ATLANTIS

Journal of Nonlinear Mathematical Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251
Journal Home Page: https://www.atlantis-press.com/journals/jnmp

Remarks on the mass spectrum of two-dimensional Toda lattice of E_{8} type
 Askold M. Perelomov

To cite this article: Askold M. Perelomov (2020) Remarks on the mass spectrum of twodimensional Toda lattice of E_{8} type, Journal of Nonlinear Mathematical Physics 27:1, 1216, DOI: https://doi.org/10.1080/14029251.2020.1683961

To link to this article: https://doi.org/10.1080/14029251.2020.1683961

Published online: 04 January 2021

Remarks on the mass spectrum of two-dimensional Toda lattice of E_{8} type

Askold M. Perelomov
Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia
aperelomo@gmail.com

Received 10 March 2019
Accepted 12 April 2019

A simple procedure for obtaining the mass spectrum of 2-dimensional Toda lattice of E_{8} type is given.

1. Introduction. Basics

Let us recall several definitions; for more details, see the book [10].
Let \mathfrak{g} be a simple Lie algebra of rank l, let R_{+}(resp. R_{-}) be the set of its positive (resp. negative) roots, and $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be the set of simple roots. Let W be the Weyl group of the root system R acting in the space $V=\mathbb{R}^{l}$, let (\cdot, \cdot) be the non-degenerate W-invariant bilinear form in $V, \delta=$ $\sum_{1 \leq j \leq l} n_{j} \alpha_{j}$ be the highest root, $\alpha_{0}=-\delta$, and $h=1+\sum_{1 \leq j \leq l} n_{j}$ be the Coxeter number.

The 2-dimensional Toda lattice is 2 -dimensional relativistic field theory describing l interacting scalar fields. The 2-dimensional Toda lattice is related with $\mathfrak{s l}(n)$.

In the paper [8], the 2-dimensional Toda lattice was generalized for the case of any simple finite-dimensional Lie algebra \mathfrak{g}; it was shown that the generalized construction has remarkable integrability properties. This is a relativistic system with Lagrangian

$$
L=\frac{1}{2} \partial_{\mu} \partial^{\mu} \phi-U(\phi), \text { where } \mu=0,1 \text { and } \phi=\phi\left(x_{0}, x_{1}\right) \text { is an } l \text {-dimensional vector. }
$$

The potential $U(\phi)$ is constructed using the set of simple roots $\left\{\alpha_{j}\right\}_{j=0}^{l}$ of the simple Lie algebra \mathfrak{g} of rank l :

$$
U(\phi)=\sum_{0 \leq j \leq l} \exp \left(2 \alpha_{j}, \phi\right) .
$$

In [8], the mass spectrum of scalar fields was found for all simple Lie algebras, except for the most complicated case $\mathfrak{g}=E_{8}$. For this algebra only numerical result was given.

In this note I describe two simple methods for obtaining the mass spectrum in the E_{8} case. Note that both methods work also for any other finite-dimensional simple Lie algebra.

The numbering of simple roots of the Lie algebra E_{8} is given on the Dynkin diagram:

The Dynkin diagram for the Lie algebra E_{8}.

For this numbering, the highest root δ has the form

$$
\delta=2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+5 \alpha_{4}+6 \alpha_{5}+4 \alpha_{6}+2 \alpha_{7}+3 \alpha_{8}
$$

Observe that in 1989 A.B. Zamolodchikov discovered, using conformal theory, that this system appears also in the Ising model with nonzero magnetic field and explicitly calculated the mass spectrum, see [13]. The four mass ratios are equal to the "golden ratio"

$$
r=\frac{\sqrt{5}+1}{2}=2 \cos \left(\frac{\pi}{5}\right)=1.6180339887 \ldots
$$

This remarkable property is related to the fact that the Coxeter number $h=30$ of the Lie algebra E_{8} is divisible by 5 .

In 2010, Zamolodchikov's theory was experimentally confirmed for 1-dimensional Ising ferromagnet (cobalt niobate) near its critical point [2].

