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Based on the Lenard recursion relation and the zero-curvature equation, we derive a hierarchy of long wave-
short wave type equations associated with the 3× 3 matrix spectral problem with three potentials. Resorting
to the characteristic polynomial of the Lax matrix, a trigonal curve is defined, on which the Baker-Akhiezer
function and two meromorphic functions are introduced. Analyzing some properties of the meromorphic func-
tions, including asymptotic expansions at infinite points, we obtain the essential singularities and divisor of
the Baker-Akhiezer function. Utilizing the theory of algebraic curves, quasi-periodic solutions for the entire
hierarchy are finally derived in terms of the Riemann theta function.
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1. Introduction

Soliton equations have caught a great deal of attention for describing and explaining nonlinear phe-
nomena in theoretical physics, fluid mechanics, nonlinear optics, plasma physics and other subjects
[1]. Besides some famous equations such as the Korteweg-de Vries, sine-Gordon, Boussinesq and
Kadomtsev Petviashvili equations [1, 31, 47, 50], a lot of new models possessing great significance
have been proposed, for example, the Camassa-Holm, Degasperis-Procesi, Novikov, and Geng-Xue
equations etc [6, 10, 22, 23, 30, 35–37]. As the research moves along, more and more systematic
methods have been developed to solve these soliton systems [1, 4, 14, 17, 29, 33, 44]. For examples,
the inverse scattering transformation [1, 17], the bilinear transformation methods of Hirota [29],
the Bäcklund and Darboux transformations [44], algebro-geometric method [4, 14, 32, 33] and oth-
ers [19, 42].

Since 1970s, various methods in a series of papers [3, 4, 7, 9, 14, 18, 24, 26, 32–34, 41, 51] were
developed on the basis of the theory of hyperelliptic curves to obtain quasi-periodic solutions of
soliton equations associated with 2× 2 matrix spectral problems such as the KdV, KP, nonlinear
Schrödinger, Camassa-Holm, Toda lattice, Ablowitz-Ladik equations and so on. However, it is the
trigonal curve [5, 11, 15, 49] rather than the hyperelliptic curve that is the theoretic foundation to
obtain the quasi-periodic solutions to soliton equations related to the third order spectral problems.
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Although the reduction theory of Riemann theta functions has been applied to study quasi-periodic
solutions of the Boussinesq equation in a few of literature [2, 43, 45, 46, 52–55], the method is not
a general scheme to construct quasi-periodic solutions of completely integrable systems. In 1999,
Dickson and his partners proposed a unified framework which yields all algebro-geometric quasi-
periodic solutions of the entire Boussinesq hierarchy [12, 13]. Shortly after that, this method was
generalized to deal with the modified Boussinesq and the Kaup-Kupershmidt hierarchies [20, 21]
based on the trigonal curve introduced by the characteristic polynomial of the Lax matrix. The trig-
onal curves in [12,13,20,21] have one collective feature, that is, one infinite point which is a branch
point with the triple root. Recently, the research has developed to get the quasi-periodic solutions
to the coupled modified Korteweg-de Vries hierarchy, the three wave resonant interaction hierarchy
and the four-component AKNS soliton hierarchy associated with the trigonal curves having three
different infinite points which are not branch points [25, 28, 39, 40].

In this paper, we first derive a hierarchy of long wave-short wave type equations associated with
the 3×3 matrix spectral problem with three potentials. The first nontrivial member in the hierarchy
is the long wave-short wave type system

ut = 2(vw)x,

vt = vxx−uvx,

wt = −wxx−uwx.

(1.1)

Equation (1.1) reduces to

ut = 2(|v|2)x, vt =−ivxx−uvx, (1.2)

if x→−ix, t→−it, w = v∗, which is different from the standard long wave-short wave resonance
system [8, 38, 56]. Another principal subject of the present paper is to construct quasi-periodic
solutions for the long wave-short wave type hierarchy on the basis of the theory of algebraic curves.
To this end, one introduces the trigonal curve with the aid of the characteristic polynomial of the
Lax matrix. A distinguishing feature for the trigonal curve associated with the hierarchy is that it
has two infinite points, one of which is a double branch point and the other is not a branch point.
Compared with references [12, 13, 20, 21, 25, 28, 39, 40], the trigonal curve in this paper is more
general. Therefore, we need to reinvestigate the local coordinates near infinite points, the Abelian
differentials and other basic properties.

The outline of this paper is as follows. In section 2, we consider a 3× 3 matrix spectral prob-
lem with three potentials and derive a hierarchy of nonlinear evolution equations with the aid of
three sets of Lenard recursion equations and the stationary zero-curvature equation. In section 3, a
trigonal curve is introduced by using the characteristic polynomial of the Lax matrix, on which the
Baker-Akhiezer function together with two related meromorphic functions is given. Based on the
asymptotic properties of the two meromorphic functions near the infinite points, the essential singu-
larities of Baker-Akhiezer function are derived. Accordingly, the Abelian differentials of the second
kind are given for the purpose of representation. In section 4, we investigate some properties of
the two meromorphic functions and obtain the Dubrovin-type equations. Subsequently, we derive
divisors of meromorphic functions and the Baker-Akhiezer function which are necessary for the
construction of the quasi-periodic solutions. Section 5 finally constructs the Riemann theta function
representations for the long wave-short wave type hierarchy according to the asymptotic properties
and the quasi-periodic characters of the meromorphic function and the Baker-Akhiezer function.
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2. A long wave-short wave type hierarchy

In this section, we shall derive a hierarchy of long wave-short wave type models. To this end, we
consider a 3×3 matrix spectral problem with three potentials

ψx =Uψ, ψ =

ψ1

ψ2

ψ3

 , U =

u λ v
1 0 0
w 0 0

 , (2.1)

where u, v, w are three potentials, and λ a constant spectral parameter. We first introduce three sets
of Lenard recursion equations:

Ks j = Js j+1, j ≥ 0, s j |(u,v,w)=0= 0, j ≥ 1,
Kŝ j = Jŝ j+1, j ≥ 0, ŝ j |(u,v,w)=0= 0, j ≥ 1,
Ks̃ j = Js̃ j+1, j ≥ 0, s̃ j |(u,v,w)=0= 0, j ≥ 1,

(2.2)

where the two operators are defined as

K =


−vw∂ ∂u−∂ 2 w∂ ∂v+ v∂ 0

uv∂ −∂v∂ ∂v− v∂ ∂ 2−u∂ v2 −v
0 ∂w+w∂ 0 −∂ 2−u∂ − vw w

−∂ 2−u∂ 2∂ w −v 0
vw∂ 0 −w∂ −v∂ ∂

 , (2.3)

J =


−2∂ 0 0 0 0
−v 0 1 0 0
w 0 0 −1 0

−∂ 2−u∂ 2∂ w −v 0
vw∂ 0 −w∂ −v∂ ∂

 , (2.4)

and the starting points s0 = (0,0,0,0,1)T , ŝ0 = (0,1,0,0,0)T , s̃0 = (1,0,v,w,vw)T . Then the
sequences s j, ŝ j, s̃ j can be determined uniquely. For example, the first three members read as

s1 =


0
0
−v
−w
−vw

 , ŝ1 =


−1

2 u
−1

4 ux− 1
8 u2− 1

2 vw
vx− 1

2 uv
−wx− 1

2 uw
vxw− vwx− 1

2 uvw

 , s̃1 =


−vw
−vxw

vxx−uvx− v2w
wxx +uwx− vw2

s̃(5)1

 , (2.5)

where

s̃(5)1 = vxxw− vxwx + vwxx−uvxw+uvwx− v2w2.

In order to generate a hierarchy of nonlinear evolution equations associated with the spectral
problem (2.1), we define a 3×3 matrix

V = (Vi j)3×3 =

V11 λV12 V13

V21 λV22 V23

V31 λV32 V33

 (2.6)
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with the elements

V11 = (u−∂ )c+ ve+λb, V12 = c, V13 =−vbx + vc+dx, V21 = c−bx,

V22 = b, V23 = d, V31 = wc− ex, V32 = e, V33 = f .

Then the stationary zero-curvature equation

Vx− [U,V ] = 0 (2.7)

is equivalent to

−vw∂b+(∂u−∂ 2)c+w∂d +(∂v+ v∂ )e+2λ∂b = 0,
(uv∂ −∂v∂ )b+(∂v− v∂ )c+(∂ 2−u∂ )d + v2e− v f +λ (vb−d) = 0,
(∂w+w∂ )c− (∂ 2 +u∂ + vw)e+w f +λ (−wb+ e) = 0,
−(∂ 2 +u∂ )b+2∂c+wd− ve = 0,
vw∂b−w∂d− v∂e+∂ f = 0.

