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Nonlinear PDE’s having given conditional symmetries are constructed. They are obtained starting from the
invariants of the conditional symmetry generator and imposing the extra condition given by the characteristic
of the symmetry. Series of examples starting from the Boussinesq and including non-autonomous Korteweg—de
Vries like equations are given to show and clarify the methodology introduced.
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1. Introduction

As Galileo Galilei said in Il Saggiatore (1623) [21], our world is described in mathematical formulas
and it is up to us to comprehend it. This was the starting point of the scientific revolution which goes
on up to nowadays and gave us the present world technology, i.e. cellular phones, lasers, computers,
nuclear resonance imaging, etc.

Our capability of solving complicated physical problems described by mathematical formu-
las (say equations) is based on the existence of symmetries, i.e. transformations which leave the
equations invariant. Towards the end of the nineteenth century, Sophus Lie introduced the notion
of Lie group of symmetries in order to study the solutions of differential equations. He showed
the following main property: if an equation is invariant under a one-parameter Lie group of point
transformations then we can reduce the equation and possibly construct an invariant solution. This
observation unified and extended the available integration techniques such as separation of variables
or integrating factors. Roughly speaking, Lie point symmetries are a local group of transformations
which map every solution of the system into another solution of the same system. In other words, it
maps the solution set of the equation into itself.
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A partial differential equation (PDE) & = 0 is invariant under a continuous group of Lie point
transformations if the corresponding infinitesimal symmetry generator X satisfy

prX& ™ 0, (1.1)

where by the symbol pr we mean the prolongation of the infinitesimal generator to all derivatives
appearing in the equation & = 0. In particular, if we consider a second order PDE in R? of indepen-
dent variables x and y and dependent variable u(x,y),

&= g(X,yvuaMm”%”xm”xyv”yy) =0, (1.2)
(where the subscripts denote partial derivatives) the infinitesimal generator will be given by

X = &(x,y,u)0x +1(x,y,u) 0y + ¢ (x,y,u)dy, (1.3)

where &,  and ¢ are functions of their arguments to be determined by solving (1.1). The prolon-
gation of X is given by

pI'X == X + (P(LX) (x)yvuaMX)u}’)aux _’_¢(1¢)’) (x,y,u,umuy)auy + (14)
+ ¢ (X, 7, Uy Uy, Uy, U, Uy, Uyy ) Oy, +

2.x
+ ¢( Y) <x7y7 U, Uy, ”ya Uxx, uxy7 ”yy)auxy +

2,
+ ¢( 'yy) (x7y7 U, Uy, ”y’ Uxx, uxy7 ”yy)auyy,

where the functions ¢(1Y), ¢(1¥) and ¢2<) ¢(2%) ¢ (2¥) are algorithmically derived in terms of
&, n and ¢. See, for example, the references [7,36] for this construction.
Given an infinitesimal generator of a symmetry X a function .# is an invariant if it is such that

prX.# =0. (1.5)

Eq. (1.5) is a first order PDE which can be solved on the characteristic and provide the set of
invariants and differential invariants .#;, j =0, 1,... depending on x, y, u and its partial derivatives
up to the second order. Then a PDE invariant with respect to the infinitesimal generator (1.3) can be
written as

E=6({7)) =0, j=0,1,.... (1.6)

Lie method is a well established technique to search for exact solutions of differential or differ-
ence equations of any type, integrable or non-integrable, linear or nonlinear. However, many equa-
tions may have no symmetries and there is no simple algorithm to prove the existence of symmetries
other than looking for them. Moreover, the obtained solutions do not always fulfill the conditions
imposed by the physical requests (boundary conditions, asymptotic behavior, etc.). So one looks for
extension or modification of the construction which could overcome some of these problems. One
looks for more symmetries,

e not always expressed in local form in terms of the dependent variable of the differential equations,
e not satisfying all the properties of a Lie group but just providing solutions.

In the first class are the potential symmetries introduced by Bluman et al. [4, 8], the nonlocal sym-
metries by Vinogradov et al. [13,24,26,31,34,39,40,46] while in the second one are the conditional
symmetries [5, 19,20, 32, 35].
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The inverse problem, that is, to construct a differential equation with a prescribed set of Lie
point symmetries has been discussed and used in many references (see for instance [6]), looking
for models enjoying properties related to these symmetries. The basic idea is that by computing the
invariants of the symmetries and then constructing the quantities written in terms of these invari-
ants we can obtain equations that have prescribed symmetries and whose solutions have the given
transformation properties, for example the Lorentz transformation.

