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The supercomplexification is a special method of N = 2 supersymmetrization of the integrable equations in
which the bosonic sector can be reduced to the complex version of these equations. The N = 2 supercom-
plex Korteweg-de Vries, Sawada-Kotera and Kaup-Kupershmidt equations are defined and investigated. The
common attribute of the supercomplex equations is appearance of the odd Hamiltonian structures and super-
fermionic conservation laws. The odd bi-Hamiltonian structure, Lax representation and superfermionic con-
served currents for new N = 2 supersymmetric Korteweg-de Vries equation and for Sawada-Kotera one, are
given.
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1. Introduction

Integrable Hamiltonian systems occupy an important place in diverse branches of theoretical physics
as exactly solvable models of fundamental physical phenomena ranging from nonlinear hydrody-
namics to string theory [7,8]. There are many approaches to investigate these systems as for example
the Lax approach, the construction of the recursion operator and bi-Hamiltonian structure or check-
ing the Bécklund and Darboux transformations [3].

On the other hand, applications of the supersymmetry (SUSY) to the soliton theory provide
a possibility of generalization of the integrable systems. The supersymmetric integrable equations
[4-19] have drawn a lot of attention for a variety of reasons. In order to create a supersymmetric
theory, we have to add to a system of k bosonic equations kN fermionic and k(N — 1) bosonic
fields (k=1, 2,...,N=1, 2,...) in such a way that the final theory becomes SUSY invariant. A
bonus of this method is, that the so called bosonic sector of the supersymmetrical equations when
N > 2, leads us to a new system of interacting fields. For example, the Virasoro algebra [9] and
some of its extensions can be related to the second Hamiltonian structure of the Korteweg-de Vries
(KdV) and KdV-like equations. This Hamiltonian structure is given by the set of Poisson brackets
for the fundamental fields representing the Virasoro algebra. Now, starting from the supersymmetric
generalization of the Virasoro algebra and the corresponding Hamiltonian structure, the N = 1, 2
supersymmetric extensions of the classical equations have been obtained [16, 17,20].

There are many methods of supersymmetrization of integrable system as, for example, to start
simply from the supersymmetric version of the Lax operator or consider the supersymmetric ver-
sion of the Hamiltonian structure. Interestingly, during the process of supersymmetrization many
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unexpected, but typical supersymmetric effects occurred. In particular, the roots for the SUSY Lax
operator are not uniquely defined [21], the non-local conservation laws [4] and the odd Hamiltonian
structure appear [22,23].

The idea of introducing odd Hamiltonian structure is not new. Leites noticed [18] that in the
superspace, one can consider both the even and odd sympletic structures, with even and odd Poisson
brackets respectively. The odd brackets, also known as antibrackets, have drawn some interest in
the context of BRST formalism in the Lagrangian framework [1], in the supersymmetrical quantum
mechanics [30], and in the classical mechanics [14].

Becker and Becker in [2] proposed the supersymmetric KAV equation in the form

D, = Py + 6(2D) D, (1.1)

where ® is a superfermionic N = 1 function. If we replace u in the KdV equation by (2®) then we
obtain the equation (1.1). However, as a result, the bi-Hamiltonian structure becomes the odd one.
The N = 2 supersymmetric generalization of KdV equation

b, = q)xxx+6(.@1.@2q))q)x, (1.2)

was considered in [22]. Similarly to the Becker and Becker equation (1.1) this equation possess
the odd bi-Hamiltonian structure. However the Lax representation for this equation has been not
presented.

In this paper, we generalize the N = 1 substitution u = (Z®) to the N = 2 supersymmetric
case, assuming that

u = (ki (21 2,9) + ky®y,) + i(k3(2) 2, P) + ka®y)), (1.3)

where i = —1 and kj, j=1,...,4 are arbitrary constants. We investigate the Hamiltonian struc-
ture, Lax representation and conservation laws for the obtained equations after such substitution.
We call such substitution BN = 2 supercomplexification. An unexpected feature of this supercom-
plexification is that if we directly substitute the ansatz eq.(1.3) to the conserved currents of the
KdV equation, then the currents are no longer conserved currents, in contrast to the N =1 case.
As we show, such a supercomplexification leads us to the odd Hamiltonian structures and to the
superfermionic conserved currents.

We investigate supercomplexifications of three equations: the KdV, Sawada-Kotera (S-K) and
Kaup-Kupershmidt (K-K) equations. For all these equations, we fix the arbitrary constants in such
a way that their bosonic sector could be transformed to the complex version of the KdV, S-K, K-
K equations. This procedure justifies the name of supercomplexification. The odd bi-Hamiltonian
structure, Lax representation and superfermionic conserved currents for new BN = 2 supersymmet-
ric Korteweg-de Vries equation are given. For the BN = 2 supercomplex Sawada-Kotera equation
the Lax representation, odd bi-Hamiltonian structure and superfermionic conserved currents are
defined. The BN = 2 supercomplex Kaup-Kupershmidt equation is defined, for which the odd bi-
Hamiltonian structure is presented with its superfermionic conserved currents.

All calculations used in the paper have been carried out with the help of computer program
Susy?2 [24].

