B = I2−
ie2iθ(z1)Q+

z1(z∗1− z1)
C1−

ie2iθ(ẑ1)Q+

ẑ1(z∗1− ẑ1)
Ĉ1, (4.3b)

C =
e2i(θ(z1)−θ(ẑ∗1))

(z∗1− z1)(z1− ẑ∗1)
ˆ̄C1C1 +

e2i(θ(ẑ1)−θ(ẑ∗1))

(z∗1− ẑ1)(ẑ1− ẑ∗1)
ˆ̄C1Ĉ1, (4.3c)

D = I2−
e2i(θ(z1)−θ(ẑ∗1))

(ẑ∗1− z1)(z1− ẑ∗1)
ˆ̄C1C1−

e2i(θ(ẑ1)−θ(ẑ∗1))

(ẑ∗1− ẑ1)(ẑ1− ẑ∗1)
ˆ̄C1Ĉ1, (4.3d)

E = I2−
ie2iθ(z1)Q+

z1(ẑ∗1− z1)
C1−

ie2iθ(ẑ1)Q+

ẑ1(ẑ∗1− ẑ1)
Ĉ1, (4.3e)

F =
e2i(θ(z1)−θ(z∗1))

(ẑ∗1− z1)(z1− z∗1)
C̄1C1 +

e2i(θ(ẑ1)−θ(z∗1))

(ẑ∗1− ẑ1)(ẑ1− z∗1)
C̄1Ĉ1. (4.3f)

The entries of the norming constant C1 are

C1 =

(
c1 c0

c0 c−1

)
,

and all other norming constants can be expressed in terms of C1 by means of the symmetries (2.109)
and (3.19).

There is a rich family of soliton solutions with nonzero boundary conditions in cases 1 and 2,
defocusing and focusing MNLS, respectively, as shown in [16, 24, 33, 40]. In cases 3 and 4, we
also observe many novel types of soliton solutions, whose behaviors depend on the location of the
discrete eigenvalues as well as on the rank of the associated norming constants. Following stan-
dard terminology, solitons with a rank one norming constant will be referred to as “ferromagnetic”
solitons”, and solitons with a full rank norming constant will be called “polar” solitons. In the fol-
lowing, we will limit our discussion to the novel soliton solutions obtained for cases 3 and 4. It
is worth noticing that while the focusing and defocusing MNLS are invariant under arbitrary uni-
tary transformations (see [24, 33]), the mixed sign equations that correspond to cases 3 and 4 are
not. As a consequence, one cannot obtain a general classification of one-soliton solutions based on
the Schur form of the associated norming constant like in [24]. Moreover, unlike the focusing and
defocusing cases, where the soliton solution is regular for any choice of the norming constants, in
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the mixed sign cases 3 and 4 suitable constraints on the norming constants are required in order to
obtain regular solutions. This is similar to what happens in the case of zero boundary conditions.
Specifically, the regularity condition to be imposed is that det(A−FD−1C) = det(D−CA−1F) 6= 0
for all x, t ∈ R, so that the inverse matrices that appear in the reconstruction of the eigenfunctions
(4.2) are well-defined. In the case of zero boundary conditions, the explicit expression of the one
soliton solution is simple enough that the regularity condition can be written explicitly in terms
of the norming constants (see [34]). Here, however, the solution is much more complicated due to
the fact that even a single soliton solution has a quartet of associated discrete eigenvalues, and an
explicit condition on the norming constants that guarantees the soliton solution is regular in cases
3 and 4 is presently not available. The large number of explicit solutions we have considered seem
to suggest that the same constraints on the norming constants that guarantee regularity in the case
of zero boundary conditions also work when nonzero boundary conditions are considered, but we
plan to address this issue rigorously in a future work. Below we show some plots and discuss the
features of some of the regular soliton solutions obtained from the reconstruction formula (4.1) in
cases 3 and 4. The asymptotic analysis of the soliton solutions, and the soliton interactions are also
deferred to future work.

In case 3 it appears that the soliton solutions are regular only for full rank norming constants
(detC1 6= 0), in analogy to what happens with zero boundary conditions [34]. In other words, no
regular ferromagnetic solitons exist in case 3. Here we find dark solitons in the diagonal components
of the potential and bright soliton solutions in the off-diagonal component. For a general discrete
eigenvalue as in Fig. 2, we observe the spinor analog of Tajiri-Watanabe type solutions [4, 37]. For
a pure imaginary discrete eigenvalue as in Fig. 3, we observe the analog of Kuznetsov-Ma breather
solutions [4,23,26] that are periodic in t and homoclinic in x. For a discrete eigenvalue on the circle
C0 as in Fig. 4, we observe solutions that behave like simple (non-oscillating) dark-bright solitons.