(2.8)

Expanding b, c, d, e, f into the Laurent polynomials in λ :

(b,c,d,e, f ) = ∑
j≥0

(b j,c j,d j,e j, f j)λ
− j, (2.9)

equation (2.8) is equivalent to the following recursion equations

KS j = JS j+1, j ≥ 0, JS0 = 0, (2.10)

where S j = (b j,c j,d j,e j, f j)
T . Since equation JS0 = 0 has a general solution

S0 = α0s0 +β0ŝ0 +δ0s̃0, (2.11)

then functions S j given by

S j =
j

∑
l=0

(αls j−l +βl ŝ j−l +δl s̃ j−l), (2.12)

satisfy the recursion equation (2.10), where α j, β j, δ j are arbitrary constants.
Let ψ satisfy the spectral problem (2.1) and the auxiliary problem

ψtr = Ṽ (r)
ψ, Ṽ (r) = (Ṽ (r)

i j )3×3, (2.13)

where Ṽ (r)
i j =Vi j(b̃(r), c̃(r), d̃(r), ẽ(r), f̃ (r)),

(b̃(r), c̃(r), d̃(r), ẽ(r), f̃ (r)) =
r

∑
j≥0

(b̃ j, c̃ j, d̃ j, ẽ j, f̃ j)λ
r− j, (2.14)

with S̃ j = (b̃ j, c̃ j, d̃ j, ẽ j, f̃ j)
T determined by

S̃ j =
j

∑
l=0

(α̃ls j−l + β̃l ŝ j−l + δ̃l s̃ j−l). (2.15)

The constants α̃ j, β̃ j, δ̃ j here are independent of the choice of α j, β j, δ j. Then the compatibility
condition of (2.1) and (2.13) yields the zero-curvature equation, Utr −Ṽ (r)

x +[U,Ṽ (r)] = 0, which is
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equivalent to a hierarchy of nonlinear evolution equations

(utr ,vtr ,wtr)
T = Xr, r ≥ 0, (2.16)

where the vector fields Xr = P(KS̃r) = P(JS̃r+1), P is the projective map P(γ1,γ2,γ3,γ4,γ5)T

→ (γ1,γ2,γ3)T . The first member in the hierarchy for r = 0 is a long wave-short wave type system

ut0 = β̃0ux +2δ̃0(vw)x,

vt0 = −α̃0v+ β̃0vx + δ̃0(vxx−uvx),

wt0 = α̃0w+ β̃0wx + δ̃0(−wxx−uwx).

(2.17)

As α̃0 = β̃0 = 0, δ̃0 = 1, t0 = t, equation (2.17) turns into (1.1). For r = 1, the second member in the
hierarchy (2.16) reads as

ut1 = −2α̃0(vw)x + β̃0(
1
4 uxxx +

3
2 vxxw− 3

2 vwxx− 3
2(uvw)x− 3

8 u2ux)

+2δ̃0(vxxw+ vwxx +uvwx−uvxw− v2w2)x + β̃1ux +2δ̃1(vw)x,

vt1 = α̃0(−vxx +uvx)+ β̃0(vxxx− 3
4 uxvx− 3

2 uvxx− 3
2 vvxw+ 3

8 u2vx)

+δ̃0(vxxxx−uxxvx−2uxvxx−2uvxxx−2v2
xw−2vvxxw+uuxvx

+u2vxx +2uvvxw)− α̃1v+ β̃1vx + δ̃1(vxx−uvx),

wt1 = α̃0(wxx +uwx)+ β̃0(wxxx− 3
2 vwwx +

3
2 uwxx +

3
4 uxwx +

3
8 u2wx)

+δ̃0(−wxxxx−uxxwx−2uxwxx−2uwxxx−uuxwx−u2wxx +2vw2
x

+2vwwxx +2uvwwx)+ α̃1w+ β̃1wx + δ̃1(−wxx−uwx).

(2.18)

If choosing β̃0 = 1, α̃0 = α̃1 = β̃1 = δ̃0 = δ̃1 = 0 or δ̃0 = 1, α̃0 = β̃0 = α̃1 = β̃1 = δ̃1 = 0, then
(2.18) is respectively reduced to a new coupled mKdV equation

ut1 =
1
4 uxxx− 3

8 u2ux +
3
2 vxxw− 3

2 vwxx− 3
2(uvw)x,

vt1 = vxxx− 3
4 uxvx− 3

2 uvxx− 3
2 vvxw+ 3

8 u2vx,

wt1 = wxxx +
3
4 uxwx +

3
2 uwxx− 3

2 vwwx +
3
8 u2wx,

(2.19)

or

ut1 = 2(vxxw+ vwxx +uvwx−uvxw− v2w2)x,

vt1 = vxxxx−uxxvx−2uxvxx−2uvxxx−2v2
xw−2vvxxw

+uuxvx +u2vxx +2uvvxw,
wt1 = −wxxxx−uxxwx−2uxwxx−2uwxxx−uuxwx−u2wxx

+2vw2
x +2vwwxx +2uvwwx.

(2.20)

3. Meromorphic functions and Baker-Akhiezer function

In this section, we shall define a trigonal curve Km−1, the vector Baker-Akhiezer function and
two meromorphic functions on Km−1. The Abelian differentials of the second kind are introduced
on the basis of the analysis for Baker-Akhiezer function ψ2 at infinite points.
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With the help of the n-th stationary flow, we introduce a Lax matrix V (n) = (V (n)
i j )3×3 =

((λ nVi j)+)3×3, which satisfies the Lax equation

V (n)
x − [U,V (n)] = 0, (3.1)

V (n)
tr − [Ṽ (r),V (n)] = 0. (3.2)

Then the characteristic polynomial Fm(λ ,y) = det(yI−V (n)) of the Lax matrix V (n) is a polynomial
of λ independent of variables x and tr, which can be expressed in the following form

det(yI−V (n)) = y3− y2Rm(λ )+ ySm(λ )−Tm(λ ), (3.3)

where Rm(λ ),Sm(λ ) and Tm(λ ) are polynomials with constant coefficients of λ

Rm(λ ) = V (n)
11 +λV (n)

22 +V (n)
33 = 2δ0λ n+1 +(2δ1 +α0)λ

n + · · · ,

Sm(λ ) =

∣∣∣∣∣V (n)
11 λV (n)

12

V (n)
21 λV (n)

22

∣∣∣∣∣+
∣∣∣∣∣V (n)

11 V (n)
13

V (n)
31 V (n)

33

∣∣∣∣∣+
∣∣∣∣∣λV (n)

22 V (n)
23

λV (n)
32 V (n)

33

∣∣∣∣∣
= δ 2

0 λ 2n+2 +(2δ0δ1 +2α0δ0−β 2
0 )λ

2n+1 + · · · ,

Tm(λ ) =

∣∣∣∣∣∣∣
V (n)

11 λV (n)
12 V (n)

13

V (n)
21 λV (n)

22 V (n)
23

V (n)
31 λV (n)

32 V (n)
33

∣∣∣∣∣∣∣= λ [α0δ 2
0 λ 3n+1 +(2α0δ0δ1 +α1δ 2

0 −α0β 2
0 )λ

3n + · · · ].

(3.4)

This naturally leads to a trigonal curve Km−1 of degree m = 3n+2 with respect to λ by

Km−1 : Fm(λ ,y) = y3− y2Rm(λ )+ ySm(λ )−Tm(λ ) = 0. (3.5)

According to (3.4) and (3.5), the trigonal curve Km−1 can be compactified by adding two infi-
nite points P∞1 and P∞2 for which we take P∞1 as a double point without loss of generality.
Km−1 is nonsingular or smooth means that for every point Q0 = (λ0,y0) ∈ Km−1 \ {P∞1 ,P∞2},
( ∂Fm

∂λ
, ∂Fm

∂y ) |(λ ,y)=(λ0,y0) 6= 0. Adding the assumption of irreducibility, the trigonal curve Km−1

becomes connected. For the sake of convenience, we use the same symbol Km−1 in the following
text to denote the three sheeted nonsingular compact Riemann surface. Obviously, the discriminant
of (3.5) is ∆(λ ) = −R2

mS2
m + 4R3

mTm + 4S3
m− 18RmSmTm + 27T 2

m = −4β 2
0 δ 4

0 λ 6n+5 + · · · , which has
at most 6n+ 5 zeros. Therefore, the Riemann-Hurwitz formula shows that the arithmetic genus of
Km−1 is 3n+1 for β0δ0 6= 0 [16, 27, 48].

Equip the Riemann surface Km−1 with homology basis {a j,b j}m−1
j=1 , which are independent and

have intersection numbers as follows

a j ◦bk = δ jk, a j ◦ak = 0, b j ◦bk = 0, j,k = 1, . . . ,m−1.

For the present, we will choose as our basis the following set

ϖl(P) =
1

3y2(P)−2Rm(λ )y(P)+Sm(λ )

{
λ l−1dλ , 1≤ l ≤ 2n+1,
y(P)λ l−2n−2dλ , 2n+2≤ l ≤ 3n+1,

(3.6)
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which are 3n+1 linearly independent holomorphic differentials on Km−1. By using the homology
basis {a j}m−1

j=1 and {b j}m−1
j=1 , the period matrices A = (A jk) and B = (B jk) can be constructed from

A jk =
∫
ak

ϖ j, B jk =
∫
bk

ϖ j. (3.7)

It is possible to show that the matrices A and B are invertible [16, 27, 48]. Now we define the
matrices C and τ by C = A−1, τ = A−1B. The matrix τ can be shown to be symmetric (τ jk = τk j)

and has a positive-definite imaginary part (Imτ > 0). If we normalized ϖl(P) into new basis ω =

(ω1, . . . ,ωm−1),

ω j =
m−1

∑
l=1

C jlϖl, (3.8)

then we have
∫
ak

ω j = δ jk,
∫
bk

ω j = τ jk, j,k = 1, . . . ,m−1.