The paper is organized as follows. In the first section, the notation used in the non-extended and
in extended supersymmetry is explained. Section 2 contains description of the non-extended N =1,
BN =1 and extended N = 2, BN = 2 supersymmetric KdV equation. Section 3 and section 4 treat

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
295



Z. Popowicz / N = 2 Supercomplexification of the Korteweg-de Vries, Sawada-Kotera and Kaup-Kupershmidt Equations

the non-extended N = 1, BN = 1 and extended N = 2, BN = 2 supersymmetric Sawada-Kotera and
Kaup-Kupershmidt equations. The last section is the conclusion.

2. Notation used in the supersymmetry

In the non-extended N = 1 supersymmetric theory, we deal with the odd and even variables. These
variables are joined in the multiplet as ® = & +Qu oras Y = w+ 0 where £ = £ (x,1),E2 =0, { =
¢ (x,t), % = 0 are odd functions while u = u(x,t), w = w(x, ) are even functions, and 6 is Majorana
spinor such that 82 = 0. In other words 0 is the odd coordinate. The @ is called superfermionic
function while Y a superbosonic one.

The supersymmetric derivative & is defined as

d 2
7 =5g109,  7P=0. 2.1)

The symbolic integration over the odd variables is defined as

/a’G:O, /deezl. 2.2)

In the extended supersymmetry N = 2 case we deal with more complicated superfermionic or
superbosonic functions which are defined by

P=w+0,E + 6.5 + 6,6u, Y =01+ 61h+6k+6,6,0, (2.3)

where w, u, k, h are even functions, &, &, §i, &, &2 =0, {7 =0, &6 = =616, &6 = -0 &
are odd functions which take values in the Grassman algebra, 0; and 6, are two different Majorana
spinors, odd coordinates, such that 6,-2 =0, 8,0, = —0,60,. ® is the superboson function while T is
superfermionic function.

The supersymmetric derivatives and symbolic integrations are defined as

;= aae_+9i8, 27 ' =907, i=1,2, (2.4)
DP=93=0, DD+ DD =0, (2.5)
/9291d91d92 =1, /d91d92 =0, (2.6)

where negative power d ! of formal integration is defined as
0 'a=ad ' —a 0 +ad P F--, ad '=0""'a+0%a,+0 an+---. 2.7

From the formulas (2.4) follows [d6;d6,dx(Z;I") =0, i = 1,2 for an arbitrary superfunction I"
which vanishes in -co.

For the supersymmetric extensions of the models discussed in what follows, the Lax operators
may be regarded as the element of the algebra of super-differential operators ¢. For N = 1 we have

%::{ i (ak+q>k@)ak}, (2.8)

and for N =2

G = { Y, (be+ B2 + 122+ a2 @2)9k} : (2.9)

k=—o0
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The supersymmetric algebra & possess three invariant subspaces defined by the following pro-
jections P onto the subspaces of ¢.

Poo(9) =%>0 = { Y (i + B2+ nDr+ 8D @2)9"} ; (2.10)

k=0

Ps1(Y) =% = {Z (fx+ B2 + % Pn + g1 2 @z)ak-l- aD+ 0D, +h, @2}, 2.11)

oo

Por(9) =90 = { Y (fi+ B2 + %22 + 821 72) 9 +
=2

(fl%+f2@2+f3@1@2)8+591@2}- (2.12)
The subscript Lo, L>; in what follows denotes the projection P> (L), P>1(L) .

The supersymmetric algebra ¢ is endowed with non-degenerate “trace form” given by the
residues

tr(L) = Res (Z (ax +Pr2)0 ) /dxdecp 1 (2.13)
k<co

tr(L) = Res (Z (bx + B2 +}’k@2+ak@1@2 > /dxdeldeza 1, (2.14)
k<oo

for N =1 and N = 2 respectively. This “trace form” is used in the theory of integrable systems
because from the knowledge of the Lax operator it is possible to obtain the conserved currents.

Similarly to the classical case it is possible to construct the generalized supersymmetric Lax rep-
resentation @ dj— [P>k (L7), ] where k =0, 1, 2. Restriction to k = 0 yields to the supersymmetric
Gelfand-Dikil hierarchy of equations. Restriction to k = 1 yields the supersymmetric nonstandard
Lax representation while for k = 2 to the supersymmetric Harry Dym hierarchy.

As usual in the case of extended supersymmetry N > 1, we assume the invariance of the consid-
ered model under change the odd variables. It means that we always assume the invariance under the
replacement of the supersymmetric derivatives 2| — —%,, %> — %) and denote this transformation
as O,. For example we have O (2, P) = —(2,P).