2. Method 1

As it was shown in papers $[1,5]$ the masses of particles are proportional to the components of a special eigenvector of the matrix $\mathrm{A}=2 \mathrm{I}-\mathrm{C}$, where C is the Cartan matrix of \mathfrak{g}. This eigenvector is called the Perron-Frobenius vector, see $[6,12]$. For $\mathfrak{g}=E_{8}$, we have

$$
\mathrm{A}=\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

The characteristic equation of this matrix is

$$
x^{8}-7 x^{6}+14 x^{4}-8 x^{2}+1=0,
$$

and its roots are

$$
x_{j}=2 \cos \left(a_{j} \theta\right), \text { where } \theta=\frac{\pi}{h} \text {, and } h=30 \text { is the Coxeter number; }
$$

the numbers $a_{j} \in\{1,7,11,13,17,19,23,29\}$ for $1 \leq j \leq 8$ are called the exponents of E_{8}. Note that they have no common divisors with the Coxeter number.

Note also that $x_{5}=-x_{4}, x_{6}=-x_{3}, x_{7}=-x_{2}, x_{8}=-x_{1}$. Let us give the expressions of the x_{j} in terms of radicals (these expressions might be used in calculations):

$$
\begin{array}{ll}
x_{1}=\frac{1}{2} \sqrt{7+\sqrt{5}+\sqrt{30+6 \sqrt{5}}}, & x_{2}=\frac{1}{2} \sqrt{7+\sqrt{5}-\sqrt{30+6 \sqrt{5}}}, \\
x_{3}=\frac{1}{2} \sqrt{7-\sqrt{5}+\sqrt{30-6 \sqrt{5}}}, & x_{4}=\frac{1}{2} \sqrt{7-\sqrt{5}-\sqrt{30-6 \sqrt{5}}} .
\end{array}
$$

The matrix A has nonnegative elements and according to the Perron-Frobenius theorem $[6,12]$ it has a unique eigenvector (the Perron-Frobenius eigenvectors)

$$
u=\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}\right)
$$

all coordinates of which are positive. This eigenvector corresponds to the maximal eigenvalue $\lambda=$ $2 \cos (\theta)$ and we have

$$
u \mathrm{~A}=\lambda u,
$$

or, in more details,

$$
\begin{array}{llll}
u_{2}=\lambda u_{1}, & u_{1}+u_{3}=\lambda u_{2}, & u_{2}+u_{4}=\lambda u_{3}, & u_{3}+u_{5}=\lambda u_{4} \\
u_{4}+u_{6}+u_{8}=\lambda u_{5}, & u_{5}+u_{7}=\lambda u_{6}, & u_{6}=\lambda u_{7}, & u_{5}=\lambda u_{8}
\end{array}
$$

Solving the system of these equations, and fixing $u_{1}=2 \sin (\theta)$, we obtain:

$$
\begin{equation*}
u=\left(2 \sin (\theta), 2 \sin (2 \theta), 2 \sin (3 \theta), 2 \sin (4 \theta), 2 \sin (5 \theta), \frac{\sin (2 \theta)}{\sin (3 \theta)}, \frac{\sin (\theta)}{\sin (3 \theta)}, \frac{\sin (\theta)}{\sin (2 \theta)}\right) \tag{2.1}
\end{equation*}
$$

or, approximately,

$$
u=(0.2091 ; 0.4158 ; 0.6180 ; 0.8135 ; 1 ; 0.6728 ; 0.3383 ; 0.5028)
$$

Note that from eq. (2.1) it follows that (recall that $\theta=\frac{\pi}{30}$)

$$
\begin{equation*}
\frac{u_{7}}{u_{1}}=r, \frac{u_{6}}{u_{2}}=r, \frac{u_{5}}{u_{3}}=r, \frac{u_{4}}{u_{8}}=r, \text { where } r=\frac{1+\sqrt{5}}{2}=2 \cos \left(\frac{\pi}{5}\right) \tag{2.2}
\end{equation*}
$$

This is a very nice solution, because these expressions for u_{j} can be written immediately just by looking at the Dynkin diagram of E_{8}.

Observe that for any simple Lie algebra the eigenvector corresponding to the maximal eigenvalue can also be written just by looking at the corresponding Dynkin diagram.