In case 4, we find regular soliton solutions both for norming constants C1 with detC1 = 0 and
with detC1 6= 0. In general, when detC1 = 0, a shift in the norm of the background between Q−
and Q+ is observed, i.e., domain-wall type solutions appear; on the contrary, when detC1 6= 0, the
background has the same asymptotic norm at +∞ and −∞. For a general discrete eigenvalue as
in Fig. 5, we observe the analog of Tajiri-Watanabe type solutions. For a pure imaginary discrete
eigenvalue as in Fig. 6 and Fig. 8, we observe the analog of Kuznetsov-Ma breather solutions that
are periodic in t. For discrete eigenvalues on the circle C0 as in Fig. 7 and Fig. 9, we observe the
analog of Akhmediev breather solutions [2, 4] that are periodic in x and homoclinic in t.

(a) (b) (c)

Fig. 2: Case 3 (ν = 1), three components (q1,q0 and q−1 from left to right) with Q+ = I2, z1 = 1+2i,
and norming constant entries c1 = 0,c0 = 1/2+ i,c−1 = 0 (detC1 6= 0)
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(a) (b) (c)

Fig. 3: Case 3 (ν = 1), three components (q1,q0 and q−1 from left to right) with Q+ = I2, z1 = 3i/2,
and norming constant entries c1 = i,c0 = 2,c−1 = 3i/2 (detC1 6= 0)

(a) (b) (c)

Fig. 4: Case 3 (ν = 1), three components (q1,q0 and q−1 from left to right) with Q+ = I2, z1 =

1/2+
√

3i/2, and norming constant entries c1 = i,c0 = 2,c−1 = 3i/2 (detC1 6= 0)

(a) (b) (c)

Fig. 5: Case 4 (ν = −1), three components (q1,q0 and q−1 from left to right) with Q+ = I2, z1 =

1+2i, and norming constant entries c1 = 1,c0 = 2,c−1 = 4 (detC1 = 0)

5. Conclusion

In this work, we have developed the IST with nonzero boundary conditions for a class of matrix
NLS equations whose reductions include the defocusing/focusing MNLS (cases 1 and 2), which
have applications in three-component BECs, and two novel cases 3 and 4, which have applications in
nonlinear optics and four-component fermionic condensates. We have provided a rigorous definition
of norming constants that does not use unjustified analytic extensions of the scattering relations. We
have properly accounted for all three symmetries in the potential matrix and the corresponding
symmetries in the norming constants. The novel cases 3 and 4 present additional challenges in
that, unlike cases 1 and 2, certain constraints are required on the norming constant in order to
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(a) (b) (c)

Fig. 6: Case 4 (ν =−1), three components (q1,q0 and q−1 from left to right) with Q+= I2, z1 = 3i/2,
and norming constant entries c1 = 3i/2,c0 = 1/2,c−1 = 2i (detC1 6= 0)

(a) (b) (c)

Fig. 7: Case 4 (ν = −1), three components (q1,q0 and q−1 from left to right) with Q+ = I2, z1 =

1/2+
√

3i/2, and norming constant entries c1 = 1, c0 = 2, c−1 = 4 (detC1 = 0)

(a) (b) (c)

Fig. 8: Case 4 (ν =−1), three components (q1,q0 and q−1 from left to right) with Q+ = I2, z1 = 2i,
and norming constant entries c1 = 1, c0 = 2, c−1 = 4 (detC1 = 0)

obtain regular soliton solutions. The large number of explicit solutions we have considered seem to
suggest that the same constraints on the norming constants that guarantee regularity in the case of
zero boundary conditions also work when nonzero boundary conditions are considered, but we plan
to address this issue rigorously in a future work. The asymptotic analysis of the soliton solutions,
and the soliton interactions are also deferred to future work.

Cases 3 and 4 are worth investigating in the context of multicolor optical spatiotemporal solitary
waves created by interaction of light at a central frequency with two sideband waves both through
cross-phase modulation and parametric four-wave mixing of opposite signs. On the other hand, the
four-component spinor system could have applications in the recently discovered phenomenon of
superconductivity in bilayer graphene [5].
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(a) (b) (c)

Fig. 9: Case 4 (ν = −1), three components (q1, q0 and q−1 from left to right) with Q+ = I2, z1 =

1/2+
√

3i/2, and norming constant entries c1 = 3i/2,c0 = 1/2, c−1 = 2i (detC1 6= 0)
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