3. N=1,BN=1,N =2 and BN = 2 susy KdV

The Korteweg-de Vries equation is defined as

S8H, 6H,
U = Upyy + Ouny =J ——— 5y =P— 5y 3.1)
J=9, P=20"+20u+2ud, (3.2)

/a’x uuxx+4u /dxu

and is obtained from the Lax representation

L=*+u, L=|LLY) (3.3)
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The subscript > 0 in (L3/ 2)>0 denotes the purely differential part of L3/2. The KdV equation
is integrable, has bi-Hamiltonian structure and possesses infinite number of bosonic conserved cur-
rents. The Lax operator Eq. (3.3) generates the conserved currents as

(2n—1)/

H, =tr(L?+D/2) = tr(a@”“ 24 Z a;0" > /dxa | = /dxh (3.4)
|=—o0
Let us recall the relationship between the Poisson bracket
1
{u(x),u(y)} = 5[c’)3 +2du+2ud]5 (x —y) (3.5)
and the Virasoro algebra [9, 10]. Fourier expansion of
- 7!}1}6 1
== Z Lye (3.6)
n—-—oo

where c is a constant leads us to the classical form of the Virasoro algebra

{Lp,L} = (n—m)Lysm + %3(n—l—m,0). 3.7)

3.1. N =1, BN = 1 supersymmetric KdV equation

The N = 1 supersymmetric KdV equation is obtained from the Lax representation

(L=03"+2®), = [LL']] — & = (P, +3(2D)),, (3.8)
& = (gxx +35”)xa = (Ux + 3u” + 35}66)» (3.9

This equation has been thoroughly investigated in many papers [12, 15, 19].
The BN = 1 supersymmetric KdV equation is generated by the Lax representation

(L=0>+(29)) = [LL)]] = @ =Du+6(2D)D,, (3.10)
& = Eoar+ 68, 1y = (g + 37y 3.11)
It has a triangular form, u, does not contain the odd function, but it is a very interesting equation
from integrability and supersymmetry point if view. This equation has been first considered by

Becker and Becker [2] and it was named later as B extension of supersymmetric KdV equation [4].
This system possesses infinite number of the superfermionic conservation laws. For example,

1
Hgiszf/dxde cbcbx:—/dxgux, (3.12)
H5 5 = /dx d@ ¢ ( xxx+4q) (.@(I) /dx uxxx+6uxu) (313)

where lower index in H denotes the dimension of the expression. Assuming that deg(A) denotes the
dimension of A, we have

3 1
degu =2, degCI):57 deg? = deggz_?

1

27
3

deg&zi, degx=—1, degd=1 (3.14)
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The variational derivative 5% of these superbosonic conservation laws will be a superfermionic
function. Therefore, our bi-Hamiltonian structure is living in the superfermionic space and hence
the Hamiltonians operators should be symmetrical operators.

The bi-Hamiltonian structure is easy to obtain using the formula (3.1) in which we assume
u=(2®) = ®= (2 'u) from which follows

_ %M s _10H;5
@,—QW—@ (0°+20(9P)+2(2P)d)2 5
OH OH. O0H
_ (A2 -1 -1 3.5 _ g1 -1 5.5 _ 5.5
= (0" +4(2P)+20" 2P, +2P,0 @)7&1) 2709 5 5P (3.15)
The operator & is connected with the Poisson bracket
{®(x,0),D(y,0)} = P5(x—y)(6 -8, (3.16)

and is rewritten in the components as

{u(x),u(y)} = 466 (x—y),
{u(x),E(y)} = (9 +20 "ue+4u)5(x — ), (3.17)
{8(x),8(»)} =2&:8(x—y).

3.2. N =2 and BN = 2 supersymmetric KdV Equation

We have three different N = 2 supersymmetrical extensions of the KdV equation

(3.18)

x?

1
Oy = (= P +30(21 22®) + 5 (@ —1)(212:D)" + 2 ®’)

where ¢ =1, —2, 4.
All these equations possess the bi-Hamiltonian structure [11, 21]. For example the second
Hamiltonian structure for the equation (3.18) is

é 1
b, = A**/ dxd0,d 0, (P2, 2, D+ gqﬁ),
o0d?2 3 (3.19)
A=9 .@2& +20P+2P0 — DPY, — .@2@.@2,
and is connected with the Poisson bracket
{®(x,61,6,),®(y,0,,6,)} = AS(x—)(6) — 6,) (62— 65). (3.20)

This formula could be rewritten in the components

{u(x),u(y)} = (=07 +4ud +2u,) 8 (x - y),

{u(x),&(»)} = (3&+&ix)d(x—y),

{u(x),w()} =2wé(x —y)x, (3.21)
{&i(x),&;(0)} = [8:,(9* —u) + & ;(2wd +wy)] 8 (x —y),

{w(x),w)} = 6(x—y)x.

This bracket defines the N = 2 supersymmetric Virasoro algebra if we apply the Fourier expan-
sion of @ in Eq. (3.20).
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These supersymmetric equations are possible to obtain from the following Lax representations
[16,21]

o =4, L=—(22:+®), L =4LLY], (3.22)
a=-2 L= +9d-Dd, L =4LLY), (3.23)
a=1, L=0+d'99®, L =I[LL (3.24)

To this list of three equations we would like to add the fourth one integrable extension BN =
2 which has the Lax representation, bi-Hamiltonian formulation and possess the superfermionic
conserved currents.

To end this let us send the formula (3) in which k;, i = 1,2, 3,4 are real coefficients, to
the KdV Eq. (3.1). Extracting the real and imaginary part we obtain the system of two equa-
tions on (2 2,®);, ;. Solving this system of equations and verifying the integrability con-
dition (2, 2,®); ,» = 8,;@,_91792 we obtain a system of algebraic equation on the coefficients k;,
i=1,2,3,4. There are two solutions.

