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A simple procedure for obtaining the mass spectrum of 2-dimensional Toda lattice of E8 type is given.

1. Introduction. Basics

Let us recall several definitions; for more details, see the book [10].
Let g be a simple Lie algebra of rank l, let R+ (resp. R−) be the set of its positive (resp. negative)

roots, and {α1, . . . ,αl} be the set of simple roots. Let W be the Weyl group of the root system R
acting in the space V = Rl , let (·, ·) be the non-degenerate W -invariant bilinear form in V , δ =

∑1≤ j≤l n jα j be the highest root, α0 =−δ , and h = 1+∑1≤ j≤l n j be the Coxeter number.
The 2-dimensional Toda lattice is 2-dimensional relativistic field theory describing l interacting

scalar fields. The 2-dimensional Toda lattice is related with sl(n).
In the paper [8], the 2-dimensional Toda lattice was generalized for the case of any simple

finite-dimensional Lie algebra g; it was shown that the generalized construction has remarkable
integrability properties. This is a relativistic system with Lagrangian

L =
1
2

∂µ ∂
µ

φ −U(φ), where µ = 0, 1 and φ = φ(x0, x1) is an l-dimensional vector.

The potential U(φ) is constructed using the set of simple roots {α j}l
j=0 of the simple Lie algebra

g of rank l:

U(φ) = ∑
0≤ j≤l

exp(2α j, φ).

In [8], the mass spectrum of scalar fields was found for all simple Lie algebras, except for the
most complicated case g= E8. For this algebra only numerical result was given.

In this note I describe two simple methods for obtaining the mass spectrum in the E8 case. Note
that both methods work also for any other finite-dimensional simple Lie algebra.

The numbering of simple roots of the Lie algebra E8 is given on the Dynkin diagram:

g g g
g

gg g g
α1 α2 α3 α4 α5

α8

α6 α7

The Dynkin diagram for the Lie algebra E8.
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For this numbering, the highest root δ has the form

δ = 2α1 +3α2 +4α3 +5α4 +6α5 +4α6 +2α7 +3α8.

Observe that in 1989 A.B. Zamolodchikov discovered, using conformal theory, that this system
appears also in the Ising model with nonzero magnetic field and explicitly calculated the mass
spectrum, see [13]. The four mass ratios are equal to the “golden ratio”

r =

√
5+1
2

= 2cos
(

π

5

)
= 1.6180339887...

This remarkable property is related to the fact that the Coxeter number h = 30 of the Lie algebra E8

is divisible by 5.
In 2010, Zamolodchikov’s theory was experimentally confirmed for 1-dimensional Ising ferro-

magnet (cobalt niobate) near its critical point [2].

2. Method 1

As it was shown in papers [1, 5] the masses of particles are proportional to the components of a
special eigenvector of the matrix A = 2I−C, where C is the Cartan matrix of g. This eigenvector is
called the Perron–Frobenius vector, see [6, 12]. For g= E8, we have

A =



0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0


The characteristic equation of this matrix is

x8−7x6 +14x4−8x2 +1 = 0,

and its roots are

x j = 2 cos(a j θ), where θ =
π

h
, and h = 30 is the Coxeter number;

the numbers a j ∈ {1, 7, 11, 13, 17, 19, 23, 29} for 1 ≤ j ≤ 8 are called the exponents of E8. Note
that they have no common divisors with the Coxeter number.

Note also that x5 =−x4, x6 =−x3, x7 =−x2, x8 =−x1. Let us give the expressions of the x j in
terms of radicals (these expressions might be used in calculations):

x1 =
1
2

√
7+
√

5+
√

30+6
√

5, x2 =
1
2

√
7+
√

5−
√

30+6
√

5,

x3 =
1
2

√
7−
√

5+
√

30−6
√

5, x4 =
1
2

√
7−
√

5−
√

30−6
√

5.

The matrix A has nonnegative elements and according to the Perron–Frobenius theorem [6, 12]
it has a unique eigenvector (the Perron-Frobenius eigenvectors)

u = (u1,u2,u3,u4,u5,u6,u7,u8)
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all coordinates of which are positive. This eigenvector corresponds to the maximal eigenvalue λ =

2cos(θ) and we have

uA = λ u ,

or, in more details,

u2 = λ u1, u1 +u3 = λ u2, u2 +u4 = λ u3, u3 +u5 = λ u4,

u4 +u6 +u8 = λ u5, u5 +u7 = λ u6, u6 = λ u7, u5 = λ u8 .