Let me also give expressions for some trigonometric quantities in terms of radicals (and use this occasion to correct a typo in the definition of H_{3} on p. 382 of [9], where $\varepsilon=2 \cos \left(\frac{\pi}{3}\right)$ should be $\left.\varepsilon=2 \cos \left(\frac{\pi}{5}\right)\right)$

$$
\begin{array}{lll}
2 \cos \left(\frac{\pi}{5}\right)=\frac{1+\sqrt{5}}{2}=r, & 2 \sin \left(\frac{\pi}{5}\right)=\sqrt{\frac{5-\sqrt{5}}{2}} \\
2 \cos \left(\frac{\pi}{10}\right)=\sqrt{\frac{5+\sqrt{5}}{2}} & 2 \sin \left(\frac{\pi}{10}\right)=\sqrt{\frac{3-\sqrt{5}}{2}} \\
2 \cos \left(\frac{\pi}{15}\right)=\frac{1}{2} \sqrt{9+\sqrt{5}+2 \sqrt{3} \sqrt{\frac{5-\sqrt{5}}{2}},} & 2 \sin \left(\frac{\pi}{15}\right)=\frac{1}{2} \sqrt{7-\sqrt{5}-2 \sqrt{3} \sqrt{\frac{5-\sqrt{5}}{2}}} \\
2 \cos \left(\frac{\pi}{30}\right)=\frac{1}{2} \sqrt{7+\sqrt{5}+2 \sqrt{3} \sqrt{\frac{5+\sqrt{5}}{2}},} & 2 \sin \left(\frac{\pi}{30}\right)=\frac{1}{2} \sqrt{9-\sqrt{5}-2 \sqrt{3} \sqrt{\frac{5+\sqrt{5}}{2}}}
\end{array}
$$

3. Method 2

In the paper [8] it was shown that the squares of masses are eigenvalues of the 8×8 matrix whose elements are

$$
B_{a, b}=\sum_{0 \leq j \leq l} n_{j} \alpha_{j}^{a} \alpha_{j}^{b}, \text { where } n_{0}=1,
$$

and where quantities α_{j}^{a} are coordinates of the vector α_{j}, and the n_{j} for $j>0$ are coordinates of the vector $\delta=\sum_{1 \leq j \leq l} n_{j} \alpha_{j}$.

For the Lie algebra E_{8}, the characteristic polynomial P of this matrix is

$$
P=x^{8}-60 x^{7}+1440 x^{6}-18000 x^{5}+127440 x^{4}-518400 x^{3}+1166400 x^{2}-1296000 x+518400
$$

In the paper [1], it was observed that $P=P_{1} P_{2}$, where

$$
P_{1}=x^{4}-30 x^{3}+240 x^{2}-720 x+720, \quad P_{2}=x^{4}-30 x^{3}+300 x^{2}-1080 x+720
$$

It is easy to check that the roots of polynomial P_{1} (resp. P_{2}) are

$$
m_{1}^{2}, m_{3}^{2}, m_{4}^{2}, m_{6}^{2}\left(\text { resp. } m_{2}^{2}, m_{5}^{2}, m_{7}^{2}, m_{8}^{2}\right)
$$

Note that

$$
\begin{equation*}
u_{2} u_{5} u_{7} u_{8}=u_{1} u_{3} u_{4} u_{6}, \text { and } m_{j}^{2}=M u_{j}^{2} \tag{3.1}
\end{equation*}
$$

The quantity $M=2 \sqrt{3} \frac{\sin (6 \theta)}{\sin (\theta)}$ can be found from the equation

$$
M^{4}\left(u_{2} u_{5} u_{7} u_{8}\right)^{2}=720
$$

So, formula (3.1) gives a relation between methods 1 and 2 .
Let me give also the explicit expression for quantities m_{j}^{2} in terms of radicals:

