

Journal of Nonlinear Mathematical Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251

Journal Home Page: https://www.atlantis-press.com/journals/jnmp

Connection between the ideals generated by traces and by supertraces in the superalgebras of observables of Calogero models

S.E. Konstein, I.V. Tyutin

To cite this article: S.E. Konstein, I.V. Tyutin (2020) Connection between the ideals generated by traces and by supertraces in the superalgebras of observables of Calogero models, Journal of Nonlinear Mathematical Physics 27:1, 7–11, DOI: https://doi.org/10.1080/14029251.2020.1684005

To link to this article: https://doi.org/10.1080/14029251.2020.1684005

Published online: 04 January 2021

LETTER TO THE EDITOR

Connection between the ideals generated by traces and by supertraces in the superalgebras of observables of Calogero models

S.E. Konstein * I.V. Tyutin*

I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, RAS 119991, Leninsky prosp., 53, Moscow, Russia konstein@lpi.ru, tyutin@lpi.ru

Received 19 August 2019

Accepted 30 August 2019

If G is a finite Coxeter group, then symplectic reflection algebra $H:=H_{1,\eta}(G)$ has Lie algebra \mathfrak{sl}_2 of inner derivations and can be decomposed under spin: $H=H_0\oplus H_{1/2}\oplus H_1\oplus H_{3/2}\oplus \ldots$ We show that if the ideals \mathscr{I}_i (i=1,2) of all the vectors from the kernel of degenerate bilinear forms $B_i(x,y):=sp_i(x\cdot y)$, where sp_i are (super)traces on H, do exist, then $\mathscr{I}_1=\mathscr{I}_2$ if and only if $\mathscr{I}_1\cap H_0=\mathscr{I}_2\cap H_0$.

1. Preliminaries and notation

Let \mathscr{A} be an associative superalgebra with parity π . All expressions of linear algebra are given for homogeneous elements only and are supposed to be extended to inhomogeneous elements via linearity.

Definition 1.1. A linear function str on \mathscr{A} is called a *supertrace* if

$$str(f \cdot g) = (-1)^{\pi(f)\pi(g)} str(g \cdot f)$$
 for all $f, g \in \mathscr{A}$.

Definition 1.2. A linear function tr on $\mathscr A$ is called a trace if

$$tr(f \cdot g) = tr(g \cdot f)$$
 for all $f, g \in \mathcal{A}$.

We will use the notation "sp" and the term "(super)trace" to denote both cases, traces and super-traces, simultaneously.

^{*}Corresponding author

2. The superalgebra of observables

Let $V = \mathbb{R}^N$ be endowed with a positive definite symmetric bilinear form (\cdot, \cdot) . For any nonzero $\vec{v} \in V$, define the *reflections* $r_{\vec{v}}$ as follows:

$$r_{\vec{v}}: \vec{x} \mapsto \vec{x} - 2\frac{(\vec{x}, \vec{v})}{(\vec{v}, \vec{v})}\vec{v}$$
 for any $\vec{x} \in V$. (2.1)

A finite set of non-zero vectors $\mathscr{R} \subset V$ is said to be a *root system* and any vector $\vec{v} \in \mathscr{R}$ is called a *root* if the following conditions hold:

- i) \mathscr{R} is $r_{\vec{w}}$ -invariant for any $\vec{w} \in \mathscr{R}$,
- ii) if $\vec{v}_1, \vec{v}_2 \in \mathcal{R}$ are proportional to each other, then either $\vec{v}_1 = \vec{v}_2$ or $\vec{v}_1 = -\vec{v}_2$.

The Coxeter group $G \subset O(N,\mathbb{R}) \subset End(V)$ generated by all reflections $r_{\vec{v}}$ with $\vec{v} \in \mathcal{R}$ is finite.

We do not apply any conditions on the scalar products of the roots because we want to consider both crystallographic and non-crystallographic root systems, e.g., $I_2(n)$ (see Theorem 4.1).