The first one k; = k4, ko = —k3 is

D, = Dy + 6ky (21 D2 ®) P, + 3k3 (D) Dy ®)* — 3k3 D2, (3.25)
and second solution k; = —ky4, ko = k3 is
D, = Dy — 6ks( 21 D2 D), — 3k3 (D) Dy ®)? + 3k3 D2, (3.26)

The bosonic part of these equations reduces to the KdV equation when ® = 8,6,u and k3 = 0.
Therefore without losing on the generality we assume that BN = 2 KdV equation has the form

D, = Dy + 6(2, o D) D, (3.27)

Below, we will call such procedure as supercomlexification of the equations.
If we replace u by (2, 2,P) + i®, in the Lax operator of KdV equation then we obtain complex
operator

L=0u+(2)2:®) +i®, (3.28)

which generates the equation (3.27) but not the conserved currents. We cannot use the supersym-
metric version of trace form Eq. (2.13) to this operator because it does not contain supersymmetric
derivatives. On the other side if we make the same substitution to the conserved currents obtained
from the Lax operator of KdV equation (3.4) and make the replacement [dx —> [dxd6,d6, in
hy,

Hn:/dxhn == Gn:/dxdeldezhn(u = (9/2,P) +id,), (3.29)
then G,, = 0.
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The following fourth order Lax representation, where we do not use the imaginary symbol i
generates the supercomplex BN = 2 KdV equation.

L=0"+2(3(21 22®) + (21 2,®)9)d +2 (9P, + ®:9) %1 D, (3.30)
L =2[LLY)] = @ =®u+6(212:D)®, (3.31)
The same equation is also generated by the nonstandard Lax representation
L=0+®3'9,%,+ 937 (21 2,®) — 22, D»), (3.32)
L=l L] = & =P+6(212,P)®,. (3.33)

The equation (3.31) appeared also for the first time in [22], where the second Hamiltonian
operator was constructed and was interpreted as odd version of Virasoro algebra.
In the components, the equation (3.31) is

2 2
Wi = Wypr +0UWy, Uy = Uypr + 3 (U — W)x

él,t = 5Lxxx + 6&1,}(” + 6527XWX7 (3.34)
&t = Ep e — 681 Wi + 685 .

We see that fermionic sector is invariant under the replacement &, = —&;, &, = &; while the
bosonic sector is purely even and does not contain the odd functions. This invariance is exactly the
0, invariance. Therefore, this supersymmetric version of the KdV equation is BN = 2 extension.

Introducing new function w, = v to the bosonic sector of the equation (3.34) we obtained

Vi= (Vi +6uv)y, u = (uxx+3(u2 —vz))x. (3.35)

It is exactly the complex KdV equation.

On the other side the system of equations (3.34) is equivalent to the complex version of the
Becker and Becker equation Eq. (3.10). Indeed if we assume that & = p; + ip; in the equation
(3.10) then we obtain

Pri =P +3[2((2p1)* — (2p2)*)]

P2t = P2xx + 6 [@((@pl )(QPZ))} .
Next assuming that p; = &; + Ou, p; = & + Ow, w, = v we see that the previous equation reduces
to the system of equations (3.34).

The Lax representation of the complex KdV equation is given by the bosonic part of the super-
complexified Lax representation Eq. (3.30)

I — 0*+2(ud + du)od 2(dv+vad)
P\ 20000 +0v)d 94 +20(ud +au) )’

@ (M5 5 7%)

(3.36)

—39vd  9*+3du
Ly = [Ly, (L¥*)20), ],
or by bosonic part of the supercomplexified Lax representation Eq. (3.32)

d+0'u 9 v4vo~!
L= (700 TN e e (020),) (3.3
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The symbol b in L, denotes the bosonic part of the L operator.

There are many differences between the supersymmetric equations (3.34) and (3.1). The system
(3.1) possess an infinite number of conservation laws but the conservation laws of (3.34) does not
reduce to the conservation laws of (3.1).

Unfortunately if we apply the “trace form” to our Lax operator tr (L"/ 4) forn=2,3,56 we
did not obtain any conserved currents because then tr(L"/ 4) = 0. We confirmed this observation
by constructing an arbitrary superbosonic functions K, = K, (P, (2,®), (2, ®P),...) with arbitrary
constants, where n = 1, 2,..., 11 denotes the weight. For example

Hy = / dxd6,d6 K, 530

Ky = M ®* + 22(21 2 @) D* + 13, P + 14(22P) (2 D) D

where A;, i = 1, 2, 3, 4 are arbitrary constants.

We verified that these functions are not constants of motion for our supercomplex BN = 2 KdV
equation.