The complex structure on Km−1 is defined in the usual way by introducing local coordinates
ζQ0 : P→ (λ −λ0) near points Q0 = (λ0,y(Q0)) ∈Km−1 which are not branch points nor infinite
points of Km−1, ζP∞ j

: P→ λ−1/(3− j) near the points P∞ j ∈Km−1, j = 1,2, and similar at others
branch points of Km−1.

Given these preliminaries, let ψ(P,x,x0, tr, t0,r) denote the vector Baker-Akhiezer function by

ψx(P,x,x0, tr, t0,r) =U(u(x, tr),v(x, tr),w(x, tr);λ (P))ψ(P,x,x0, tr, t0,r),
ψtr(P,x,x0, tr, t0,r) = Ṽ (r)(u(x, tr),v(x, tr),w(x, tr);λ (P))ψ(P,x,x0, tr, t0,r),
V (n)(u(x, tr),v(x, tr),w(x, tr);λ (P))ψ(P,x,x0, tr, t0,r) = y(P)ψ(P,x,x0, tr, t0,r),
ψ2(P,x0,x0, t0,r, t0,r) = 1, x, tr ∈ C, P ∈Km−1 \{P∞1 ,P∞2}.

(3.9)

Define two meromorphic functions φ2(P,x, tr) and φ3(P,x, tr) on Km−1 closely related to the Baker-
Akhiezer function by

φ2(P,x, tr) =
ψ1(P,x,x0, tr, t0,r)
ψ2(P,x,x0, tr, t0,r)

, P ∈Km−1, x, tr ∈ C, (3.10)

φ3(P,x, tr) =
ψ1(P,x,x0, tr, t0,r)
ψ3(P,x,x0, tr, t0,r)

, P ∈Km−1, x, tr ∈ C. (3.11)

Lemma 3.1. Assume that (3.9), (3.10), (3.11) hold and let P = (λ ,y(P)) ∈Km−1 \{P∞1 ,P∞2} and
(λ ,x, tr)∈C3. Then meromorphic functions φ2(P,x, tr) and φ3(P,x, tr) have the following asymptotic
expansions near P∞ j ∈Km−1, j = 1,2, under the local coordinate ζ = λ−1/(3− j)

φ2(P,x, tr) =
ζ→0



ζ−1 +
u
2
+

1
8
(−2ux +u2 +4vw)ζ +

1
8
(−uux−2vxw−6vwx +uxx)ζ

2 +O(ζ 3),

as P→ P∞1 , ζ = λ−1/2,

vx

v
+

1
v2 [vvxxx− vxvxx− (uvx)xv+uv2

x− vxv2w]ζ +O(ζ 2),

as P→ P∞2 , ζ = λ−1,
(3.12)

φ3(P,x, tr) =
ζ→0


1
w

ζ
−1 +O(1), as P→ P∞1 , ζ = λ−1/2,

−vxζ +O(ζ 2), as P→ P∞2 , ζ = λ−1.
(3.13)
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Proof. Expressions (3.9) and (3.10) imply that meromorphic functions φ2(P,x, tr) satisfies the
Riccati-type equation

φ2,xx +3φ2φ2,x +φ
3
2 − (

vx

v
+u)(φ2,x +φ

2
2 ) = (ux−

uvx

v
+ vw)φ2 +λ (φ2−

vx

v
). (3.14)

We can insert the two following ansatzs into the above equation (3.14)

φ2(P,x, tr) =
ζ→0

{
κ1,−1ζ−1 +κ1,0 +κ1,1ζ +κ1,2ζ 2 +O(ζ 3), as P→ P∞1 , ζ = λ−1/2,

κ2,0 +κ2,1ζ +O(ζ 2), as P→ P∞2 , ζ = λ−1.
(3.15)

A comparison of the same powers of ζ then proves the first expression (3.12) in this lemma. The
first expression in (3.9) implies the relationship between φ2 and φ3

φ3 =
vφ2

φ2,x +φ 2
2 −uφ2−λ

. (3.16)

Utilizing the expansions of φ2 in (3.12), we can easily derive (3.13). �

Taking advantage of (3.9), (3.12) and (3.13), we can calculate out the asymptotic behaviors of
y(P) near P∞1 ,P∞2 as

y(P) =
ζ→0

{
ζ
−2n−2(δ0 +β0ζ +δ1ζ

2 +β1ζ
3 +O(ζ 4)), as P→ P∞1 , ζ = λ

−1/2,

ζ
−n(α0 +α1ζ +O(ζ 2)), as P→ P∞2 , ζ = λ

−1.
(3.17)

Subsequently, one infers that

ω j =
ζ→0


(
−C j,2n+1−δ0C j,3n+1

β0δ0
+O(ζ )

)
dζ , as P→ P∞1 , ζ = λ

−1/2,(
−C j,2n+1

δ 2
0

+O(ζ )

)
dζ , as P→ P∞2 , ζ = λ

−1.
(3.18)

Furthermore, we could write ω j in the following form:

ωk =
∞

∑
l=0

ρk,l(P∞ j)ζ
ldζ , as P→ P∞ j , ζ = λ

−1/(3− j), (3.19)

where ρk,l(P∞ j) are constants, j = 1,2; k = 1,2, . . . ,3n+1.
From the first two expression of (3.9), we arrive at the formula of ψ2(P,x,x0, tr, t0,r) as follows

ψ2(P,x,x0, tr, t0,r) = exp
(∫ x

x0

[φ2(P,x′, tr)]dx′+
∫ tr

t0,r
[Ṽ (r)

21 (λ ,x0, t ′)φ2(P,x0, t ′)+λṼ (r)
22 (λ ,x0, t ′)

+
Ṽ (r)

23 (λ ,x0, t ′)
v(x0, t ′)

(φ2,x(P,x0, t ′)+φ
2
2 (P,x0, t ′)−u(x0, t ′)φ2(P,x0, t ′)−λ )]dt ′

)
,

(3.20)
from which we can deduce the essential singularity of ψ2(P,x,x0, tr, t0,r) near P∞ j , j = 1,2. For the
sake of convenience, we define a function

Ir(P,x, tr) = Ṽ (r)
21 (λ ,x, tr)φ2(P,x, tr)+λṼ (r)

22 (λ ,x, tr)

+
Ṽ (r)

23 (λ ,x, tr)
v(x, tr)

(φ2,x(P,x, tr)+φ
2
2 (P,x, tr)−u(x, tr)φ2(P,x, tr)−λ )

(3.21)
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whose three homogeneous cases is denoted by

Ī(ε)r (P,x, tr) =
¯̃V
(r,ε)
21 (λ ,x, tr)φ2(P,x, tr)+λ

¯̃V
(r,ε)
22 (λ ,x, tr)

+
¯̃V
(r,ε)
23 (λ ,x, tr)

v(x, tr)
(φ2,x(P,x, tr)+φ

2
2 (P,x, tr)−u(x, tr)φ2(P,x, tr)−λ ),ε = 1,2,3,

(3.22)

where

¯̃V
(r,1)
i j = Ṽ (r)

i j |α̃0=1,α̃1=···=α̃r=β̃0=···=β̃r=δ̃0=···=δ̃r=0,

¯̃V
(r,2)
i j = Ṽ (r)

i j |β̃0=1,α̃0=···=α̃r=β̃1=···=β̃r=δ̃0=···=δ̃r=0,

¯̃V
(r,3)
i j = Ṽ (r)

i j |δ̃0=1,α̃0=···=α̃r=β̃0=···=β̃r=δ̃1=···=δ̃r=0.

(3.23)

Homogeneous polynomials ¯̃b(r,ε), ¯̃c(r,ε), ¯̃d(r,ε), ¯̃e(r,ε), ¯̃f (r,ε) and ¯̃b(ε)j , ¯̃c(ε)j , ¯̃d(ε)
j , ¯̃e(ε)j , ¯̃f (ε)j also have the

similar stipulation.

Lemma 3.2. Suppose that u(x, tr), v(x, tr) and w(x, tr) satisfy the r-th nonlinear evolution equations
(2.16). Moreover, let P ∈Km−1 \{P∞1 ,P∞2}, (x,x0, tr, t0,r) ∈ C4. Then

ψ2(P,x,x0, tr, t0,r) =
ζ→0



exp
(

ζ
−1(x− x0)+

r

∑
l=0

(δ̃r−l + β̃r−lζ )ζ
−2l−2(tr− t0,r)

+
1
2

∂
−1u(x, tr)−

1
2

∂
−1u(x0, t0,r)+O(ζ )

)
,

as P→ P∞1 , ζ = λ−1/2,
v(x, tr)

v(x0, t0,r)
exp
( r

∑
l=0

α̃r−lζ
−l(tr− t0,r)+O(ζ )

)
,

as P→ P∞2 , ζ = λ−1.

