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1. Introduction

Reciprocal transformations have been previously applied in [15,16] to Stefan problems for nonlinear
heat equations of the type derived by Storm [35] to describe heat conduction in a range of simple
metals. In [17], a reciprocal transformation was employed to determine conditions for the onset
of melting in such metals subjected to applied boundary flux. Melting conditions as derived by
Tarzia [36] and Solomon et al. [34] for analogous moving boundary problems for the classical heat
equation were thereby extended.

Physical systems incorporating modulation, either spatial or temporal, arise in a wide range of
physical settings. Thus, in classical continuum mechanics, they occur, inter alia, in elastodynamics,
visco-elastodynamics and in crack and boundary loading problems in the elastostatics of inhomo-
geneous media [2, 6, 10].

Moving boundary problems incorporating inhomogeneity occur naturally in soil mechanics.
Thus, they arise notably in the analysis of the transport of liquid through soils as modelled in the
homogeneous case by the classical work of Richards [14]. In [4], a Lie-Bäcklund analysis was
adopted to isolate integrable reductions of a nonlinear model based on a generalised Darcy’s law
descriptive of liquid transport through an unsaturated inhomogeneous medium under certain geo-
metric constraints. In [18], a class of moving boundary problems for a nonlinear transport equation
which arises in such a heterogeneous soil mechanics context was shown via a reciprocal transforma-
tion to admit exact parametric representation. The latter reduction was recently set in a more general
context in [19] and alignment obtained with the homogeneous capillarity model of Richards.

In [20], a novel reciprocal transformation has been recently introduced which allows the reduc-
tion of certain multi-component, non-autonomous systems of generalised Ermakov-type to inte-
grable canonical form. Here, such a reciprocal transformation is combined with a standard recip-
rocal transformation and an integral transformation with origin in work of [5] on boundary value

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

313



C. Rogers / Moving Boundary Problems for Heterogeneous Media

problems for Burgers’ equation to reduce a broad class of moving boundary problems involving
heterogeneity to a canonical Stefan-type problem amenable to exact solution.

2. A Class of Heterogeneous Moving Boundary Problems

The motivation for the present work originates in an autonomisation procedure as set down in [1]
for the Ermakov-Ray-Reid system [12, 13, 21, 22]

uxx +ω(x)u =
1

u2v
Φ(v/u) , vxx +ω(x)v =

1
v2u

Ψ(u/v) . (2.1)

Thus, if the latter nonlinear coupled system is augmented by the linear base equation

ρxx +ω(x)ρ = 0 , (2.2)

then with the new dependent variables

u∗ = u/ρ , v∗ = v/ρ (2.3)

and independent variable

x∗ = σ/ρ (2.4)

where σ ,ρ are linearly independent solutions of (2.2) with unit Wronskian ρσx− σρx then the
Ermakov-Ray-Reid system (2.1) is reduced to the associated autonomous form

u∗x∗x∗ =
1

u∗2v∗
Φ(v∗/u∗) , v∗x∗x∗ =

1
v∗2u∗

Ψ(u∗/v∗) . (2.5)

It is seen that with the unit Wronskian constraint as in [1], the relation (2.4) yields

dx∗ = ρ
−2dx . (2.6)

It is noted parenthetically that the analogous autonomisation of the classical Ermakov equation

ρxx +ω(x)ρ =
ε

ρ3 (2.7)

allows the ready derivation of its associated nonlinear superposition principle.
Here, use will be made of reduction to autonomous form of the class of 1+1-dimensional non-

linear evolution equations

∂T
∂ t

= λ
∂ 2

∂x2

[
1

ρ2(a+bT )

]
+

µ

ρ2
∂

∂x

[
1

ρ2(a+bT )

]
+

φ(ρ,ρx, ...;x)
ρ2(a+bT )

(2.8)

with heterogeneity term ρ = ρ(x) determined by a generalised Ermakov equation

λρxx +µρx/ρ
2 +φ(ρ,ρx, ...;x)ρ =

ε

ρ3 (2.9)

wherein, λ ,µ and ε are real constants. Thus, it is seen, that under the transformation

dx∗ = ρ−2dx , t∗ = t,

T ∗ = ρ3(a+bT )

}
R∗ (2.10)
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(2.8) is reduced to the unmodulated canonical form

∂T ∗

∂ t∗
= λb

∂ 2

∂x∗2

[
1

T ∗

]
+µb

∂

∂x∗

[
1

T ∗

]
+

εb
T ∗

. (2.11)

If one sets ρ∗ := ρ−1, then the underlying reciprocal property R∗2|a=0,b=1 = I is retrieved. It is
remarked that a nonlinear evolution equation of the type (2.11) with ε = 0 has been previously
derived in [23] in connection with boundary value problems descriptive of two-phase flow under
gravity in a porous medium.

