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If G is a finite Coxeter group, then symplectic reflection algebra H := H1,η (G) has Lie algebra sl2 of inner
derivations and can be decomposed under spin: H = H0⊕H1/2⊕H1⊕H3/2⊕ . . . We show that if the ideals
Ii (i = 1,2) of all the vectors from the kernel of degenerate bilinear forms Bi(x,y) := spi(x · y), where spi are
(super)traces on H, do exist, then I1 = I2 if and only if I1

⋂
H0 = I2

⋂
H0.

1. Preliminaries and notation

Let A be an associative superalgebra with parity π . All expressions of linear algebra are given
for homogenous elements only and are supposed to be extended to inhomogeneous elements via
linearity.

Definition 1.1. A linear function str on A is called a supertrace if

str( f ·g) = (−1)π( f )π(g)str(g · f ) for all f ,g ∈A .

Definition 1.2. A linear function tr on A is called a trace if

tr( f ·g) = tr(g · f ) for all f ,g ∈A .

We will use the notation “sp” and the term “(super)trace” to denote both cases, traces and super-
traces, simultaneously.
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2. The superalgebra of observables

Let V = RN be endowed with a positive definite symmetric bilinear form (·, ·). For any nonzero
~v ∈V , define the reflections r~v as follows:

r~v : ~x 7→~x−2
(~x,~v)
(~v,~v)

~v for any~x ∈V. (2.1)

A finite set of non-zero vectors R ⊂V is said to be a root system and any vector~v ∈R is called
a root if the following conditions hold:

i) R is r~w-invariant for any ~w ∈R,
ii) if~v1,~v2 ∈R are proportional to each other, then either~v1 =~v2 or~v1 =−~v2.
The Coxeter group G⊂ O(N,R)⊂ End(V ) generated by all reflections r~v with~v ∈R is finite.
We do not apply any conditions on the scalar products of the roots because we want to consider

both crystallographic and non-crystallographic root systems, e.g., I2(n) (see Theorem 4.1).
Let η be a complex-valued G-invariant function on R, i.e., η(~v) = η(~w) if r~v and r~w belong to

one conjugacy class of G.
We consider here the Symplectic Reflection (Super)algebra over complex numbers (see [6])

H := H1,η(G) and call it the superalgebra of observables of Calogero model based on root system
R. a

This algebra consists of noncommuting polynomials in 2N indeterminates aα
i , where α = 0,1

and i = 1, ..., N, with coefficients in C[G] satisfying the relations (see [6] Eq. (1.15))b

[aα
i ,a

β

j ] = ε
αβ

(
δi j + ∑

~v∈R
η(~v)

viv j

(~v,~v)
r~v

)
, (2.2)

and

r~vaα
i =

N

∑
j=1

(
δi j−2

viv j

(~v,~v)

)
aα

j r~v. (2.3)

Here εαβ is the antisymmetric tensor such that ε01 = 1, and vi (i = 1, ...,N) are the coordinates
of the vector~v. The commutation relations (2.2), (2.3) suggest to define the parity π by setting:

π(aα
i ) = 1 for any α, i; π(r~v) = 0 for any~v ∈R. (2.4)

and we can consider the algebra H as a superalgebra as well.

aThis algebra has a faithful representation via Dunkl differential-difference operators Di, see [5], acting on the space of
G-invariant smooth functions on V , namely âα

i = 1√
2
(xi +(−1)α Di), see [1,14]. The Hamiltonian of the Calogero model

based on the root system [2–4, 13] is the operator T̂ 01 defined in (3.2) (see [1] ). The wave functions are obtained in
this model via the standard Fock procedure with the Fock vacuum |0〉 such that â0

i |0〉=0 for all i by acting on |0〉 with
G-invariant polynomials of the â1

i .
bThe sign and coefficient of the sum in the rhs of Eq. (2.2) is chosen for obtaining the Calogero model in the form [1],
Eq. (1), Eq. (5), Eq. (9), Eq. (10) when R is of type AN−1.
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3. sl2

Observe an important property of the superalgebra H: the Lie (super)algebra of its inner derivations
contains the Lie subalgebra sl2 generated by operators

Dαβ : f 7→ Dαβ f = [T αβ , f ], (3.1)

where α,β = 0,1, and f ∈ H, and polynomials T αβ are defined as follows:

T αβ :=
1
2

N

∑
i=1

(
aα

i aβ

i +aβ

i aα
i

)
. (3.2)

These operators satisfy the following relations:

[Dαβ ,Dγδ ] = ε
αγDβδ + ε

αδ Dβγ + ε
βγDαδ + ε

βδ Dαγ , (3.3)

since

[T αβ ,T γδ ] = ε
αγT βδ + ε

αδ T βγ + ε
βγT αδ + ε

βδ T αγ .

It follows from Eq. (3.3) that the operators D00, D11 and D01 = D10 constitute an sl2-triple:

[D01, D11] = 2D11, [D01, D00] =−2D00, [D11, D00] =−4D01.