Let η be a complex-valued G-invariant function on \mathcal{R} , i.e., $\eta(\vec{v}) = \eta(\vec{w})$ if $r_{\vec{v}}$ and $r_{\vec{w}}$ belong to one conjugacy class of G.

We consider here the Symplectic Reflection (Super)algebra over complex numbers (see [6]) $H := H_{1,\eta}(G)$ and call it the *superalgebra of observables of Calogero model based on root system* \mathcal{R} . ^a

This algebra consists of noncommuting polynomials in 2N indeterminates a_i^{α} , where $\alpha = 0, 1$ and i = 1, ..., N, with coefficients in $\mathbb{C}[G]$ satisfying the relations (see [6] Eq. (1.15))^b

$$[a_i^{\alpha}, a_j^{\beta}] = \varepsilon^{\alpha\beta} \left(\delta_{ij} + \sum_{\vec{v} \in \mathcal{R}} \eta(\vec{v}) \frac{v_i v_j}{(\vec{v}, \vec{v})} r_{\vec{v}} \right), \tag{2.2}$$

and

$$r_{\vec{v}}a_i^{\alpha} = \sum_{j=1}^N \left(\delta_{ij} - 2\frac{v_i v_j}{(\vec{v}, \vec{v})}\right) a_j^{\alpha} r_{\vec{v}}.$$
 (2.3)

Here $\varepsilon^{\alpha\beta}$ is the antisymmetric tensor such that $\varepsilon^{01} = 1$, and v_i (i = 1, ..., N) are the coordinates of the vector \vec{v} . The commutation relations (2.2), (2.3) suggest to define the *parity* π by setting:

$$\pi(a_i^{\alpha}) = 1 \text{ for any } \alpha, i; \qquad \pi(r_{\vec{v}}) = 0 \text{ for any } \vec{v} \in \mathcal{R}.$$
 (2.4)

and we can consider the algebra H as a superalgebra as well.

a This algebra has a faithful representation via Dunkl differential-difference operators D_i , see [5], acting on the space of G-invariant smooth functions on V, namely $\hat{a}_i^{\alpha} = \frac{1}{\sqrt{2}}(x_i + (-1)^{\alpha}D_i)$, see [1,14]. The Hamiltonian of the Calogero model based on the root system [2–4,13] is the operator \hat{T}^{01} defined in (3.2) (see [1]). The wave functions are obtained in this model via the standard Fock procedure with the Fock vacuum $|0\rangle$ such that $\hat{a}_i^0|0\rangle=0$ for all i by acting on $|0\rangle$ with G-invariant polynomials of the \hat{a}_i^1 .

^bThe sign and coefficient of the sum in the rhs of Eq. (2.2) is chosen for obtaining the Calogero model in the form [1], Eq. (1), Eq. (5), Eq. (9), Eq. (10) when \mathcal{R} is of type A_{N-1} .

3. sl2

Observe an important property of the superalgebra H: the Lie (super)algebra of its inner derivations contains the Lie subalgebra \mathfrak{sl}_2 generated by operators

$$D^{\alpha\beta}: \quad f \mapsto D^{\alpha\beta}f = [T^{\alpha\beta}, f], \tag{3.1}$$

where $\alpha, \beta = 0, 1$, and $f \in H$, and polynomials $T^{\alpha\beta}$ are defined as follows:

$$T^{\alpha\beta} := \frac{1}{2} \sum_{i=1}^{N} \left(a_i^{\alpha} a_i^{\beta} + a_i^{\beta} a_i^{\alpha} \right). \tag{3.2}$$

These operators satisfy the following relations:

$$[D^{\alpha\beta}, D^{\gamma\delta}] = \varepsilon^{\alpha\gamma} D^{\beta\delta} + \varepsilon^{\alpha\delta} D^{\beta\gamma} + \varepsilon^{\beta\gamma} D^{\alpha\delta} + \varepsilon^{\beta\delta} D^{\alpha\gamma}, \tag{3.3}$$

since

$$[T^{\alpha\beta},T^{\gamma\delta}]=\varepsilon^{\alpha\gamma}T^{\beta\delta}+\varepsilon^{\alpha\delta}T^{\beta\gamma}+\varepsilon^{\beta\gamma}T^{\alpha\delta}+\varepsilon^{\beta\delta}T^{\alpha\gamma}.$$