In the sequel, by way of illustration, we proceed with ε = 0 together with

λ = 1 , µ =−δ , δ 6= 0 , ζ = 0 , (2.12)

whence, combination of (2.8) and (2.9) produces the conservation law

∂

∂ t
(ρT ) =

∂

∂x

[
ρ

2 ∂

∂x
(∆/ρ)

]
−δ

∂

∂x
(∆/ρ) , (2.13)

with ∆ :=
1

ρ2(a+bT )
.

A class of moving boundary problems for the heterogeneous evolution equation (2.13) is now
considered, namely

∂

∂ t
(ρT ) =

∂

∂x

[
ρ2 ∂

∂x
(∆/ρ)

]
−δ

∂

∂x
(∆/ρ) , 0 < x < X(t) , t > 0

−ρ2 ∂

∂x
(∆/ρ)+δ (∆/ρ) =U(t) , on x = 0 , t > 0

−ρ2 ∂

∂x
(∆/ρ)+δ (∆/ρ) = α(ρ)Ẋ(t)

∆/ρ = ζ (t) ,

 on x = X(t) , t > 0

X(0) = 0 .

(2.14)

The preceding constitutes a Stefan-type problem with variable latent heat. Such moving boundary
problems are of current research interest (see e.g. [3, 33] and literature cited therein).

In view of (2.9) and (2.12) it is seen that the modulation is determined by

ρx =−
δ

ρ
+ξ , (2.15)

where ξ is an arbitrary constant of integration. Here, we proceed with ξ = 0 so that

ρ =
√

2(−δx+η) , (2.16)

where the constants therein are such that η > 0, δ < 0. The reciprocal variable x∗ is then given by

x∗ =
1

2(−δ )
ln
[
−δx+η

η

]
(2.17)

where it has been required that x = 0∼ x∗ = 0 and x > 0.
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Under R∗, on setting b =−1, the class of moving boundary problems (2.14) becomes

∂T ∗

∂ t∗
=

∂

∂x∗

[
1

T ∗2
∂T ∗

∂x∗

]
− δ

T ∗2
∂T ∗

∂x∗
, 0 < x∗ < X∗(t∗) , t∗ > 0

1
T ∗2

∂T ∗

∂x∗
+

δ

T ∗
=U(t∗) , on x∗ = 0 , t∗ > 0

1
T ∗2

∂T ∗

∂x∗
+

δ

T ∗
= α∗Ẋ∗ ,

T ∗ = 1/ζ (t∗) ,

 on x∗ = X∗(t∗) , t∗ > 0

X∗(0) = 0

(2.18)

where

X∗(t∗) =
1

2(−δ )
ln
[
−δX(t)+η

η

]
, Ẋ∗ = ρ

−2Ẋ(t) (2.19)

so that

α
∗ = ρ

2
α(ρ) . (2.20)

On introduction of the additional reciprocal transformation

dx† = T ∗dx∗+
[

1
T ∗2

∂T ∗

∂x∗
+

δ

T ∗

]
dt∗ , t† = t∗ ,

T † =
1

T ∗

 R† (2.21)

the nonlinear equation in T ∗ in (2.18) becomes

∂T †

∂ t† =
∂ 2T †

∂x†2 −2δT † ∂T †

∂x† , (2.22)

namely Burgers’ equation.