However, if we expand L operator as

L}/g =9+ Z(th + Q1D+ Q21 Do+ Y2 D 92)8*", (3.40)
k=1

where the super functions Y x, Y24, @1, @2 are computed from the assumption that L = (L'/3)8
then it is possible to obtain the superfermionic conserved currents.
Indeed, as we checked

1
Hs —‘[r(L7/8 /dxd@ldede(@lCD = —E/dx(élux+§2wxx), (3.41)
is a conserved quantity. The lower index in H, denotes the dimension of the expression ([8;] = %
[&]=3).
Using the O, transformation it is possible to obtain the superpartners of L; 18 and Hj 5 as Ll/
0,(L'/®), A3.5 = 0,(Hs )
H35 = /dxd91 d6, D(2,P,) /dx élwxx gzux) (3.42)

It is difficult to obtain the next conserved quantity using the trace form, because we need to
compute the L'/3 up to the terms containing @ ~°, because then H = tr(LL'/*L!/%).
Therefore we assumed the most general form on the next current and verified that

|
Hys =5 / dxd6, d6, (7)) +4(7) Dr®( D1 ®,) + 4D, (22 D))
— /dxél ( — uxx+3(w§ +u2))x — ég(—Wxxx —6uwx)x, (3.43)

is proper conserved quantity.
It is impossible to use the similar trick as in the BN = 1 supersymmetric KdV equation Eq. (3.15)
because the transformation u = (2 2,®) + i®, is not invertible. Indeed, if we assume that such an
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inverse exists, then
(21%1 +id)?* =2id(D Dr +id) = DD +id = 2id,

which is not true.
Assuming different forms of the Hamiltonian operator of the supercomplexified BN = 2 KdV
equation, we obtained the following bi-Hamiltonian structure

O0Hss i 0H; 5
5 T S (3.44)
I1=29,0+40 (2 D, ®) D — ®. D] +4((21 D, D)D) — D, D)0 .

1
(bt — 5.@18_1

We checked that the operator I1 defines the proper Hamiltonian operator and satisfies the Jacobi
identity

/dxd91d92 a Hfm Y + cyclic(et, B,7) =0, (3.45)
where Hl*w is a Gateaux derivative [3]
s = | Lo+ enp) (3.46)
1 de 8:0’ ‘

and «a, B, y are superfermionic test functions. The operator IT appeared first time in [22] and has
been connected with the odd version of the Virasoro algebra.

{q)(xv 01, 92)7q)(y7 917 9;} = H5(X—y)(91 - 9;)(92 - 9;) (3.47)

This could be rewritten in the components as

{w),w)} = {wx),u(y)} = {ulx),u(y)} =0,

{W(x),& ()} = —(4wed ™" +20 7 wy))8(x —y),

{w(x),&(0)} = —(20+4(0 'u+ud"))8(x—y),

{&1(x),u(y)} =2(9% +4u—20u,)8(x —y), (3.48)
{&(x),u(y)} = —4(wx — 9 'wr) 8 (x — ),
{&61(x),6(0)} = —{&(x), &)} = —4(&o ' +97'&)8(x—y),

{él(x)vgl} = _4(§2,xail + 87162#)6()6_)})‘

If we compare the right hand of these Poisson brackets with the right hand of Poisson brackets
connected with the N = 2 supersymmetric Virasoro algebra Eq. (3.21) we see that they are in oppo-
site statistics. Indeed the supersymmetric Poisson brackets (3.21) can be symbolically rewritten as

{B,B} = #, {F,B} = %, {F,F}— %, (3.49)
while the brackets (3.48) as
{B,B} =0, {F,B}= %, {F,F}— Z, (3.50)

where B denotes u or w, F denotes &; or &, and % denotes some bosonic operator while .7 denotes
some fermionic operator. The brackets (3.48), according to general theory of odd Poisson brackets
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[27], meets the following properties

{A,B+C} ={A,B} +{A,C}, (3.51)
{4,BC} = {A,B}C + (—1)sW+eBIp{A C}, (3.52)
(—1)BAFNEBE T4 (B C1} 4 (—1)8BFDEC+ DB 1 A} (3.53)

+ (—1)EEFDEAFrC 1A, B} =0,

where A, B, C are homogeneous elements of the Poisson algebra, g(A) denotes the parity of A. The
last equation is a generalized Jacobi identity.

Instead of using the recursion operator to generate the conserved currents it is possible to join
the superfermionic currents with the usual conserved currents of KdV equation using the formula

s(gfli’kdv)

o (3.54)

1
H = / d)L/dxdGl d@zq)
0
where fzkdv is some conserved currents of KAV equation in which we make the replacement u —
A((212,D) +id,). If we split the conserved currents H onto the real and imaginary part as H =
G+ iG then it appears that G = —0,(G).
Using the previous formula, we obtained next conserved current for the supercomplexified KdV
equation

Hys = / dx d6, d6, c1>(3(glc1>5x)+[20(91c1>xx)(@1%c1>)}x+ (3.55)
20( 22 @1y ) By + 45( 21 @) [(2) o ®)? — B2] + 10(22d)[9( D) o) D, + chm]) .