It follows from Eq. (3.3) that the operators D^{00} , D^{11} and $D^{01} = D^{10}$ constitute an \mathfrak{sl}_2 -triple:

$$[D^{01}, D^{11}] = 2D^{11}, \qquad [D^{01}, D^{00}] = -2D^{00}, \qquad [D^{11}, D^{00}] = -4D^{01}.$$

The polynomials $T^{\alpha\beta}$ commute with $\mathbb{C}[G]$, i.e., $[T^{\alpha\beta}, r_{\vec{v}}] = 0$, and act on the a_i^{α} as on vectors of the irreducible 2-dimensional \mathfrak{sl}_2 -modules:

$$D^{\alpha\beta}a_i^{\gamma} = \left[T^{\alpha\beta}, a_i^{\gamma}\right] = \varepsilon^{\alpha\gamma}a_i^{\beta} + \varepsilon^{\beta\gamma}a_i^{\alpha}, \quad \text{where } i = 1, \dots, N.$$
 (3.4)

We will denote this \mathfrak{sl}_2 thus realized by the symbol SL2.

The subalgebra

$$H_0 := \{ f \in H \mid D^{\alpha\beta} f = 0 \text{ for any } \alpha, \beta \} \subset H$$
 (3.5)

is called the *subalgebra* of singlets.

Introduce also the subspaces $H_s := \bigoplus_{i_s=1}^{\infty} H_s^{i_s}$, which is the direct sum of all irreducible *SL2*-modules $H_s^{i_s}$ of spin s, for s = 0, 1/2, 1, It is clear that H_0 is the defined above subalgebra of singlets.

The (super)algebra H can be decomposed in the following way

$$H = H_0 \oplus H_{rest}$$
, where $H_{rest} := H_{1/2} \oplus H_1 \oplus H_{3/2} \oplus \dots$

Then each element $f \in H$ can be represented in the form $f = f_0 + f_{rest}$, where $f_0 \in H_0$ and $f_{rest} \in H_{rest}$.

Note, that since SL2 is generated by inner derivations and $T^{\alpha\beta}$ are even elements, each two-sided ideal $\mathscr{I} \subset H$ can be decomposed in an analogous way: $\mathscr{I} = \mathscr{I}_0 \oplus \mathscr{I}_{1/2} \oplus ...$.

Since $T^{\alpha\beta}$ are even elements of the superalgebra H, we have $sp(D^{\alpha\beta}f) = 0$ for any (super)trace sp on H, and hence the following proposition takes place^c:

Proposition 3.1. $\operatorname{sp}(f) = \operatorname{sp}(f_0)$ for any $f \in H$ and any (super)trace sp on H.

^cThis elementary fact is known for a long time, see, eg, [12].

Proof. If $s \neq 0$, then the elements of the form $D^{\alpha\beta}f$, where $\alpha, \beta = 0, 1$, and $f \in H_s^{i_s}$, $f \neq 0$, span the irreducible SL2-module $H_s^{i_s}$. This implies spf = 0 for any (super)trace on H and any $f \in H_{rest}$.

4. The (super)traces on H

It is shown in [9, 10, 12] that the algebra H has a multitude of independent (super)traces. For the list of dimensions of the spaces of the (super)traces on $H_{1,\eta}(M)$ for all finite Coxeter groups M, see [8]. In particular, there is an m-dimensional space of traces and an (m+1)-dimensional space of supertraces on $H_{1,\eta}(I_2(2m+1))$.