(3.24)

Proof. To investigate the property of ψ2(P,x,x0, tr, t0,r) near P∞1 , one shall take the local coordinate
as λ = ζ−2. We use the inductive method to prove the subsequent expression

Ī(1)r (P,x, tr) =
∂−1[−vw ¯̃b(1)r,x +(∂u−∂ 2) ¯̃c(1)r +w ¯̃d(1)

r,x +(∂v+ v∂ ) ¯̃e(1)r ]

2
+O(ζ ),

Ī(2)r (P,x, tr) = ζ
−2r−1 +

∂−1[−vw ¯̃b(2)r,x +(∂u−∂ 2) ¯̃c(2)r +w ¯̃d(2)
r,x +(∂v+ v∂ ) ¯̃e(2)r ]

2
+O(ζ ),

Ī(3)r (P,x, tr) = ζ
−2r−2 +

∂−1[−vw ¯̃b(3)r,x +(∂u−∂ 2) ¯̃c(3)r +w ¯̃d(3)
r,x +(∂v+ v∂ ) ¯̃e(3)r ]

2
+O(ζ ).

(3.25)

In fact, for r = 1, a direct calculation shows that

Ī(1)1 (P,x, tr) =
∂−1[−vw ¯̃b(1)1,x +(∂u−∂ 2) ¯̃c(1)1 +w ¯̃d(1)

1,x +(∂v+ v∂ ) ¯̃e(1)1 ]

2
+O(ζ ). (3.26)

Suppose that Ī(1)r (P,x, tr) has the following expansion

Ī(1)r (P,x, tr) =
ζ→0

∞

∑
j=0

σ
(1)
j (x, tr)ζ j, P→ P∞1 , (3.27)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

9



X. Geng et al. / A hierarchy of long wave-short wave type equations

for some coefficients {σ (1)
j (x, tr)} j∈N0 to be determined. Observing

φ2,tr =
[

¯̃V
(r,1)
21 φ2 +λ

¯̃V
(r,1)
22 +

¯̃V
(r,1)
23

v
(φ2,x +φ

2
2 −uφ2−λ )

]
x
, (3.28)

we arrive at

σ
(1)
j,x = κ1, j,tr , j = 0,1,2,3 . . . , (3.29)

Taking use of (2.2), (2.14) and lemma 3.1, we get three expressions

σ
(1)
0 = ∂−1κ1,0,tr =− ¯̃b(1)r+1

σ
(1)
1 = ∂−1κ1,1,tr =

¯̃b(1)r+1,x− ¯̃c(1)r+1,

σ
(1)
2 = ∂−1κ1,2,tr =−1

4
¯̃b(1)r+1,xx +

1
4 u ¯̃b(1)r+1,x +

1
4 v ¯̃e(1)r+1−

3
4 w ¯̃d(1)

r+1 +
1
2

¯̃f (1)r+1,

(3.30)

where the integration constants are taken as zero because there is no arbitrary constants in the

expansions of φ2(P,x, tr) near P∞1 nor in the coefficients of the homogeneous polynomials ¯̃V
(r,1)
i, j

with the condition ∂∂−1 = ∂−1∂ = 1. It is easy to see that

Ī(1)r+1(P,x, tr) = ζ
−2Ī(1)r +( ¯̃c(1)r+1−

¯̃b(1)r+1,x)φ2 +
¯̃b(1)r+1ζ

−2 +
¯̃d(1)
r+1

v
(φ2,x +φ

2
2 −uφ2−ζ

−2)

=
∂−1[−vw ¯̃b(1)r+1,x +(∂u−∂ 2) ¯̃c(1)r+1 +w ¯̃d(1)

r+1,x +(∂v+ v∂ ) ¯̃e(1)r+1]

2
+O(ζ ).

Thus Ī(1)r (P,x, tr) is proved to have the expansion as seen in (3.25) near P∞1 . Similarly, one can prove
the other two expressions in (3.25), which yield the expansion of Ir(P,x, tr) near P∞1 as follows

Ir(P,x, tr) =
r

∑
l=0

(δ̃r−l + β̃r−lζ )ζ
−2l−2 +

∂−1[−vwb̃r,x +(∂u−∂ 2)c̃r +wd̃r,x +(∂v+ v∂ )ẽr]

2
+O(ζ ).

(3.31)
Substituting (3.12) and (3.31) into (3.20), we arrive at the first expression in (3.24) right now. Under
the local coordinate ζ = λ−1 near P∞2 , we can similarly prove the second expression in lemma 3.2.
�

Let ω
(2)
P∞s , j

(P), j ≥ 2, s = 1,2, denote the normalized Abelian differential of the second kind
holomorphic on Km−1 \{P∞s} satisfying∫

ak

ω
(2)
P∞s , j

(P) = 0, k = 1, . . . ,3n+1, (3.32)

ω
(2)
P∞s , j

(P) =
ζ→0

(ζ− j +O(1))dζ , as P→ P∞s , ζ = λ
1/(s−3). (3.33)

According to the asymptotic behaviors of ψ2(P,x,x0, tr, t0,r) in (3.24), we introduce the correspond-
ing Abelian differential of the second kind

Ω
(2)
2 (P) = ω

(2)
P∞1 ,2

(P) (3.34)
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and

Ω̃
(2)
2r+3(P) =

r

∑
l=0

(2l +2)δ̃r−lω
(2)
P∞1 ,2l+3(P)+

r

∑
l=0

(2l +1)β̃r−lω
(2)
P∞1 ,2l+2(P)+

r

∑
l=1

lα̃r−lω
(2)
P∞2 ,l+1(P).

(3.35)
From (3.33), (3.34) and (3.35), we conclude that∫ P

Q0

Ω
(2)
2 (P) =

{
−ζ−1 + e(2)1 (Q0)+O(ζ ), as P→ P∞1 , ζ = λ−1/2,

e(2)2 (Q0)+O(ζ ), as P→ P∞2 , ζ = λ−1,
(3.36)

∫ P

Q0

Ω̃
(2)
2r+3(P) =


−

r

∑
l=0

δ̃r−lζ
−2l−2−

r

∑
l=0

β̃r−lζ
−2l−1 + ẽ(2)1 (Q0)+O(ζ ),

as P→ P∞1 , ζ = λ−1/2,

−
r

∑
l=1

α̃r−lζ
−l + ẽ(2)1 (Q0)+O(ζ ), as P→ P∞2 , ζ = λ

−1,

(3.37)

where e(2)1 (Q0),e
(2)
2 (Q0), ẽ

(2)
1 (Q0) and ẽ(2)2 (Q0) are integration constants with Q0 an appropriately

chosen base point on Km−1 \{P∞1 ,P∞2}. The b-periods of the differential Ω
(2)
2 (P) and Ω̃

(2)
2r+3(P) are

denoted by

U (2)
2 = (U (2)

2,1 , . . . ,U
(2)
2,m−1), U (2)

2,k =
1

2πi

∫
bk

Ω
(2)
2 (P), k = 1, . . . ,m−1, (3.38)

Ũ
(2)
2r+3 = (Ũ (2)

2r+3,1, . . . ,Ũ
(2)
2r+3,m−1), Ũ (2)

2r+3, j =
1

2πi

∫
b j

Ω̃
(2)
2r+3(P), j = 1, . . . ,m−1. (3.39)

By the relationship between the normalized Abelian differential of the second kind and the normal-
ized holomorphic differential ω , we can derive that

U (2)
2,k = ρk,0(P∞1), k = 1,2, . . . ,m−1, (3.40)

Ũ (2)
2r+3,k =

r

∑
l=0

δ̃r−lρk,2l+1(P∞1)+
r

∑
l=0

β̃r−lρk,2l(P∞1)+
r

∑
l=1

α̃r−lρk,l−1(P∞2), k = 1,2, . . . ,m−1.

(3.41)

4. Divisors of meromorphic functions and Baker-Akhiezer function

In this section, we shall investigate the properties of meromorphic functions and Baker-Akhiezer
function on the finite part of the Riemann surface Km−1 including the divisors, which are necessary
for construction of the Riemann theta function representations.