Boundary Conditions

Below in I–III are derived explicitly the boundary conditions reciprocal to those of the moving
boundary problem (2.18) and which are to be applied to the Burgers’ equation (2.22).
I

1
T ∗2

∂T ∗

∂x∗
+

δ

T ∗
=U(t∗) on x∗ = 0 , t∗ > 0 . (2.23)

Here, R† shows that

−∂T †

∂x† +δT †2 =UT † on x†|x∗=0 , t† > 0

where to determine x†|x∗=0, we use the reciprocal relations

∂x†

∂x∗
= T ∗ ,

∂x†

∂ t∗
=

1
T ∗2

∂T ∗

∂x∗
+

δ

T ∗
=
∫ x∗

0

∂

∂x∗

[
1

T ∗2
T ∗x∗
]

dx∗+
1

T ∗2
∂T ∗

∂x∗

∣∣∣∣
x∗=0

+
δ

T ∗
. (2.24)
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Thus,

∂x†

∂ t∗
=
∫ x∗

0

[
∂T ∗

∂ t∗
−δ

∂

∂x∗

(
1

T ∗

)]
dx∗+

1
T ∗2

∂T ∗

∂x∗

∣∣∣∣
x∗=0

+
δ

T ∗

=
∂

∂ t∗

∫ x∗

0
T ∗(σ , t∗)dσ −δ

(
1

T ∗

)
+ δ

(
1

T ∗

)∣∣∣∣
x∗=0

+
1

T ∗2
∂T ∗

∂x∗

∣∣∣∣
x∗=0

+
δ

T ∗

=
∂

∂ t∗

∫ x∗

0
T ∗(σ , t∗)dσ +U(t∗)

(2.25)

so that

x† =
∫ x∗

0
T ∗(σ , t∗)dσ +V (t∗) (2.26)

where V̇ =U(t∗). Hence, under R†, the boundary condition (2.23) on x∗ = 0 becomes

−∂T †

∂x† +δT †2
=U(t†)T † on x† =V (t†) . (2.27)

II

1
T ∗

∂T ∗

∂x∗
+

δ

T ∗
= α

∗Ẋ∗ on x∗ = X∗(t∗) . (2.28)

Here, the reciprocal transformation R† shows that

dX†

dt† =
1

T †
dX∗

dt∗
− 1

T †
∂T †

∂x† +δT † , (2.29)

whence, on elimination of Ẋ∗ between (2.28) and (2.29), it is seen that

α
∗
[

T † dX†

dt† +
∂T †

∂x† −δT †2
]
=− 1

T †
∂T †

∂x† +δT † on x† = X†(t†) . (2.30)

Thus,

−∂T †

∂x† +δT †2
=

α∗T †2

1+α∗T †
dX†

dt† on x† = X†(t†) (2.31)

where

X†(t†) = x†|x∗=X∗(t∗) . (2.32)

III

T ∗ = 1/ζ (t∗) on x∗ = X∗(t∗) (2.33)

This yields

T † = ζ (t†) on x† = X†(t†) . (2.34)
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To determine X†(t†), the reciprocal transformation R† shows that

∂x†

∂x∗
= T ∗ ,

∂x†

∂ t∗
=

1
T ∗2

∂T ∗

∂x∗
+

δ

T ∗
=
∫ x∗

X∗(t∗)

∂

∂x∗

[
1

T ∗2
T ∗x∗
]

dx∗+
1

T ∗2
∂T ∗

∂x∗

∣∣∣∣
x∗=X∗

+
δ

T ∗

=
∫ x∗

X∗(t∗)

[
∂T ∗

∂ t∗
−δ

∂

∂x∗

(
1

T ∗

)]
dx∗+

1
T ∗2

∂T ∗

∂x∗

∣∣∣∣
x∗=X∗

+
δ

T ∗
. (2.35)

Thus,

∂x†

∂ t∗
=

∂

∂ t∗

[∫ x∗

X∗(t∗)
T ∗(σ , t∗)dσ

]
+T ∗Ẋ∗|x=X∗−

δ

T ∗
+

δ

T ∗

∣∣∣∣
x∗=X∗

+
1

T ∗2
∂T ∗

∂x∗

∣∣∣∣
x∗=X∗

+
δ

T ∗

=
∂

∂ t∗

[∫ x∗

X∗(t∗)
T ∗(σ , t∗)dσ

]
+(ζ−1 +α

∗)Ẋ∗ . (2.36)

Here, we proceed with

ζ
−1 +α

∗ = constant = ξ
∗ (2.37)

so that (2.36) yields

x† =
∫ x∗

X∗(t∗)
T ∗(σ , t∗)dσ +ξ

∗X∗ (2.38)

whence

X† = x†|x∗=X∗ = ξ
∗X∗ (2.39)

with the initial condition

X†|t†=0 = ξ
∗X∗|t∗=0 = 0 (2.40)

on use of (2.19)1.