Solving the system of these equations, and fixing u1 = 2sin(θ), we obtain:

u =

(
2sin(θ),2sin(2θ),2sin(3θ),2sin(4θ),2sin(5θ),

sin(2θ)

sin(3θ)
,

sin(θ)
sin(3θ)

,
sin(θ)

sin(2θ)

)
, (2.1)

or, approximately,

u = (0.2091; 0.4158; 0.6180; 0.8135; 1 ; 0.6728; 0.3383; 0.5028).

Note that from eq. (2.1) it follows that (recall that θ =
π

30
)

u7

u1
= r,

u6

u2
= r,

u5

u3
= r,

u4

u8
= r, where r =

1+
√

5
2

= 2cos
(

π

5

)
. (2.2)

This is a very nice solution, because these expressions for u j can be written immediately just by
looking at the Dynkin diagram of E8.

Observe that for any simple Lie algebra the eigenvector corresponding to the maximal eigen-
value can also be written just by looking at the corresponding Dynkin diagram.

Let me also give expressions for some trigonometric quantities in terms of radicals (and use this
occasion to correct a typo in the definition of H3 on p. 382 of [9], where ε = 2cos

(π

3
)

should be

ε = 2cos
(π

5
)
)

2cos
(

π

5

)
=

1+
√

5
2

= r, 2sin
(

π

5

)
=

√
5−
√

5
2

,

2cos
(

π

10

)
=

√
5+
√

5
2

2sin
(

π

10

)
=

√
3−
√

5
2

,

2cos
(

π

15

)
=

1
2

√
9+
√

5+2
√

3

√
5−
√

5
2

, 2sin
(

π

15

)
=

1
2

√
7−
√

5−2
√

3

√
5−
√

5
2

,

2cos
(

π

30

)
=

1
2

√
7+
√

5+2
√

3

√
5+
√

5
2

, 2sin
(

π

30

)
=

1
2

√
9−
√

5−2
√

3

√
5+
√

5
2

.
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3. Method 2

In the paper [8] it was shown that the squares of masses are eigenvalues of the 8×8 matrix whose
elements are

Ba,b = ∑
0≤ j≤l

n jα
a
j α

b
j , where n0 = 1,

and where quantities αa
j are coordinates of the vector α j, and the n j for j > 0 are coordinates of the

vector δ = ∑1≤ j≤l n jα j.
For the Lie algebra E8, the characteristic polynomial P of this matrix is

P = x8−60x7 +1440x6−18000x5 +127440x4−518400x3 +1166400x2−1296000x+518400.

In the paper [1], it was observed that P = P1 P2, where

P1 = x4−30x3 +240x2−720x+720, P2 = x4−30x3 +300x2−1080x+720.

It is easy to check that the roots of polynomial P1 (resp. P2) are

m2
1, m2

3, m2
4, m2

6 (resp. m2
2, m2

5, m2
7, m2

8).

Note that

u2u5u7u8 = u1u3u4u6, and m2
j = Mu2

j . (3.1)

The quantity M = 2
√

3 sin(6θ)
sin(θ) can be found from the equation

M4(u2u5u7u8)
2 = 720.

So, formula (3.1) gives a relation between methods 1 and 2.
Let me give also the explicit expression for quantities m2

j in terms of radicals:

m2
5 =

1
2

√
15+3

√
5+
√

6
√

25+11
√

5, m2
4 =

1
2

√
15+3

√
5+
√

6
√

5−
√

5 ,

m2
7 =

1
2

√
15+3

√
5−
√

6
√

25+11
√

5, m2
6 =

1
2

√
15+3

√
5−
√

6
√

5−
√

5 ,

m2
8 =

1
2

√
15−3

√
5+
√

6
√

25−11
√

5, m2
3 =

1
2

√
15−3

√
5+
√

6
√

5+
√

5 ,

m2
2 =

1
2

√
15−3

√
5−
√

6
√

25−11
√

5, m2
1 =

1
2

√
15−3

√
5−
√

6
√

5+
√

5 .

4. Conclusion

The remarkable property of the system under consideration is that the four mass ratios in (2.2) are
equal to the “golden ratio”.

This is one more phenomenon of many in which the golden ratio appears. The golden ratio has a
very long history, see e.g., the book [4, Ch. 11]. The first book on this topic, “Divina Proportione”,
illustrated by Leonardo da Vinci, was published by Italian mathematician Luca Paccioli in 1509
[11].

Concluding, I would like to give here a quotation of the outstanding astronomer and mathemati-
cian Johannes Kepler [7]: “Geometry has two treasures: one of them is the Pythagorean theorem,
and the other is dividing the segment in average and extreme respect ... The first can be compared
to the measure of gold; the second is more like a gem”.
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