For convenience, we define three points P,P∗,P∗∗ on three different sheets of the same Riemann
surface Km−2. For a fixed λ , let yi(λ ), i= 0,1,2, denote the three roots of polynomial Fm(λ ,y) = 0,
that is

(y− y0(λ ))(y− y1(λ ))(y− y2(λ )) = y3− y2Rm + ySm−Tm = 0. (4.1)

Then points (λ ,y0(λ )), (λ ,y1(λ )) and (λ ,y2(λ )) are on the three different sheets of Riemann
surface Km−1, respectively. Let P = (λ ,yi(λ )), i = 0,1,2, be an arbitrary point in the three points,
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then the other two points are defined as P∗ and P∗∗, respectively. From (4.1), we can derive the
relationships between the roots yi(λ ), i = 0,1,2 and the coefficients Rm, Sm, Tm

y0 + y1 + y2 = Rm,

y0y1 + y0y2 + y1y2 = Sm,

y0y1y2 = Tm,

y2
0 + y2

1 + y2
2 = R2

m−2Sm,

y3
0 + y3

1 + y3
2 = R3

m−3RmSm +3Tm,

y2
0y2

1 + y2
0y2

2 + y2
1y2

2 = S2
m−2RmTm,

∏
2
j=0(3y2

j −2y jRm +Sm) = ∆(λ ).

(4.2)

Using (3.9), (3.10) and (3.11), a direct calculation shows that

φ2 =
yV (n)

13 +Cm

yV (n)
23 +Am

=
λFm−1

y2V (n)
13 − y(RmV (n)

13 +Cm)+Dm

=
y2V (n)

23 − y(RmV (n)
23 +Am)+Bm

Em−1
, (4.3)

φ3 =
yV (n)

12 +Cm

yV (n)
32 +Am

=
−Fm−1

y2V (n)
12 − y(RmV (n)

12 +Cm)+Dm

=
y2V (n)

32 − y(RmV (n)
32 +Am)+Bm

Em−1
, (4.4)

where

Am = V (n)
13 V (n)

21 −V (n)
11 V (n)

23 ,

Bm = λ (V (n)
22 V (n)

23 V (n)
33 − (V (n)

23 )2V (n)
32 +V (n)

13 V (n)
21 V (n)

22 −V (n)
12 V (n)

21 V (n)
23 ),

Cm = λ (V (n)
12 V (n)

23 −V (n)
13 V (n)

22 ),

Dm = V (n)
11 V (n)

13 V (n)
33 − (V (n)

13 )2V (n)
31 +λV (n)

11 V (n)
12 V (n)

23 −λV (n)
12 V (n)

13 V (n)
21 ,

(4.5)

Am = V (n)
12 V (n)

31 −V (n)
11 V (n)

32 ,

Bm = λV (n)
22 V (n)

32 V (n)
33 −λV (n)

23 (V (n)
32 )2 +V (n)

12 V (n)
31 V (n)

33 −V (n)
13 V (n)

31 V (n)
32 ,

Cm = V (n)
13 V (n)

32 −V (n)
12 V (n)

33 ,

Dm = λV (n)
11 V (n)

12 V (n)
22 −λ (V (n)

12 )2V (n)
21 +V (n)

11 V (n)
13 V (n)

32 −V (n)
12 V (n)

13 V (n)
31 ,

(4.6)

Em−1 =V (n)
21 (V (n)

11 V (n)
23 −V (n)

13 V (n)
21 )+V (n)

23 (V (n)
23 V (n)

31 −V (n)
21 V (n)

33 ),

Fm−1 =V (n)
13 (V (n)

13 V (n)
32 −V (n)

12 V (n)
33 )+λV (n)

12 (V (n)
13 V (n)

22 −V (n)
12 V (n)

23 ),

Em−1 =V (n)
31 (V (n)

11 V (n)
32 −V (n)

12 V (n)
31 )+λV (n)

32 (V (n)
21 V (n)

32 −V (n)
22 V (n)

31 ).

(4.7)

It can be inferred from (4.7) that Em−1, Fm−1 and Em−1 are polynomials with respect to λ of degree
3n+1 for β0δ0 6= 0. Therefore, we can rewrite them in the following form:

Em−1(λ ,x, tr) = β0δ
2
0 v

3n+1

∏
j=1

(λ −µ j(x, tr)), (4.8)

Fm−1(λ ,x, tr) = β0δ
2
0 vx

3n+1

∏
j=1

(λ −ν j(x, tr)), (4.9)
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Em−1(λ ,x, tr) = β0δ
2
0 w2

3n+1

∏
j=1

(λ −ξ j(x, tr)), (4.10)

where {µ j(x, tr)}3n+1
j=1 , {ν j(x, tr)}3n+1

j=1 , {ξ j(x, tr)}3n+1
j=1 are zeros of Em−1(λ ,x, tr), Fm−1(λ ,x, tr),

Em−1(λ ,x, tr) respectively. Define P0 = (0,0). Since

Cm(ν j(x, tr),x, tr)

V (n)
12 (ν j(x, tr),x, tr)

=
Cm(ν j(x, tr),x, tr)

V (n)
13 (ν j(x, tr),x, tr)

which can be deduced from

Fm−1|λ=ν j(x,tr) = [V (n)
13 (V (n)

13 V (n)
32 −V (n)

12 V (n)
33 )−λV (n)

12 (V (n)
12 V (n)

23 −V (n)
13 V (n)

22 )]|λ=ν j(x,tr)

= [V (n)
13 (ν j(x, tr),x, tr)Cm(ν j(x, tr),x, tr)−V (n)

12 (ν j(x, tr),x, tr)Cm(ν j(x, tr),x, tr)] = 0,

we can define

µ̂ j(x, tr) =
(

µ j(x, tr),y(µ j(x, tr))
)
=
(

µ j(x, tr),−
Am(µ j(x, tr),x, tr)

V (n)
23 (µ j(x, tr),x, tr)

)
∈Km−1, (4.11)

ν̂ j(x, tr) =
(

ν j(x, tr),y(ν j(x, tr))
)
=
(

ν j(x, tr),−
Cm(ν j(x, tr),x, tr)

V (n)
13 (ν j(x, tr),x, tr)

)
=
(

ν j(x, tr),−
Cm(ν j(x, tr),x, tr)

V (n)
12 (ν j(x, tr),x, tr)

)
∈Km−1,

(4.12)

ξ̂ j(x, tr) =
(

ξ j(x, tr),y(ξ j(x, tr))
)
=
(

ξ j(x, tr),−
Am(ξ j(x, tr),x, tr)

V (n)
32 (ξ j(x, tr),x, tr)

)
∈Km−1 (4.13)

with 1≤ j ≤ 3n+1,(x, tr) ∈ C2.
Observing (4.3), (4.4) and lemma 3.1, we obtain the divisors (φ2(P,x, tr)) and (φ3(P,x, tr)) of

φ2(P,x, tr) and φ3(P,x, tr) as follows

(φ2(P,x, tr)) = DP0,ν̂1(x,tr),...,ν̂3n+1(x,tr)(P)−DP∞1 ,µ̂1(x,tr),...,µ̂3n+1(x,tr)(P), (4.14)

(φ3(P,x, tr)) = DP∞2 ,ν̂1(x,tr),...,ν̂3n+1(x,tr)(P)−DP∞1 ,ξ̂1(x,tr),...,ξ̂3n+1(x,tr)
(P). (4.15)

Now we are in a position to discuss zeros and poles of ψ2(P,x,x0, tr, t0,r) on Km−1 \
{P∞1 ,P∞2}. From (4.3) and (4.4), we can easily obtain the interrelationships among the polynomials
Am,Bm,Cm,Dm,Am,Bm,Cm,Dm,Em−1,Fm−1,Em−1,Rm,Sm,Tm, which we list below:

λV (n)
23 Fm−1 =V (n)

13 Dm− (V (n)
13 )2Sm−V (n)

13 RmCm−C2
m,

λAmFm−1 = (V (n)
13 )2Tm +CmDm,

(4.16)

V (n)
13 Em−1 =V (n)

23 Bm− (V (n)
23 )2Sm−V (n)

23 RmAm−A2
m,

CmEm−1 = (V (n)
23 )2Tm +AmBm,

(4.17)
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0 =V (n)
13 Bm +V (n)

23 Dm−V (n)
13 V (n)

23 Sm +AmCm,

0 =V (n)
13 V (n)

23 RmSm +V (n)
13 V (n)

23 Tm +V (n)
13 AmSm +V (n)

23 CmSm−V (n)
13 RmBm−V (n)

23 RmDm−BmCm−AmDm,

0 =V (n)
13 V (n)

23 RmTm +V (n)
13 AmTm +V (n)

23 CmTm +λEm−1Fm−1−BmDm,
(4.18)

−V (n)
32 Fm−1 =V (n)

12 Dm− (V (n)
12 )2Sm−V (n)

12 RmCm−C 2
m,

−AmFm−1 = (V (n)
12 )2Tm +CmDm,

(4.19)

V (n)
12 Em−1 =V (n)

32 Bm− (V (n)
32 )2Sm−V (n)

32 RmAm−A 2
m ,

CmEm−1 = (V (n)
32 )2Tm +AmBm,

(4.20)

0 =V (n)
12 Bm +V (n)

32 Dm−V (n)
12 V (n)

32 Sm +AmCm,

0 =V (n)
12 V (n)

32 RmSm +V (n)
12 V (n)

32 Tm +V (n)
12 AmSm +V (n)

32 CmSm−V (n)
12 RmBm−V (n)

32 RmDm−BmCm−AmDm,

0 =V (n)
12 V (n)

32 RmTm +V (n)
12 AmTm +V (n)

32 CmTm−Em−1Fm−1−BmDm.
(4.21)

Taking use of above relationships, we arrive at the evolution of Em−1(λ ,x, tr), Fm−1(λ ,x, tr),
Em−1(λ ,x, tr) with respect to x and tr respectively in the subsequent lemma.