Every (super)trace $sp(\cdot)$ on any associative (super)algebra $\mathscr A$ generates the following bilinear form on $\mathscr A$:

$$B_{\mathsf{sp}}(f,g) = \mathsf{sp}(f \cdot g) \text{ for any } f, g \in \mathscr{A}.$$
 (4.1)

It is obvious that if such a bilinear form B_{sp} is degenerate, then the kernel of this form (i.e., the set of all vectors $f \in \mathscr{A}$ such that $B_{sp}(f,g) = 0$ for any $g \in \mathscr{A}$) is the two-sided ideal $\mathscr{I}^{sp} \subset \mathscr{A}$.

The ideals of this sort are found, for example, in [11, Theorem 9.1] (generalizing the results of [15, 16] and [7] for the two- and three-particle Calogero models).

Theorem 9.1 from [11] may be shortened to the following theorem:

Theorem 4.1. Let $m \in \mathbb{Z}$, where $m \ge 1$ and n = 2m + 1. Then

- 1) The associative algebra $H_{1,\eta}(I_2(n))$ has nonzero traces tr_η such that the symmetric invariant bilinear form $B_{tr_\eta}(x,y) = tr_\eta(x \cdot y)$ is degenerate if and only if $\eta = \frac{z}{n}$, where $z \in \mathbb{Z} \setminus n\mathbb{Z}$. For each such z, all nonzero degenerate traces on $H_{1,z/n}(I_2(n))$ are proportional to each other.
- 2) The associative superalgebra $H_{1,\eta}(I_2(n))$ has nonzero supertraces str_{η} such that the supersymmetric invariant bilinear form $B_{str_{\eta}}(x,y) = str_{\eta}(x \cdot y)$ is degenerate if $\eta = \frac{z}{n}$, where $z \in \mathbb{Z} \setminus n\mathbb{Z}$. For each such z, all nonzero degenerate supertraces on $H_{1,z/n}(I_2(n))$ are proportional to each other.
- 3) The associative superalgebra $H_{1,\eta}(I_2(n))$ has nonzero supertraces str_{η} such that the supersymmetric invariant bilinear form $B_{str_{\eta}}(x,y) = str_{\eta}(x \cdot y)$ is degenerate if $\eta = z + \frac{1}{2}$, where $z \in \mathbb{Z}$. For each such z, all nonzero degenerate supertraces on $H_{1,z+1/2}(I_2(n))$ are proportional to each other.
- 4) For all other values of η , all nonzero traces and supertraces are nondegenerate.

Theorem 4.1 implies that if $z \in \mathbb{Z} \setminus n\mathbb{Z}$, then there exists the degenerate trace tr_z generating the ideal \mathscr{I}^{tr_z} consisting of the kernel of the degenerate form $B_{tr_z}(f,g) = tr_z(f \cdot g)$, and simultaneously the degenerate supertrace str_z generating the ideal \mathscr{I}^{str_z} consisting of the kernel of the degenerate form $B_{str_z}(f,g) = str_z(f \cdot g)$.

A question arises: is it true that $\mathcal{I}^{tr_z} = \mathcal{I}^{str_z}$?

Answer to this and other similar questions can be considerably simplified by considering only the singlet parts of these ideals.

The following theorem justifies this method:

Theorem 4.2. Let sp_1 and sp_2 be degenerate (super)traces on H. They generate the two-sided ideals \mathscr{I}_1 and \mathscr{I}_2 consisting of the kernels of bilinear forms $B_1(f,g) = \operatorname{sp}_1(f \cdot g)$ and $B_2(f,g) = \operatorname{sp}_2(f \cdot g)$, respectively.

Then $\mathcal{I}_1 = \mathcal{I}_2$ if and only if $\mathcal{I}_1 \cap H_0 = \mathcal{I}_2 \cap H_0$.

Proof. It suffices to prove that if $\mathscr{I}_1 \cap H_0 = \mathscr{I}_2 \cap H_0$, then $\mathscr{I}_1 = \mathscr{I}_2$.