A very important application in this field is the symmetry preserving discretization where we
construct discretized equations which possess the same symmetries or a subgroup of the symmetry
group of a given ODE or PDE [9, 18,28-30]. The construction of the Ordinary Difference Equation
(OAE) or the Partial Difference Equation (PAE) is obtained through the computation of discrete
invariants of the symmetry group of the ODE or PDE or one of its subgroup looking for a function
of these invariants which yields the ODE or the PDE in the continuous limit.

This paper is part of the work of extending the project of symmetry preserving discretization to
the case of conditional symmetries. To do so we have to understand at first how to construct a differ-
ential equation possessing a given conditional symmetry starting from the infinitesimal generator.
This is the content of this paper. The symmetry preserving discretization is left to future work.

As in other approaches to inverse problems, it is not evident that the equations we can find
might have an immediate interest. This is the case, for example, of integrable equations associated
to given spectral problems [12]. Here, as we will see in the examples, we have presented KdV-like
equations which can be of interest in the description of shallow water waves in different physical
contexts [37].

In Section 2 we will provide the theory behind the construction of the conditional symmetries
clarifying in this way the difference between symmetries and conditional symmetries. Then in Sec-
tion 3 we will verify the proposed construction in the case of the Boussinesq equation (3.1) and,
in correspondence with its conditional symmetries, construct new conditionally invariant equations.
Section 4 is devoted to the summary of the result, some concluding remarks and prospects of future
works.

2. What is a conditional symmetry?

Conditional symmetries were introduced by Bluman and Cole with the name non-classical method
[5] by adding an auxiliary first-order equation to (1.2), build up in terms of the coefficients of the
infinitesimal generator X , namely

C = C(x,y,uux,uy) = &(x,y,u)ue+1(x,y,u)uy, — ¢ (x,y,u) =0, 2.1

the infinitesimal symmetry generator (1.3) written in characteristic form [36] set equal to zero.
Equation (2.1) is as yet unspecified and it will be determined together with the vector field X, as it
involves the same functions &, n) and ¢. L.e. we look for the simultaneous symmetry group of the
overdetermined system of equations (1.2) and (2.1). It is easy to prove that (2.1) is invariant under
the first prolongation of (1.3)

prXE = —(Etty + Nutty — 4 E, (2.2)
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without imposing any conditions on the functions &, 1 and ¢. Consequently, we need just to apply
the following invariance condition

prX&|,_, =0. (2.3)
¢=0
Eq. (2.3) gives nonlinear determining equations for &, 1 and ¢ which provide at the same time the
classical and non-classical symmetries. In fact, as noted in [15], since all solutions of the classical
determining equations necessarily satisfy the nonclassical determining equations (2.3), the solution
set may be larger in the nonclassical case. As ¥ = 0 appears in (2.3) as a condition imposed on the
determining equations one has called the resulting symmetries conditional symmetries.

There are several works devoted to using the non-classical method to construct solutions of
PDEs that are different from the ones obtained by classical method using the Lie point symme-
tries. Among them, let us cite as an example, [2, 17, 22, 23, 25, 38, 41]. Moreover we can find
programs to compute them [3] and algorithms [14] for showing the existence of nontrivial non-
classical symmetries for given PDE:s. In the case of integrable equations let us mention the works of
Sergyeyev [43,44] where he considered the classification of all (1 4 1)-dimensional evolution sys-
tems that admit a generalized (Lie—Bécklund) vector field as a generalized conditional symmetry.

In this paper we want to look at the conditional symmetries from a different perspective. Given
an infinitesimal group generator characterized by a vector field X for specific values of the functions
&, n and ¢, we want to construct equations & = 0 which have this symmetry as a conditional
symmetry and not as a Lie point symmetry. Taking into account that an equation invariant under
a given symmetry is written in terms of its invariants (1.6), a second order PDE invariant under a
conditional symmetry will be given by

eI} 0, j=0,1,.... (2.4)

{¢=0}
The constraint {# = 0} in (2.4) is to be interpreted as the differential equation (2.1) and all of its
differential consequences (see Section 3 for the details presented in the explicit examples).

The condition ¢ = 0 and its differential consequences must not be used everywhere on the
invariant equation to get (2.3) as, if we would do so, the global substitution of the condition and its
consequences would turn the invariant PDE into an ODE in one of the independent variables with
parametric dependence on the other.

3. A series of examples including the Boussinesq equation

The Boussinesq equation
Uyy + Uty + (ux)2+uxxxx =0, (3.1

was introduced in 1871 by Boussinesq to describe the propagation of long waves in shallow water
[10,11] and it is of considerable physical and mathematical interest. It also arises in several other
physical applications including one-dimensional nonlinear lattice waves [45, 47], vibrations in a
nonlinear string [48], and ion sound waves in a plasma [42].