Lemma 4.1. Assume that (3.9) holds and let (λ ,x, tr) ∈ C3. Then

Em−1,x =−uEm−1− (RmAm +2V (n)
23 Sm−3Bm),

Fm−1,x = 2uFm−1 +(−RmCm−2V (n)
13 Sm +3Dm)+ v(RmCm +2V (n)

12 Sm−3Dm),

Em−1,x =−uEm−1 +w(−RmAm−2V (n)
32 Sm +3Bm).

(4.22)

Em−1,tr(λ ,x, tr) = Em−1[−∂
−1utr +3λṼ (r)

22 +
Ṽ (r)

23 (Rm−3λV (n)
22 )

V (n)
23

]

+
Ṽ (r)

23 V (n)
21 −Ṽ (r)

21 V (n)
23

V (n)
23

(RmAm +2V (n)
23 Sm−3Bm)

= Em−1[−∂
−1utr +3λṼ (r)

22 +uṼ (r)
21 +

Ṽ (r)
23 (Rm−uV (n)

21 −3λV (n)
22 )

V (n)
23

]

+
Ṽ (r)

21 V (n)
23 −Ṽ (r)

23 V (n)
21

V (n)
23

Em−1,x,

(4.23)

Fm−1,tr(λ ,x, tr) = (3Ṽ (r)
11 −∂

−1utr)Fm−1 +Ṽ (r)
21 (−RmCm−2V (n)

13 Sm +3Dm)

+Ṽ (r)
13 (RmCm +2V (n)

12 Sm−3Dm)

= Fm−1[3Ṽ (r)
11 −∂

−1utr +
Ṽ (r)

12 (vRm−3vV (n)
11 +2uV (n)

13 )

vV (n)
12 −V (n)

13

−
Ṽ (r)

13 (Rm−3V (n)
11 +2uV (n)

12 )

vV (n)
12 −V (n)

13

]−
Ṽ (r)

12 V (n)
13 −V (n)

12 Ṽ (r)
13

vV (n)
12 −V (n)

13

Fm−1,x,

(4.24)
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Em−1,tr(λ ,x, tr) = Em−1[−∂
−1utr +3Ṽ (r)

33 +
uṼ (r)

31
w

+
Ṽ (r)

32

wV (n)
32

(wRm−uV (n)
31 −3wV (n)

33 )]

+
Ṽ (r)

31 V (n)
32 −V (n)

31 Ṽ (r)
32

wV (n)
32

Em−1,x

= Em−1[−∂
−1utr +3Ṽ (r)

33 +
Ṽ (r)

32 (Rm−3V (n)
33 )

V (n)
32

]

+
V (n)

31 Ṽ (r)
32 −Ṽ (r)

31 V (n)
32

V (n)
32

(RmAm +2V (n)
32 Sm−3Bm).

(4.25)

Proof. Considering that V (n) satisfies the nth stationary equation, we can prove equations (4.22)
directly. In order to prove (4.23), (4.24) and (4.25), we first show several expressions about the
meromorphic functions φ2(P,x, tr) and φ3(P,x, tr)

φ2(P,x, tr)+φ2(P∗,x, tr)+φ2(P∗∗,x, tr) =
−RmAm−2V (n)

23 Sm +3Bm

Em−1(λ ,x, tr)
, (4.26)

φ3(P,x, tr)+φ3(P∗,x, tr)+φ3(P∗∗,x, tr) =
−RmAm−2V (n)

32 Sm +3Bm

Em−1(λ ,x, tr)
, (4.27)

φ2(P,x, tr)φ2(P∗,x, tr)φ2(P∗∗,x, tr) =−
λFm−1(λ ,x, tr)
Em−1(λ ,x, tr)

, (4.28)

φ3(P,x, tr)φ3(P∗,x, tr)φ3(P∗∗,x, tr) =
Fm−1(λ ,x, tr)
Em−1(λ ,x, tr)

, (4.29)

1
φ2(P,x, tr)

+
1

φ2(P∗,x, tr)
+

1
φ2(P∗∗,x, tr)

=
−RmCm−2V (n)

13 Sm +3Dm

λFm−1(λ ,x, tr)

=
(vRm−3vV (n)

11 +2uV (n)
13 )Fm−1(λ ,x, tr)−V (n)

13 Fm−1,x(λ ,x, tr)

λ (vV (n)
12 −V (n)

13 )Fm−1(λ ,x, tr)
,

(4.30)

1
φ3(P,x, tr)

+
1

φ3(P∗,x, tr)
+

1
φ3(P∗∗,x, tr)

=
RmCm +2V (n)

12 Sm−3Dm

Fm−1(λ ,x, tr)

=
(Rm−3V (n)

11 +2uV (n)
12 )Fm−1(λ ,x, tr)−V (n)

12 Fm−1,x(λ ,x, tr)

(V (n)
13 − vV (n)

12 )Fm−1(λ ,x, tr)
,

(4.31)

φ2(P,x, tr)
φ3(P,x, tr)

+
φ2(P∗,x, tr)
φ3(P∗,x, tr)

+
φ2(P∗∗,x, tr)
φ3(P∗∗,x, tr)

=
−V (n)

21 Em−1,x(λ ,x, tr)+(Rm−uV (n)
21 −3λV (n)

22 )Em−1(λ ,x, tr)

V (n)
23 Em−1(λ ,x, tr)

,
(4.32)
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φ3(P,x, tr)
φ2(P,x, tr)

+
φ3(P∗,x, tr)
φ2(P∗,x, tr)

+
φ3(P∗∗,x, tr)
φ2(P∗∗,x, tr)

=
−V (n)

31 Em−1,x(λ ,x, tr)+(wRm−uV (n)
31 −3wV (n)

33 )Em−1(λ ,x, tr)

λwV (n)
32 Em−1(λ ,x, tr)

.
(4.33)

Expression (4.26) implies that

Em−1,x

Em−1
=−u+φ2(P,x, tr)+φ2(P∗,x, tr)+φ2(P∗∗,x, tr). (4.34)

Differentiating (4.34) with respect to tr, we can derive(
Em−1,x
Em−1

)
tr
= ∂x∂tr(lnEm−1)

= [−u+φ2(P,x, tr)+φ2(P∗,x, tr)+φ2(P∗∗,x, tr)]tr

= −utr +∂x

(
ψ2,tr(P,x,x0, tr, t0,r)
ψ2(P,x,x0, tr, t0,r)

+
ψ2,tr(P

∗,x,x0, tr, t0,r)
ψ2(P∗,x,x0, tr, t0,r)

+
ψ2,tr(P

∗∗,x,x0, tr, t0,r)
ψ2(P∗∗,x,x0, tr, t0,r)

)
= −utr +∂x

(
Ṽ (r)

21 (φ2(P,x, tr)+φ2(P∗,x, tr)+φ2(P∗∗,x, tr))

+3λṼ (r)
22 +Ṽ (r)

23 (
φ2(P,x, tr)
φ3(P,x, tr)

+
φ2(P∗,x, tr)
φ3(P∗,x, tr)

+
φ2(P∗∗,x, tr)
φ3(P∗∗,x, tr)

)

)
.

(4.35)

Without loss of generality, taking the integration constant of (4.35) to be zero and substituting (4.26)
and (4.32) into (4.35) can indicate (4.23). Expressions (4.24) and (4.25) can be proved similarly.

�

Lemma 4.1 naturally yields the dynamics of the zeros µ j(x, tr), ν j(x, tr) and ξ j(x, tr) of
Em−1(λ ,x, tr), Fm−1(λ ,x, tr) and Em−1(λ ,x, tr) in terms of Dubrovin-type equations in the subse-
quent lemma.