The polynomials T αβ commute with C[G], i.e., [T αβ , r~v] = 0, and act on the aα
i as on vectors

of the irreducible 2-dimensional sl2-modules:

Dαβ aγ

i =
[
T αβ , aγ

i

]
= ε

αγaβ

i + ε
βγaα

i , where i = 1, . . . ,N. (3.4)

We will denote this sl2 thus realized by the symbol SL2.
The subalgebra

H0 := { f ∈ H | Dαβ f = 0 for any α, β} ⊂ H (3.5)

is called the subalgebra of singlets.
Introduce also the subspaces Hs :=

⊕
∞
is=1 H is

s , which is the direct sum of all irreducible SL2-
modules H is

s of spin s, for s = 0, 1/2, 1, .... It is clear that H0 is the defined above subalgebra of
singlets.

The (super)algebra H can be decomposed in the following way

H = H0⊕Hrest , where Hrest := H1/2⊕H1⊕H3/2⊕ . . . .

Then each element f ∈ H can be represented in the form f = f0 + frest , where f0 ∈ H0 and frest ∈
Hrest .

Note, that since SL2 is generated by inner derivations and T αβ are even elements, each two-
sided ideal I ⊂ H can be decomposed in an analogous way: I = I0⊕I1/2⊕ ....

Since T αβ are even elements of the superalgebra H, we have sp(Dαβ f ) = 0 for any (super)trace
sp on H, and hence the following proposition takes placec:

Proposition 3.1. sp( f ) = sp( f0) for any f ∈ H and any (super)trace sp on H.

cThis elementary fact is known for a long time, see, eg, [12].

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

9



S.E. Konstein and I.V. Tyutin / Connection between the ideals generated by traces and by supertraces ...

Proof. If s 6= 0, then the elements of the form Dαβ f , where α, β = 0, 1, and f ∈ H is
s , f 6= 0, span

the irreducible SL2-module H is
s . This implies sp f = 0 for any (super)trace on H and any f ∈ Hrest .

�

4. The (super)traces on H

It is shown in [9, 10, 12] that the algebra H has a multitude of independent (super)traces. For the
list of dimensions of the spaces of the (super)traces on H1,η(M) for all finite Coxeter groups M,
see [8]. In particular, there is an m-dimensional space of traces and an (m+ 1)-dimensional space
of supertraces on H1,η(I2(2m+1)).

Every (super)trace sp(·) on any associative (super)algebra A generates the following bilinear
form on A :

Bsp( f ,g) = sp( f ·g) for any f ,g ∈A . (4.1)

It is obvious that if such a bilinear form Bsp is degenerate, then the kernel of this form (i.e., the
set of all vectors f ∈A such that Bsp( f ,g) = 0 for any g ∈A ) is the two-sided ideal I sp ⊂A .

The ideals of this sort are found, for example, in [11, Theorem 9.1] (generalizing the results
of [15, 16] and [7] for the two- and three-particle Calogero models).

Theorem 9.1 from [11] may be shortened to the following theorem:

Theorem 4.1. Let m ∈ Z, where m> 1 and n = 2m+1. Then

1) The associative algebra H1,η(I2(n)) has nonzero traces trη such that the symmetric invariant
bilinear form Btrη

(x,y) = trη(x ·y) is degenerate if and only if η = z
n , where z∈Z\nZ. For each

such z, all nonzero degenerate traces on H1,z/n(I2(n)) are proportional to each other.
2) The associative superalgebra H1,η(I2(n)) has nonzero supertraces strη such that the supersym-

metric invariant bilinear form Bstrη
(x,y) = strη(x · y) is degenerate if η = z

n , where z ∈ Z\nZ.
For each such z, all nonzero degenerate supertraces on H1,z/n(I2(n)) are proportional to each
other.

3) The associative superalgebra H1,η(I2(n)) has nonzero supertraces strη such that the supersym-
metric invariant bilinear form Bstrη

(x,y) = strη(x · y) is degenerate if η = z+ 1
2 , where z ∈ Z.

For each such z, all nonzero degenerate supertraces on H1,z+1/2(I2(n)) are proportional to each
other.

4) For all other values of η , all nonzero traces and supertraces are nondegenerate.

Theorem 4.1 implies that if z ∈ Z\nZ, then there exists the degenerate trace trz generating the
ideal I trz consisting of the kernel of the degenerate form Btrz( f ,g) = trz( f ·g), and simultaneously
the degenerate supertrace strz generating the ideal I strz consisting of the kernel of the degenerate
form Bstrz( f ,g) = strz( f ·g).

A question arises: is it true that I trz = I strz?
Answer to this and other similar questions can be considerably simplified by considering only

the singlet parts of these ideals.
The following theorem justifies this method:

Theorem 4.2. Let sp1 and sp2 be degenerate (super)traces on H. They generate the two-sided ideals
I1 and I2 consisting of the kernels of bilinear forms B1( f ,g) = sp1( f ·g) and B2( f ,g) = sp2( f ·g),
respectively.
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Then I1 = I2 if and only if I1
⋂

H0 = I2
⋂

H0.

Proof. It suffices to prove that if I1
⋂

H0 = I2
⋂

H0, then I1 = I2.
Consider any non-zero element f ∈I1. For any g ∈ H, we have sp1( f ·g) = 0, f ·g ∈I1 and

( f · g)0 ∈ I1. So ( f · g)0 ∈ I1
⋂

H0. Due to hypotheses of this Theorem, ( f · g)0 ∈ I2
⋂

H0, and
hence sp2(( f ·g)0) = 0. Proposition 3.1 gives sp2( f ·g) = sp2(( f ·g)0) which implies sp2( f ·g) = 0.

Therefore, f ∈I2. �
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