Summary I

The conjugation of the reciprocal transformations R∗ and R† applied to the class of moving bound-
ary problems (2.14) incorporating heterogeneity produces a reciprocally associated class of moving
boundary problems for Burgers’ equation, namely

∂T †

∂ t† =
∂ 2T †

∂x†2 −2δT † ∂T †

∂x† , 0 < x† < X†(t†) , t† > 0

−∂T †

∂x† +δT †2
=U(t†)T † , on x† =V (t†) , t† > 0

−∂T †

∂x† +δT †2
=

α∗ζ 2(t†)

1+α∗ζ (t†)

dX†

dt† ,

T † = ζ (t†) ,

 on x† = X†(t†) , t† > 0

X†|t†=0 = 0 .

(2.41)

where dV/dt† =U(t†).
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3. Canonical Reduction via an Integral Transformation

The moving boundary problems (2.41) will here be seen to be amenable to an elegant integral
transformation of a generalised Hopf-Cole type as introduced by Calogero and DeLillo in [5]. This
adopts the form

T † =−(1/δ )

[
ln
∣∣∣C(t†)−

∫ x†

X†(t†)
Ψ(σ , t†)dσ

∣∣∣]
x†

, (3.1)

with

Ψ = δC(t†)T †(x†, t†)exp

[
−δ

∫ x†

X†(t†)
T †(σ , t†)dσ

]
. (3.2)

Thus,

Ψt̄ =

[
δĊT † +δCT †

t† +δCT †

[
−δ

∂

∂ t†

∫ x†

X†(t†)
T †(σ , t†)dσ

]]
exp

[
−δ

∫ x†

X†(t†)
T †(σ , t†)dσ

]
(3.3)

where the Leibniz rule shows that

∂

∂ t†

[∫ x†

X†(t†)
T †(σ , t†)dσ

]
=
∫ x†

X†(t†)

∂T †

∂ t† − Ẋ†T †|x†=X†(t†)

=
∫ x†

X†(t†)
[ T †

x†−δT †2
]x†dx†− Ẋ†T †|x†=X†(t†) (3.4)

whence

Ψt† =

[
δĊT † +δCT †

t† +δCT †
(
−δ (T †

x†−δT †2
)+ δ (T †

x†−δT †2
)
∣∣∣
x†=X†(t†)

)
+ δ

2CT †Ẋ†T †∣∣
x†=X†(t†)

]
exp
[
−δ

∫ x†

X†(t†)
T †(σ , t†)dσ

]
. (3.5)

Moreover,

Ψx†x† =
[
δCT †

x†x†−2δ
2CT †T †

x†−δT †(δCT †
x†−δ

2CT †2
)
]

exp

[
−δ

∫ x†

X†(t†)
T †(σ , t†)dσ

]
(3.6)

so that, in extenso

Ψt†−Ψx†x† =

[
δĊT † +δCT †

t† +δCT †
[
−δ (T †

x†−δT †2
)+ δ (T †

x†−δT †2
)
∣∣∣
x†=X†(t†)

]
+ δ 2CT †Ẋ†T †

∣∣
x†=X†(t†)

−δCT †
x†x† +2δ 2CT †T †

x† +δ 2CT †T †
x†−δ 3T †2

]
.

exp

[
−δ

∫ x†

X†(t†)
T †(σ , t†)dσ

]
=
[
δT †

[
Ċ+δC(T †

x†−δT †2 |x†=X† +δCT †Ẋ†T †|x†=X†(t†)

]
+ δC

[
T †

t† −T †
x†x† +2δT †T †

x†

]]
exp

[
−δ

∫ x†

X†(t†)
T †(σ , t†)dσ

]
.

(3.7)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

319



C. Rogers / Moving Boundary Problems for Heterogeneous Media

Accordingly, the Burgers’ equation (2.22) is mapped via the integral transformation (3.2) to the
classical heat equation

Ψt†−Ψx†x† = 0 (3.8)

on imposition of the requirement

Ċ+δC
[
(T †

x†−δT †2
)|x†=X† +T †|x†=X†(t†)Ẋ

†
]
= 0 . (3.9)

In view of the conditions on the moving boundary x† =X†(t†) as in (2.41), the condition (3.9) yields

Ċ+
δCζ

1+α∗ζ
Ẋ† = 0 (3.10)

so that, in view of (2.37) and (2.39)