To finish this section let us notice that substitution (3) suggests to replace r.h.s of (3) by complex
chiral superfield F [13,29] as

u = (DF)+ (DF), (3.56)
where
1 I 1 _
F=&(+6u— ielezéx, F=¢+06iu+ Eelezéx, (3.57)
0 1 — 0 1
D=2 1.6, D=2 1.6, 3.58
26, 12”2 26, 12" (3-58)

u is a complex function, & is Grassman valued function.
Substituting formula (3.56) to the KdV equation we obtain

F, = Fy + 6F[(DF) + (DF)]. (3.59)

The bosonic part of this equation is

Uy = Uypy + Ottut + 6T, — 66,6 . (3.60)

But it is not the complex KdV equation when u = a + ib where a, b are real functions.
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4. N =1,BN =1 and BN = 2 supersymmetric Sawada-Kotera equation

The Sawada-Kotera equation could be obtained from the Lax representation

L=3+ud, L =9LL}), 4.1)
Uy = u5x+5uxxxu+5uxxux+5uxu2. 4.2)

The bi-Hamiltonian formulation of this equation is

1 oG
U = 8(a3+2(au+ua))6—:, 4.3)
L3 ~1 2 2N -1 0G12
5(28 +2ud +20u+ 0" Qugy + u”) + 2upe + )0 )uy = 5 (4.4)

Ge = /dx (Butty, + 1),

1
G, = 8 /dx u(9ugy + 96ug ity + 33“;2;;“ + 144u§xu + 153uxxu)2€ — 15014,26u2 —|—4u5).

4.1. N =1, BN = 1 susy Sawada-Kotera equation

The N = 1 supersymmetric extension of S-K equation is defined by the Lax operator L = (20 +®)?
and its Lax representation [28]

5/3

L=[LLY)] = @.5)
1

B = § (Psx 5P ) 5P FD,) +504(7P)), (4.6)
1

gt = § (55): + Séxxxu + 5§xxux + Séxlﬂ) ’
1

= 9 (u5x + Stbyxtt + Staylty + Sl'txu2 - 5€XXX€X) :

The odd bi-Hamiltonian representation for supersymmetric N = 1 extension of the Sawada-
Kotera equation has been given in [23]

O0H,

O, = (29* + 200+ 200 + IPP)0 " (20 +20P +2d03J + 799) < (4.7
(9> +(29) -0 9D, + .07 7)®, = 5;110’ (4.8)
u

1
Hy = E/dxde oD,

Hio = % /dx 46 @ [ — 307, + 1205, (TD) + 284 (DD) +
3D, [32(ZPrr) + 15(2D)?] + @t [8(ZPrr) +30(2D,) (2D)] +
D, [4(DPs;) +30(2Py) (FD)] +15(29,)* + 8(%)3] :
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The BN = 1 supersymmetrical S-K equation is defined by the Lax operator L = 93 + (2®)d
and its Lax representation as

1
L=[LLY] = &= 5 (Psx - 5Puce(FP) + 5P PP + 50,(29)?), 4.9)

1
gt = § (55;: + Séxxxu + Séx“xx + 5‘:‘)5”2) )

1
u = 5 (u5x + Sttt + Sttty + 5uxu2) .

The bi-Hamiltonian formulation for the BN = 1 extension is easy to obtain using the same trick
as in the case of the BN = 1 extension of KdV equation, see Eq. (3.15).

4.2. BN = 2 Supercomplex Sawada-Kotera equation

The following Lax operator
L= 83 + (kl (.@1 .@2@) +k2c1>x)8 + (—kz(.@[ .@2(13) + klcbx).@l 92, (4.10)

where k1, k, are arbitrary constants, generates the BN = 2 supersymmetrical Sawada-Kotera equa-
tion

L, =9[L,L%)], @.11)

b, = % [3‘195x + 15(@1 @2‘13“) (k1<I>x — kz(@l @2@)) — 10k1k2(@1 @2‘13)3 + 4.12)
15(2, 2,®@)* @, (k3 — k3) + 15k1 (21 2> ®) (P s + 2k2®2) +

15k @ @, + 5P (k3 — k7)) .-
This equation is also possible to obtain after modification of the supercomplexification method as
u — k](.@] .@2@)+k2q)x+i(—k2(_@1.@2‘b) —‘rqu)x) (4.13)

and substituting it to the Sawada-Kotera equation or to the Lax representation Eq. (4.1). However
then our Lax operator is a complex operator which does not generate the conserved currents.

Introducing a new function w, = v, it appears that it is always possible to find the linear trans-
formation of v, u which changes the bosonic sector of the equation (4.11) to the complex version of
the Sawada-Kotera equation for any arbitrary values of k1, ky,

1
Vi = g [3V4x + 15vu — 5V3 + lsvuxx + lsvuz}x’
1 (4.14)
= = [Butge+ 1ty 50> = 1500 = 157

In order to study the conservation laws and Hamiltonian structure of the BN = 2 supersymmetric
Sawada-Kotera equation, we consider the special case k; = 1, k; = 0 for which we obtained

L=03°+(2\2:®)0 + .2 D», (4.15)
1
@ =5 [3®@s, + 15(2) 2@y ) s + 15(21 22D)* s + 15(21 22D) P — 53| (4.16)
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In the components, the equation Eq.(4.16) is
P =w+0,E + 6,5+ 6,6u,

1
W= [3W5x + 15Weett — 5w + 15wyt + 15wxu2] ,

1
=3 [3u4x + 150t + 50 — 15wy Wy — 15w§u]x, 4.17)
él,t = [51,5x + Sgl,xxxu + Sél,x(uxx + Mz - W)%) + &12,xxxwx + 552,x(wxxx + 2Wx”)} )

éZ,t = [52,5x + 5&27xxxu + 552,x(uxx + ”2 - W)%) - Sgl,xxxwx - Sgl,x(wxxx + 2Wx”2)] .