Lemma 4.2. Suppose that the zeros {µ j(x, tr)} j=1,...,3n+1, {ν j(x, tr)} j=1,...,3n+1 and
{ξ j(x, tr)} j=1,...,3n+1 of Em−1(λ ,x, tr), Fm−1(λ ,x, tr) and Em−1(λ ,x, tr) remain distinct for (x, tr) ∈
Ωµ , (x, tr) ∈ Ων and (x, tr) ∈ Ωξ , respectively, where Ωµ , Ων , Ωξ ⊆ C2 are open and connected.
Then {µ j(x, tr)} j=1,...,3n+1, {ν j(x, tr)} j=1,...,3n+1 and {ξ j(x, tr)} j=1,...,3n+1 satisfy the system of dif-
ferential equations

µ j,x(x, tr) =
−V (n)

23 (3y2−2Rmy+Sm) |λ=µ j(x,tr)

β0δ
2
0 v

3n+1

∏
k=1
k 6= j

(µ j(x, tr)−µk(x, tr))

,
(4.36)

µ j,tr(x, tr) =
(V (n)

21 Ṽ (r)
23 −Ṽ (r)

21 V (n)
23 )(3y2−2Rmy+Sm) |λ=µ j(x,tr)

β0δ
2
0 v

3n+1

∏
k=1
k 6= j

(µ j(x, tr)−µk(x, tr))

,
(4.37)

ν j,x(x, tr) =
(vV (n)

12 −V (n)
13 )(3y2−2Rmy+Sm) |λ=ν j(x,tr)

β0δ
2
0 vx

3n+1

∏
k=1
k 6= j

(ν j(x, tr)−νk(x, tr))

,
(4.38)
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ν j,tr(x, tr) =
(V (n)

12 Ṽ (r)
13 −Ṽ (r)

12 V (n)
13 )(3y2−2Rmy+Sm) |λ=ν j(x,tr)

β0δ
2
0 vx

3n+1

∏
k=1
k 6= j

(ν j(x, tr)−νk(x, tr))

,
(4.39)

ξ j,x(x, tr) =
−V (n)

32 (3y2−2Rmy+Sm) |λ=ξ j(x,tr)

β0δ
2
0 w

3n+1

∏
k=1
k 6= j

(ξ j(x, tr)−ξk(x, tr))

,
(4.40)

ξ j,tr(x, tr) =
(V (n)

31 Ṽ (r)
32 −Ṽ (r)

31 V (n)
32 )(3y2−2Rmy+Sm) |λ=ξ j(x,tr)

β0δ
2
0 w2

3n+1

∏
k=1
k 6= j

(ξ j(x, tr)−ξk(x, tr))
(4.41)

with 1≤ j ≤ 3n+1.

Now we turn to consider expression (3.20) from which one can obtain the subsequent proposi-
tion.

Proposition 4.1. Let P = (λ ,y) ∈Km−1 \ {P∞1 ,P∞2}, (x,x0, tr, t0,r) ∈ C4. Then ψ2(P,x,x0, tr, t0,r)
on Km−1 \ {P∞1 ,P∞2} has 3n+ 1 zeros and 3n+ 1 poles which are µ̂1(x, tr), . . . , µ̂3n+1(x, tr) and
µ̂1(x0, t0,r), . . . , µ̂3n+1(x0, t0,r), respectively.

Proof. By using (4.3), (4.11) and (4.23), we can compute that

φ2(P,x, tr) =
y2V (n)

23 − y(RmV (n)
23 +Am)+Bm

Em−1

=
1

Em−1

{
y2V (n)

23 − y(RmV (n)
23 +Am)+

1
3
(Em−1,x +uEm−1 +RmAm +2V (n)

23 Sm)
}

=
1
3

Em−1,x

Em−1
+

1
Em−1

{2
3

V (n)
23 (3y2−2Rmy+Sm)+V (n)

23 (
Rm

3
− y)(y+

Am

V (n)
23

)
}
+

1
3

u

= −
µ j,x(x, tr)

λ −µ j(x, tr)
+O(1) = ∂x ln(λ −µ j(x, tr))+O(1), λ → µ j(x, tr).

(4.42)

On the other hand, since

1
v(x, tr)

(φ2,x(P,x, tr)+φ
2
2 (P,x, tr)−u(x, tr)φ2(P,x, tr)−λ ) =

φ2(P,x, tr)
φ3(P,x, tr)

, (4.43)

we can similarly derive that

Ṽ (r)
21 (λ ,x, tr)φ2(P,x, tr)+λṼ (r)

22 (λ ,x, tr)+Ṽ (r)
23

φ2(P,x, tr)
φ3(P,x, tr)

=−
µ j,tr(x, tr)

λ −µ j(x, tr)
+O(1) = ∂tr ln(λ −µ j(x, tr))+O(1), λ → µ j(x, tr).

(4.44)

Substituting expressions (4.42) and (4.44) into (3.20) yields the proposition. �
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5. Quasi-periodic solutions

In this section, we shall construct the Riemann theta function representations for the Baker-
Akhiezer function ψ2(P,x,x0, tr, t0,r) and two meromorphic functions φ2(P,x, tr), φ3(P,x, tr), and in
particular, that of solutions for the entire long wave-short wave type hierarchy.

We denote the period lattice Tm−1 = {z∈Cm−1|z=N+Lτ, N,L∈Zm−1}. The complex torus
Jm−1 = Cm−1/Tm−1 is called the Jacobian variety of Km−1. An Abel map A : Km−1→Jm−1 is
defined as

A (P) =
(∫ P

Q0

ω1, . . . ,
∫ P

Q0

ωm−1

)
(modTm−1) (5.1)

with the natural linear extension to the factor group Div(Km−1)

A (∑nkPk) = ∑nkA (Pk). (5.2)

Define

ρ(1)(x, tr) = A (
3n+1

∑
k=1

µ̂k(x, tr)) =
3n+1

∑
k=1

∫
µ̂k(x,tr)

Q0

ω,

ρ(2)(x, tr) = A (
3n+1

∑
k=1

ν̂k(x, tr)) =
3n+1

∑
k=1

∫
ν̂k(x,tr)

Q0

ω,

ρ(3)(x, tr) = A (
3n+1

∑
k=1

ξ̂k(x, tr)) =
3n+1

∑
k=1

∫
ξ̂k(x,tr)

Q0

ω,

(5.3)

where ρ(1)(x, tr), ρ(2)(x, tr), ρ(3)(x, tr) can be linearized on Jm−1 in the following text.
Let θ(z) denote the Riemann theta function associated with Km−1 equipped with homology

basis and holomorphic differentials as before:

θ(z) = ∑
N∈Zm−1

exp
{

πi < Nτ,N >+2πi < N,z >
}
, (5.4)

where z = (z1, . . . ,zm−1) ∈ Cm−1 is a complex vector, the diamond brackets denote the Euclidean
scalar product:

< N,z >=
m−1

∑
i=1

Nizi, < Nτ,N >=
m−1

∑
i, j=1

τi jNiN j. (5.5)

Expression (5.4) implies that

θ(z+N +Mτ) = exp
{
−πi < Mτ,M >−2πi < M,z >

}
θ(z). (5.6)

For brevity, define the function z : Km−1×σm−1Km−1→ Cm−1 by

z(P,Q) = M−A (P)+ ∑
Q′∈Q

D(Q′)A (Q′), P ∈Km−1,

Q = (Q1, . . . ,Qm−1) ∈ σm−1Km−1,
(5.7)
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where σm−1Km−1 denotes the (m− 1)-th symmetric power of Km−1 and M = (M1, . . . ,Mm−1) is
the vector of Riemann constant depending on the base point Q0 by the following expression

M j =
1
2
(1+ τ j j)−

m−1

∑
l=1
l 6= j

∫
al

ωl(P)
∫ P

Q0

ω j, j = 1, . . . ,m−1. (5.8)

Then we have

θ(z(P, µ̂(x, tr))) = θ(M−A (P)+ρ(1)(x, tr)), P ∈Km−1,

θ(z(P, ν̂(x, tr))) = θ(M−A (P)+ρ(2)(x, tr)), P ∈Km−1,

θ(z(P, ξ̂ (x, tr))) = θ(M−A (P)+ρ(3)(x, tr)), P ∈Km−1.

(5.9)

According to divisors as seen in (4.14), (4.15) of the meromorphic functions φ2(x, tr) and
φ3(x, tr), we need to introduce Abelian differentials of the third kind for their representations in
terms of Riemann theta function.

Let ω
(3)
Q1,Q2

(P) denote the normalized Abelian differential of the third kind holomorphic on
Km−1 \{Q1,Q2} and having simple poles at Ql with residues (−1)l+1, l = 1,2, then

∫
ak

ω
(3)
Q1,Q2

(P) = 0,
∫
bk

ω
(3)
Q1,Q2

(P) = 2πi
∫ Q1

Q2

ωk, k = 1, . . . ,3n+1. (5.10)

Especially, we introduce ω
(3)
P0,P∞1

(P) and ω
(3)
P∞2 ,P∞1

(P) as follows

ω
(3)
P∞2 ,P∞1

(P) = δ0 (2y(P)−Rm(λ ))λ
ndλ

2
(
3y2(P)−2Rm(λ )y(P)+Sm(λ )

) + 3n+1

∑
j=1

γ jϖ j, (5.11)

ω
(3)
P0,P∞1

(P) = δ0 (2y(P)−Rm(λ ))λ
ndλ

2
(
3y2(P)−2Rm(λ )y(P)+Sm(λ )

) + (y2(P)−Rm(λ )y(P)+Sm(λ ))dλ

λ
(
3y2(P)−2Rm(λ )y(P)+Sm(λ )

) + 3n+1

∑
j=1

η jϖ j,

(5.12)
where the γ j, η j, j = 1, . . . ,3n+ 1, are uniquely determined by the requirement of normalized
condition, that is vanishing a−periods∫

ak

ω
(3)
P∞2 ,P∞1

(P) = 0,
∫
ak

ω
(3)
P0,P∞1

(P) = 0. (5.13)