C(t†) = c0 exp
[
−(δ/ζ

∗)X†]= c0 exp [−δX∗] , c0 ε R . (3.11)

Now, (3.1) shows that

T † =
Ψ/δ

C(t†)−
∫ x†

X†(t†)
Ψ(σ , t†)dσ

(3.12)

whence

T †|x†=X† =
Ψ|x†=X†

δC(t†)
= ζ (t†) (3.13)

and

T †
x† =

Ψx†

δ

[
C(t†)−

∫ x†

X†(t†) Ψ(σ , t†)dσ

] + Ψ2

δ

[
C(t†)−

∫ x†

X†(t†) Ψ(σ , t†)dσ

]2 . (3.14)

Accordingly,

−T †
x† +δT †2

=
−Ψx†

δ

[
C(t†)−

∫ x†

X†(t†)
Ψ(σ , t†)dσ

] =−Ψx†T †

Ψ
, (3.15)

and the conditions on the moving boundary in (2.41) become

Ψx† =−(α∗/ξ ∗)Ẋ† ,

Ψ = δC(t†)ζ (t†)

}
on x† = X†(t†) . (3.16)

The residual boundary condition in (2.41) yields

Ψx† =−UΨ on x† =V (t†) , t† > 0 , (3.17)

namely, a Robin-type requirement.
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Summary II

Reduction of the original class of heterogeneous moving boundary problems (2.13) with modulation
determined by (2.16) has been reduced via successive reciprocal-type and integral transformations
to a canonical Stefan problem with a Robin boundary condition, namely

Ψt†−Ψx†x† = 0 , V (t†)< x† < X†(t†) , t† > 0

Ψx† =−U(t†)Ψ , on x† =V (t†) , t† > 0

Ψx† =−(α∗/ξ ∗)Ẋ† ,

Ψ = δC(t†)ζ (t†)

}
on x† = X†(t†) , t† > 0

X†|t†=0 = 0

(3.18)

where V̇ =U and V (t†) = x†|x∗=0 by virtue of (2.26).
In terms of the solution Ψ(x†, t†) of the above moving boundary problem, the corresponding

solution T †(x†, t†) of the class of moving boundary problems (2.41) for Burgers’ equation is given
by the integral representation (3.1), that is, (3.12). The solution T ∗(x∗, t∗) of the reciprocally asso-
ciated moving boundary problem (2.18) is then given parametrically via the relations

T ∗ =
1

T †(x†, t†)
, x∗ = x∗(x†, t†) ,

t∗ = t†

 (3.19)

where x∗(x†, t†) is obtained through the reciprocal relation

dx∗ = T †dx† +

(
∂T †

∂x† −δT †2
)

dt† (3.20)

implicit in R† as given by (2.21). Thus,

x† =
∫ x†

X†
T †dx† +X∗ =

∫ x†

X†
T †dx† +X†/ξ

∗ (3.21)

in view of the relation (2.40). The associated solution of the original class of heterogeneous moving
boundary problems (2.14) is then determined by the relations

T = a− T ∗(x∗, t∗)
ρ3

x∗ =
1

2(−δ )
ln
[
−δx

η
+1
]
, t∗ = t

 (3.22)

where ρ is given by (2.16).

4. A Solvable Stefan Problem with Variable Latent Heat

The system (3.18) constitutes a moving boundary problem of Stefan-type with variable latent heat.
Here, it is considered with the specialisations

X†(t†) = 2γ

√
t† , V = 2α

√
t† (4.1)
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with the latter requirement on V (t†) corresponding to

U(t†) =
α√
t†

. (4.2)

In addition, the conditions on the moving boundary x† = X†(t†) are taken to be of the type adopted
in [33], so that here

−(α∗/ξ
∗)|x†=X† =−(α(ρ)ρ2/ξ

∗)|x†=X† = λ
†X†(t†) (4.3)

and

C(t†)ζ (t†) =
√

t† (4.4)

where in (4.3), λ † is a real non-zero constant.

It was shown in [33] that the classical heat equation (3.8) admits the class of similarity solutions

Ψ(x†, t†) = 2
√

t† η(ξ †) (4.5)

where ξ † = x†/2
√

t† and

1
2

η
′′(ξ †)+ξ

†
η
′(ξ †)−η(ξ †) = 0 (4.6)

with general solution

η(ξ ) = A[ e−ξ †2

+
√

π ξ
†erf ξ

† ]+B ξ
† , (4.7)

where A, B are arbitrary real constants.