Consider any non-zero element $f \in \mathscr{I}_1$. For any $g \in H$, we have $\operatorname{sp}_1(f \cdot g) = 0$, $f \cdot g \in \mathscr{I}_1$ and $(f \cdot g)_0 \in \mathscr{I}_1$. So $(f \cdot g)_0 \in \mathscr{I}_1 \cap H_0$. Due to hypotheses of this Theorem, $(f \cdot g)_0 \in \mathscr{I}_2 \cap H_0$, and hence $\operatorname{sp}_2((f \cdot g)_0) = 0$. Proposition 3.1 gives $\operatorname{sp}_2(f \cdot g) = \operatorname{sp}_2((f \cdot g)_0)$ which implies $\operatorname{sp}_2(f \cdot g) = 0$. Therefore, $f \in \mathscr{I}_2$.

Acknowledgments

The authors (S.K. and I.T.) are grateful to Russian Fund for Basic Research (grant No. 17-02-00317) for partial support of this work.

References

- [1] L. Brink, H. Hansson and M.A. Vasiliev, Explicit solution to the N-body Calogero problem, *Phys. Lett.*, **B286** (1992), 109–111.
- [2] F. Calogero, Solution of a three-body problem in one dimension, J. Math. Phys., 10 (1969), 2191–2196.
- [3] F. Calogero, Ground state of a one dimensional N-body problem, J. Math. Phys., 10 (1969), 2197–2200.
- [4] F. Calogero, Solution of the One-Dimensional N-Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials, *J. Math. Phys.*, **12** (1971), 419. https://doi.org/10.1063/1.1665604.
- [5] C.F. Dunkl, Differential-difference operators associated to reflection groups, *Trans. Amer. Math. Soc.*, **311** (1) (1989), 167–183. doi:10.2307/2001022.
- [6] P. Etingof and V. Ginqzburg, Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism, *Inv. Math.*, **147** (2002), 243–348.
- [7] S.E. Konstein, 3-particle Calogero Model: Supertraces and Ideals on the Algebra of Observables, *Teor. Mat. Fiz.*, **116** (1998), 122. arXiv:hep-th/9803213.
- [8] S.E. Konstein and R. Stekolshchik, Klein operator and the Number of Traces and Supertraces on the Superalgebra of Observables of Rational Calogero Model based on the Root System, *Journal of Nonlinear Mathematical Physics*, **20** (2) (2013), 295–308.
- [9] S.E. Konstein and I.V. Tyutin, Traces on the Algebra of Observables of the Rational Calogero Model Based on the Root System, *Journal of Nonlinear Mathematical Physics*, **20** (2) (2013), 271–294. arXiv:1211.6600
- [10] S.E. Konstein and I.V. Tyutin, The number of independent traces and supertraces on symplectic reflection algebras, *Journal of Nonlinear Mathematical Physics*, **21** (3) (2014), 308–335. arXiv:1308.3190
- [11] S.E. Konstein and I.V. Tyutin, Ideals generated by traces or by supertraces in the symplectic reflection algebra $H_{1,\nu}(I_2(2m+1))$, Journal of Nonlinear Mathematical Physics, **24** (3) (2017), 405–425. DOI:10.1080/14029251.2017.1341702; arXiv:1612.00536
- [12] S.E. Konstein and M.A. Vasiliev, Supertraces on the Algebras of Observables of the Rational Calogero Model with Harmonic Potential, *J. Math. Phys.*, **37** (1996), 2872.
- [13] M.A. Olshanetsky and A.M. Perelomov, Quantum integrable systems related to lie algebras, *Phys. Rep.*, **94** (6) (1983), 313–404. DOI: 10.1016/0370-1573(83)90018-2.
- [14] A. Polychronakos, Exchange operator formalism for integrable systems of particles, *Phys. Rev. Lett.*, **69** (1992), 703–705.
- [15] M.A. Vasiliev, Quantization on sphere and high-spin superalgebras, *JETP Letters*, **50** (1989), 377–379.
- [16] M.A. Vasiliev, Higher spin algebras and quantization on the sphere and hyperboloid, *Int. J. Mod. Phys.*, **A6** (07) (1991), 1115–1135. https://doi.org/10.1142/S0217751X91000605.