From (5.11) and (5.12), we can directly calculate that

ω
(3)
P0,P∞1

(P) =
ζ→0


(ζ−1 +O(1))dζ , as P→ P0, ζ = λ ,

(−ζ−1 +Λ+O(ζ ))dζ , as P→ P∞1 , ζ = λ−1/2,

O(1)dζ , as P→ P∞2 , ζ = λ−1,

(5.14)

ω
(3)
P∞2 ,P∞1

(P) =
ζ→0

{
(−ζ−1 +O(1))dζ , as P→ P∞1 , ζ = λ−1/2,

(ζ−1 +O(1))dζ , as P→ P∞2 , ζ = λ−1,
(5.15)
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where Λ =
1

2β0δ0
(α0δ0 +2β

2
0 −2η2n+1−2δ0η3n+1). Then we have

∫ P

Q0

ω
(3)
P0,P∞1

(P) =
ζ→0


lnζ + e(3)1,0(Q0)+O(ζ ), as P→ P0, ζ = λ ,

− lnζ + e(3)1,∞1
(Q0)+Λζ +O(ζ 2), as P→ P∞1 , ζ = λ−1/2,

e(3)1,∞2
(Q0)+O(ζ ), as P→ P∞2 , ζ = λ−1,

(5.16)

and ∫ P

Q0

ω
(3)
P∞2 ,P∞1

(P) =
ζ→0

{
− lnζ + e(3)2,∞1

(Q0)+O(ζ ), as P→ P∞1 , ζ = λ−1/2,

lnζ + e(3)2,∞2
(Q0)+O(ζ ), as P→ P∞2 , ζ = λ−1,

(5.17)

where e(3)1,0(Q0),e
(3)
1,∞1

(Q0),e
(3)
1,∞2

(Q0),e
(3)
2,∞1

(Q0),e
(3)
2,∞2

(Q0) are integration constants.
Given the asymptotic expansions at P∞1 ,P∞2 as in lemma 3.1, lemma 3.2 and the divi-

sors (φ2(P,x, tr)), (φ3(P,x, tr)), D = µ̂1(x0, t0,r) + · · ·+ µ̂3n+1(x0, t0,r) as simple poles on Km−1 \
{P∞1 ,P∞2} of ψ2(P,x,x0, tr, t0,r), the representations of φ2(P,x, tr), φ3(P,x, tr) and ψ2(P,x,x0, tr, t0,r)
can be uniquely determined in the following theorem, as well as those of potentials u(x, tr), v(x, tr),
w(x, tr).

Theorem 5.1. Let P = (λ ,y) ∈Km−1 \{P∞1 ,P∞2} and let (x0, t0,r) ∈ C2, (x, tr) ∈ Ωµ ⊆ C2, where
Ωµ is open and connected. Suppose that Dµ̂(x,tr) or Dν̂(x,tr) or D

ξ̂ (x,tr)
is nonspecial for (x, tr) ∈Ωµ .

Then φ2(P,x, tr), φ3(P,x, tr) and ψ2(P,x,x0, tr, t0,r) have the following representations

φ2(P,x, tr) =
θ(z(P, ν̂(x, tr)))θ(z(P∞1 , µ̂(x, tr)))

θ(z(P∞1 , ν̂(x, tr)))θ(z(P, µ̂(x, tr)))
exp
(∫ P

Q0

ω
(3)
P0,P∞1

(P)− e(3)1,∞1
(Q0)

)
, (5.18)

φ3(P,x, tr) =−vx(x, tr)
θ(z(P, ν̂(x, tr)))θ(z(P∞2 , ξ̂ (x, tr)))

θ(z(P∞2 , ν̂(x, tr)))θ(z(P, ξ̂ (x, tr)))
exp
(∫ P

Q0

ω
(3)
P∞2 ,P∞1

(P)− e(3)2,∞2
(Q0)

)
,

(5.19)

ψ2(P,x,x0, tr, t0,r) = exp
(

1
2

∂
−1u(x, tr)−

1
2

∂
−1u(x0, t0,r)

)
θ(z(P, µ̂(x, tr)))θ(z(P∞1 , µ̂(x0, t0,r)))

θ(z(P∞1 , µ̂(x, tr)))θ(z(P, µ̂(x0, t0,r)))

×exp
(
(e(2)1 (Q0)−

∫ P

Q0

Ω
(2)
2 (P))(x− x0)+(ẽ(2)1 (Q0)−

∫ P

Q0

Ω̃
(2)
2r+3(P))(tr− t0,r)

)
,

(5.20)
and potentials u(x, tr), v(x, tr), w(x, tr) are of the form

u(x, tr) = 2∂x ln
θ(z(P∞1 , µ̂(x, tr)))

θ(z(P∞1 , ν̂(x, tr)))
+2Λ, (5.21)

v(x, tr) = v(x0, t0,r)exp
(

1
2

∂
−1u(x, tr)−

1
2

∂
−1u(x0, t0,r)

)
θ(z(P∞2 , µ̂(x, tr)))θ(z(P∞1 , µ̂(x0, t0,r)))

θ(z(P∞1 , µ̂(x, tr)))θ(z(P∞2 , µ̂(x0, t0,r)))

×exp
(
(e(2)1 (Q0)− e(2)2 (Q0))(x− x0)+(ẽ(2)1 (Q0)− ẽ(2)2 (Q0)− α̃r)(tr− t0,r)

)
,

(5.22)

w(x, tr) = −
1

vx(x, tr)

θ(z(P∞2 , ν̂(x, tr)))θ(z(P∞1 , ξ̂ (x, tr)))

θ(z(P∞1 , ν̂(x, tr)))θ(z(P∞2 , ξ̂ (x, tr)))
exp
(

e(3)2,∞2
− e(3)2,∞1

)
, (5.23)
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where the paths of integration in the integrals and in the Abel mapping are the same.

Proof. Assume temporarily that µ j(x, tr) 6= µ j′(x, tr) for j 6= j′ and (x, tr) ∈ Ω̃µ ⊆Ωµ , where Ω̃µ is
open and connected. Let the right hand side of (5.18) be denoted by Φ2. Noting (4.15) and (5.14),
we can see that φ2 and Φ2 have the identical 3n+ 2 simple poles P∞1 , µ̂1(x, tr), · · · , µ̂3n+1(x, tr)
and simple zeros P0, ν̂1(x, tr), · · · , ν̂3n+1(x, tr). Since the arithmetic genus of the Riemann surface is
3n+1, utilizing the Riemann-Roch theorem, we conclude that the holomorphic function Φ2

φ2
= γ , a

constant with respect to P. Using (3.12) and (5.14), we can derive that

Φ2

φ2
=

ζ→0

(1+O(ζ ))(ζ−1 +O(1))
ζ−1 +O(1)

=
ζ→0

1+O(ζ ), as P→ P∞1 , ζ = λ
−1/2, (5.24)

which yields that γ = 1. Similarly, we can prove expression (5.19). The asymptotic expansions of
the Baker-Akhiezer function ψ2(P,x,x0, tr, t0,r) in lemma 3.2 and divisor in proposition 4.1 reveal
that ψ2(P,x,x0, tr, t0,r) has the Riemann theta representation (5.20), where the function u(x, tr) can
be determined later. With help of a meromorphic differential

Ω(x,x0, tr, t0,r) =
∂

∂λ
ln(ψ2(P,x,x0, tr, t0,r))dλ , (5.25)

the Abel map can be linearized in the following form [25]

ρ( j)(x, tr) = ρ( j)(x0, t0,r)+U (2)
2 (x− x0)+Ũ

(2)
2r+3(tr− t0,r) (modTm−1), j = 1,2,3. (5.26)

Therefore, θ(z(P∞1 , µ̂(x, tr))) and θ(z(P∞1 , ν̂(x, tr))) could be written briefly in the following form

θ(z(P∞1 , µ̂(x, tr))) = θ(M(1)+U (2)
2 x+Ũ

(2)
2r+3tr),

θ(z(P∞1 , ν̂(x, tr))) = θ(M(2)+U (2)
2 x+Ũ

(2)
2r+3tr)

(5.27)

where

M( j) = M−A (P∞1)+ρ
( j)(x0, t0,r)−U (2)

2 x0−Ũ
(2)
2r+3t0,r, j = 1,2.

In order to derive (5.21), we expand φ2 of (5.18) near P∞1 under the local coordinate ζ = λ−1/2

φ2 =
ζ→0

ζ
−1 +∂x ln

θ(z(P∞1 , µ̂(x, tr)))

θ(z(P∞1 , ν̂(x, tr)))
+Λ+O(ζ ), (5.28)

from which we can derive expression (5.21) by comparing asymptotic expansion (5.28) of φ2 with
(3.12) in lemma 3.1. Representations for v and w as seen in (5.22) and (5.23) can be deduced
similarly by expanding ψ2 and φ3 respectively near P∞2 and P∞1 . Observing the continuity of the
Abel map A , one can extend the result from (x, tr) ∈ Ω̃µ to (x, tr) ∈Ωµ , which completes the proof
of the theorem. �
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