Boundary Conditions

Below, the conditions imposed on the similarity solution (4.7) of the moving boundary problem
(3.18) are summarised.
I

Ψx† =−
α√
t†

Ψ on x† = 2α

√
t† , t† > 0 . (4.8)

This boundary condition yields

η
′(α) =−2αη(α) (4.9)

so that

A
√

π erf α +B =−2α[ A( e−α2
+
√

π α erf α )+Bα ] , (4.10)

II

Ψx† = λ
†X†(t†)Ẋ†(t†) on x† = X†(t†) , t† > 0 . (4.11)

This requires that

η
′(γ) = 2γ

2
λ

† (4.12)
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whence

A
√

π erf γ +B = 2γ
2
λ

† . (4.13)

III

Ψ = δ

√
t† on x† = X†(t†) , t† > 0 . (4.14)

This yields

η(γ) = δ/2 (4.15)

so that

A[ e−γ2
+
√

π γ erf γ ]+Bγ = δ/2 . (4.16)

The triad of equations (4.10), (4.13) and (4.16) serve to determine A, B and γ .

5. Conclusion

Reciprocal-type transformations have previously had diverse physical applications in such areas as
gasdynamics, magnetogasdynamics, nonlinear heat conduction, the theory of discontinuity wave
propagation and invariance properties of classical capillairity and nonlinear optics systems (see e.g.
[7, 24–28] and literature cited therein). In terms of practical moving boundary problems, reciprocal
transformations have, in particular, been applied in the analysis of methacrylate distribution in wood
saturation processes [8]. In soliton theory, reciprocal transformations have been used to link inverse
scattering schemes and the nonlinear integrable equations contained therein [9, 11, 29–32].

Here, two kinds of reciprocal transformation in conjunction with an integral transformation of a
novel type introduced in [5] for Burgers’ equation have been applied to reduce sequentially a class
of nonlinear moving boundary problems incorporating heterogeneity to a canonical Stefan-type
problem with variable latent heat. A class of such moving boundary problems is shown to admit
exact similarity solutions.

References
[1] C. Athorne, C. Rogers, U. Ramgulam and A. Osbaldestin, On linearisation of the Ermakov system,

Phys. Lett. 143A (1990) 207–212.
[2] D.W. Barclay, T.B. Moodie and C. Rogers, Cylindrical impact waves in inhomogeneous Maxwellian

visco-elastic media, Acta Mechanica 29 (1978) 93–117.
[3] J. Bollati and D.A. Tarzia, Explicit solution for a one-phase Stefan problem with latent heat depending

on the position and a convective boundary condition at the fixed face, Communications in Applied
Analysis 22 (2018) 309–332.

[4] P. Broadbridge, Integrable forms of the one-dimensional flow equation for unsaturated heterogeneous
porous media, J. Math. Phys. 29 (1988) 622–627.

[5] F. Calogero and S. De Lillo, The Burgers equation on the semi-infinite and finite intervals, Nonlinearity
2 (1989) 37–43.

[6] D.L. Clements, C. Atkinson and C. Rogers, Antiplane crack problems for an inhomogeneous elastic
material Acta Mechanica 29 (1978) 199–211.

[7] A. Donato, U. Ramgulam and C. Rogers, The 3+1-dimensional Monge-Ampère equation in disconti-
nuity wave theory: application of a reciprocal transformation, Meccanica 27 (1992) 257–262.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

323



C. Rogers / Moving Boundary Problems for Heterogeneous Media

[8] A.S. Fokas, C. Rogers and W.K. Schief, Evolution of methacrylate distribution during wood saturation.
A nonlinear moving boundary problem, Appl. Math. Lett. 18 (2005) 321–328.

[9] A.N.W. Hone, Reciprocal transformations. Painlevé property and solutions of energy-dependent
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infiltration. Application of a Bäcklund transformation, J. Nonlinear Analysis, Theory, Methods and
Applications 7 (1983) 785–799.

[24] C. Rogers, Reciprocal relations in non-steady one-dimensional gasdynamics, Zeit. Angew. Math. Phys.
19 (1968) 58–63.

[25] C. Rogers, Invariant transformations in non-steady gasdynamics and magneto-gasdynamics, Zeit.
Angew. Math. Phys. 20 (1969) 370–382.
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