$$
\begin{array}{ll}
m_{5}^{2}=\frac{1}{2} \sqrt{15+3 \sqrt{5}+\sqrt{6} \sqrt{25+11 \sqrt{5}},} & m_{4}^{2}=\frac{1}{2} \sqrt{15+3 \sqrt{5}+\sqrt{6} \sqrt{5-\sqrt{5}}}, \\
m_{7}^{2}=\frac{1}{2} \sqrt{15+3 \sqrt{5}-\sqrt{6} \sqrt{25+11 \sqrt{5}}}, & m_{6}^{2}=\frac{1}{2} \sqrt{15+3 \sqrt{5}-\sqrt{6} \sqrt{5-\sqrt{5}}}, \\
m_{8}^{2}=\frac{1}{2} \sqrt{15-3 \sqrt{5}+\sqrt{6} \sqrt{25-11 \sqrt{5}}}, & m_{3}^{2}=\frac{1}{2} \sqrt{15-3 \sqrt{5}+\sqrt{6} \sqrt{5+\sqrt{5}}} \\
m_{2}^{2}=\frac{1}{2} \sqrt{15-3 \sqrt{5}-\sqrt{6} \sqrt{25-11 \sqrt{5}},} & m_{1}^{2}=\frac{1}{2} \sqrt{15-3 \sqrt{5}-\sqrt{6} \sqrt{5+\sqrt{5}}}
\end{array}
$$

4. Conclusion

The remarkable property of the system under consideration is that the four mass ratios in (2.2) are equal to the "golden ratio".

This is one more phenomenon of many in which the golden ratio appears. The golden ratio has a very long history, see e.g., the book [4, Ch. 11]. The first book on this topic, "Divina Proportione", illustrated by Leonardo da Vinci, was published by Italian mathematician Luca Paccioli in 1509 [11].

Concluding, I would like to give here a quotation of the outstanding astronomer and mathematician Johannes Kepler [7]: "Geometry has two treasures: one of them is the Pythagorean theorem, and the other is dividing the segment in average and extreme respect ... The first can be compared to the measure of gold; the second is more like a gem".

Acknowledgments

I am thankful to D. Leites who improved my English in this article.

References

[1] Braden H. W., Corrigan E., Dorey P.E., and Sasaki R., Affine Toda field theory and exact S-matrices. Nucl. Phys., B338 (1990), 689-746.
[2] Coldea R., Tennant D.A., Wheeler E.M., Wawrzynska E., Prabhakaran, Telling M., Habnicht D.K., Smeibidl P., and Kiefer K., Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E_{8} Symmetry, Science, 327 (2010), Issue 5962, 177-180.
[3] Corrigan E., Recent developments in affine Toda quantum field theory. In: G. Semenoff, L. Vinet (eds.), Particles and Fields, Springer, New York, NY (1999) 1-34; arXiv:hep-th/9412213.
[4] Coxeter H.S.M., Introduction to Geometry, Cambridge Univ. Press, (1961).
[5] Freeman M.D., On the mass spectrum of affine Toda field theory. Phys. Lett., B261 (1991), 57-61.
[6] Frobenius G., Über Matrizen aus nicht negativen Elementen, Sitzungsber. Konigl. Preuss. Akad. Wiss., (1912) 456-477.
[7] Kepler J., Misterium Cosmographicum, (1596) For full text scan in Latin, see https://www.e-rara.ch/doi/10.3931/e-rara-445, 181 pp .
[8] Mikhailov A.V., Olshanetsky M.A., and Perelomov A.M., Two-dimensional generalized Toda lattices; Preprint ITEP-64 (1980); Commun. Math. Phys. 79 (1981), 473-488.
[9] Olshanetsky M.A., and Perelomov A.M., Quantum integrable systems related to Lie algebras. Physics Reports (Review Section of Physics Letters), 94 (6) (1983), 313-404.
[10] Onishchik A.L., and Vinberg V.B., Lie Groups and Algebraic Groups, Springer, (1990).
[11] Paccioli L., Divina Proportione, (1509). For the English translation of the full text of the original 1498 edition, see https://www.scribd.com/document/244035060/tennenbaum-pacioli-divine-proportion-pdf
[12] Perron O., Zur Theorie der Matrices. Math. Ann., 64 (1907) 248-263.
[13] Zamolodchikov A.B., Integrals of Motion and S-matrix of the (Scaled) T=Tc Ising Model with Magnetic Field. Int. J. Mod. Phys., 4 (16) (1989), 4235-4248.