The bosonic sector of the Eq. (4.17) does not interact with the fermionic variables. Thus we
have the BN = 2 extension of the Sawada-Kotera equation.
In order to find the conserved current, we use the formula Eq. (3.54)

5(@;1}35/()

1
H:/ d?L/ddel d6,®
0

where hy is some conserved currents of the Sawada-Kotera equation in which we make a replace-
ment u = A((2 2,P) + i®y).
Due to this formula we obtained the following conserved charges

Hss = / 4xd0,d0:D [3(71B ) + 2 72B0) By + 2 19 (71 729) (4.19)

His :/ dxd91d92¢[(@1<1>5x)+2[(@2¢xx)‘bx}x+2(%‘1’)[(91@2‘D)‘1’x+¢xxx]+
2219 ) (21 22D )x + (2192) [2(D1 DoPrr) + (D1 Do ®P)* — qﬁ]} (4.20)

Hivs = / dxd 6,d6,®(9( 1 Doy) +74 terms). 4.21)

The system of equation (4.12) could be rewritten as the bi-Hamiltonian system

1
® = 2| 210+207 (91 2:9) % — ©: 2] +

OH.
2[(2\ @) 21 — q’x%]a*l} qu).s’ (4.22)
_ OH15
H D, = 50 4.23)

H = 18(%84 +2[(®y) + (21 D) Ty + D, 9| 9% +
(21 2,@.) D1 + P Do+ (D2 Prx) + 2(21Px) D1 D) 0 +
2[(22Px) + (22 Px) (21 D2®) — (21 @)Dy ] + (21 Pix) D1 D +
(21 2,®)* — @2 +2(21 DoPx)| D1 +2[(21 D2 P) Py + Do) Do +
D D20~ [(22P2) P+ (71 Prrx) + (21 D1) D] +
(222)®,+(21Dr) + (719)D] 712207

The operator .#" defines a proper symplectic operator for the BN = 2 supersymmetric Sawada-
Kotera equation and satisfies the condition [3]
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/a’x d6y d6, [axg v+ Bt a+ vy B] =0. (4.24)
where o, B, v are the test superfunctions and %} is a Gateaux derivative defined as

. d
A = 2 K(@+eW)[eo. (4.25)

As we checked the equation (4.24) is satisfied for superfermionic test functions and also for the
superbosonic test functions. For the superfermionic test functions we should assume that in the
formula Eq. (4.25), € is an anticommuting variable, W is a superfermionic function because ® is a
superbosonic function.

To finish this section let us mention that all our formulas presented here possess the O, superpart-
ners.

5. BN = 1, BN = 2 supersymmetric Kaup-Kupershmidt equation
The Kaup-Kupershmidt (K-K) equation is derived from the Lax operator

L=0+0u+ud, L =9LLY) (5.1)
SH,
Uy = sy 4+ 10Uyeeit + 25u ity + 20u,0% = (Oex + O+ u3)576, (5.2)
u
SH
[188xxx+90(8u+u8) 9 (1440 + 361 + (1440 + 3600 [ = 222 (53)
u
|
Hg = 8/dx(3uxxu—|—8u3), (5.4

w2220+ 122412 u* — 186u? — 3360121’ +256u°).  (5.5)

Hpp = / dx(ugcu — 180u>,,
The N = 1 supersymmetric extension of the K-K equation does not exist. It follows from the
observation that, if we assume the most general form on the supersymmetric extension of K-K as
the polynomial in @, (#®) and its derivatives, which reduces in the bosonic limit to the Kaup-
Kupershmidt equation, then it is possible to construct only one conserved current. It is not enough
for such a system to be integrable.
However it is possible to obtain the BN = 1 supersymmetric extension of K-K equation by
simply substituting u = (2®) to the Eq. (5.1)

D, = Ds, + 10D, (FD) + 15P 1 (ZD,) + 100, (DD,,) + 20D, (FD)2. (5.6)

In order to construct the BN = 2 supersymmetric extension of the Kaup-Kupershmidt equation
let us consider the most general supercomplexified ansatz

u = ki (91@2@) —f—kzq)x—l-i(]@(@]@zq)) +k4q3x), 5.7)
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where ky, ko, k3, ks are arbitrary constants, and substitute it to the Kaup-Kupershmidt equation. As
a result, we obtained k3 = k», k4 = —kj and

b, = Ps, + 10(@1 @2q)xx)(qu)x — kz(@] @2@)) + 10ky D P+
15 20

1
15(2122%.)) (k1 Bs — 5Kka (71 92®5)) + o @+ (K — K@+ (5.8)

10(2, 2,®)[2(k3 — I3)(2) 2, P) D, — gklkz(.@l Dr®)? + ky Dy + 4k 1k D]

It is possible to transform the bosonic part of @, to the complex Kaup-Kupershmidt equation
after the identification w, = v and after making the linear transformation of the function v, u for
arbitrary values of k1, ky

kg v k] kl k2
u v, u — u— v,
KB+k K+ KB+K kB +k
Uy = tsy + 10ugeett + 251ty + 20u,tt> — 10V, v — 5v(Svyx + 8vu) — 2007 uy,

V =

(5.9)
Vi = Vsy + 10vyv 4 25Vt + 25Vt + 10V (1 + duyut) + Svi(Suyy + 44> — 4v2).

Without losing on the generality, we assume that k; = 0, k; = 1 and hence we consider following
equation

b, = Ps5, + 10(.@1 @2q>xx)q>x + 15(91 -@2q>x)q)xx

20
+10(2, 2,®) (2( 21 Zr D) D + Pr) — ?cbi. (5.10)
In the components the Eq. (5.10) is
®:W+91§1+92§2+9192u, (5.11)
1
Wr = = [3wsy + 30Waelt + 45Wrclty — 203 + 30wy (4 — 27)]

3

1
r = o [6ue + 60+ 4502 + 40U — 60w wy — 45w, — 120w2u]

él,t = [él,Sx + 10€l,xxxu + 1562,xxxux + 10(&2,xwx)xx +
108 x(upr + 2u? — ZW)ZM) + 40527xwxu] ,

52,1 = [52,5x - losél,xxxwx - 15&1,xxwxx - 10517xwxxx - 40&1,xwxu +
10&> it + 158 wutty + 10E) 1 (e + 2% — 2w7)].

In order to find the conserved current for BN = 2 supersymmetric Kaup-Kupershmidt equa-
tion, we apply the same method as used in the supersymmetric BN = 2 Sawada-Kotera equation.
Therefore, we apply the formula Eq.(3.54) in which now

6(@]_1/}/(]()

1
H= >
/0 d?L/dxdGldGz 5D

, (5.12)
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where g is some conserved current of the Kaup-Kupershmidt equation in which we make the
replacement u = A((212,®) — i®,). As a result we obtained the following conserved currents

Hss = / dxd0,d 6, P [3(@1 q)xxx) + lﬁ(gzq)x)q)x + 16(@1 (I)x)(gl @2@)], (5.13)

Hys = [ dvd61d6.2[(717:05) +8((2:00) 1)1+
8((@1@,“)(@1 92¢)x + 8(@2®x)(4(@1 @2@)@,; + q)xxx) + (5.14)
8(21®,) (21 Dr®ry) +2( D D1 D)? — 2@%)]

His :/ dxd91d92<13(9(.@1<139x)+74 terms). (5.15)

Now the bi-Hamiltonian formulation is

&, =
1 H.
c (%a + 07 [(21 D, @) D) — @, D) + (21 2, D) D, —cpx@z]afl) 55 ;5 (5.16)
~ OHy15
H D, = 5o (5.17)

A =18 [@la“ +10[22Dx + (21 2:D) 21| 9* + 5 [(21 2o@1) D1 + Do Do +

2(219.) D1 D] 0 +4[(22Prr) + 8( 2D ) (21 2o @) — 8( 21D, ) D] +
4 [(.@1 @2q)xx) + 4(.@1 .@2‘1))2 — 4@%] 91 +4 [8(.@1 .@2@)‘1% + Cbxxx] D +
2 [8(@2q>x)q)x + (@1‘1))(”) + 8(91 (I)x)(@1 @qu)] 871@1 D +

2919297 [8(22P,) Py + (21 Prnr) +8(219,) (21 .%cp)]]

The operator J#~ defines a proper symplectic operator for the BN = 2 supersymmetric Kaup-
Kupershmidt equation and satisfies the condition [3]

/dx d6y de, [axyy+ By a+yxg B =0. (5.18)

To finish this section, let us notice that all our formulas possess the O, superpartners.

6. Conclusion

In this paper, the method of the BN = 2 supercomplexification has been applied to the supersym-
metrization of known soliton equations. In that manner, we obtained new supersymmetric KdV
equation with its odd bi-Hamiltonian and Lax representation. Also, the BN = 2 supercomplexifica-
tion of the Sawada-Kotera with its Lax representation and Kaup-Kupershmidt equations have been
discussed. Unfortunately, we have been not able to find Lax representation for the BN = 2 Kaup-
Kupershmidt equation. The unexpected feature of the supercompexification is appearance of the odd
Hamiltonians operators and superfermionic conserved currents. The O, invariance of the conserved
currents and Hamiltonian operators has a special meaning here. It is similar to the invariance of the
conserved currents in the complex soliton system. For example, plugging the function u = u+iv to
some conserved current H = H (u,uy, ...) we obtain H = H, + iH; where H, and H; are conserved
too. In the N = 2 supercomplex version if H is conserved then O, (H) is also conserved. The super-
symmetric Lax operator, which generates the BN = 2 supercomplex KdV equation, generates also
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the superfermionic conserved currents. The bosonic part of this Lax operator generates the complex
KdV equation. However, we do not know how it is possible to obtain the conserved currents of com-
plex KdV equation using this operator. On the other hand, it seems that the supercomplexification
is a general method and could be applied to wide classes of integrable equations.
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