If 7 in (1.3) is different from zero the resulting determining equations for conditional symme-
tries do not fix it and we can always put it equal to one. If n =0 and & # 0, we can put & = 1 for
the same reason.
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The conditional symmetries of the Boussinesq equation for 1 # 0 were obtained in [32], and
in [16] by non group techniques. The case 1) = 0 has been considered later and can be found in [15].
Moreover it is worthwhile to notice that the condition is the same if we consider X or f(x,y,u)X,
however the invariants in the two cases are different. So, for any X we can consider f(x,y,u)% =0
as a condition.

In [15,32] we find the following generators of the conditional symmetries for (3.1):

X\ = 0y +y0x — 2y, (3.2)
=0, g&x—i— (iw y63x2) d, (3.3)
£ =0+ (— ; +y4) A+ (iw y63x2 —2y2x—4y7)3u (3.4)
Xy=0,+ (ziy —i—y) O — ;(u+2x+4y2)8u (3.5)
Rs = o+ ;‘z(wﬁzwwx— [gu+3px2+ % (;+ 12p'W> (3.6)
n %ZW(;%@W)M, W(y):/oy [(‘f;(f))}zds,
$o =0 [t o o (3.7)
)27:ax+[—2xQ+c1Q+c2Q/0y[Q‘é:)]2}au, (3.8)

where @ is a special case of the Weierstrass elliptic function @(y, g2, g3) [1] with g, = 0 satisfying
the differential equation £ = 4% — g3, Q = #(y + ¢3,0,g3) and P2, g3 and c;,i = 0,...,3 are
arbitrary constants.

The generators X|, . ..,Xs5 were obtained assuming ) = 1, thus are defined in (3.2-3.6) up to an
arbitrary function 7 (x,y,u) while X and X; were obtained assuming 7 = 0 and & = 1, thus are
defined in (3.7) and (3.8) up to an arbitrary function & (x,y,u).

3.1. Conditional invariant equations associated to X,

For the infinitesimal generator X; and its prolongation up to fourth order we obtain the following
invariants:

Jo = —2+y, A =22+u, FHh=uy, I5=2y+yuctuy, I4= iy,
Is = yuxetity,  Io =1y +2yuxy+2(y2 — XUy, I7 = Uy
) ‘ﬂll = Uyxxxx- (39)

The condition is given by .#3 = 0 i.e. ¢ = 2y + yu, +u, = 0 and we can construct the Boussinesq
equation in terms of the invariants (3.9). It is:

NIy + I+ I + I3 o= (3.10)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
285



D. Levi et al. / Differential Equations Invariant Under Conditional Symmetries
As 6 = uyy + yu,, we have:

uyy+2y(uxy +yuxx) T+ Uk + Uyex + (ux)Z = (3.11)

Uyy +)’ Uxx=! 0

= Uy + Ullyy + Uyrx + (ux)2 =0.

So, the Boussinesq equation (3.1) has the conditional symmetry given by X;.
Now, we want to construct an autonomous equation which have the conditional symmetry given
by X;. Let us consider a different subset of the invariants (3.9)

Io+ 9 Iy
%,

=

=0.

Uy + YUl =0

=0, 1.e. Uy +2y(thy + Yilxr) + uuxx}

So we we have:
Uty + ttyy = 0, (3.12)

a nonlinear Laplace equation which is a truncation of the Boussinesq equation.
To verify if effectively (3.12) has X; as a conditional symmetry we compute its Lie point sym-
metries. They are

Z) = o, (3.13)
2 =9,

23 = x8x +y8y.

As it does not exist a function 1(x, y, u) such that Z = n(x,y,u)X;, for Z in (3.13), then (3.12) does
have X; as a conditional symmetry.

A KdV like non-autonomous equation which has the conditional symmetry given by X; can be
found by considering a different subset of the invariants (3.9), i.e.

It (- IS =0, ie. (um g+ yzux) —0. (3.14)
=0 yux:fuyfzy
We get:
1
Uy = ;(uxxx—i—uux) —2y. (3.15)

To verify if effectively (3.15) has X; as a conditional symmetry we compute its Lie point sym-
metries. They are

24= 0, (3.16)
73 = Inyd, — 9,

5 : 22 2

Zr = [yzlny+ g — %]ax +y1ny8y — [2}12 Iny+ % _ ?u]au

71 =y*0, +ydy — 2y*9, = yX|.
The invariants of Z; are:
Io=2x+u, I =-2x+y", h=uy, &I=yu,+2xu,+dax (3.17)

Iy = Uy, Is=2xuy + Yityy,

Is = yzuyy + 4xyuyy —|—4x2uxx 4+ 2xuy +4x, 17 = tyyy, ...
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and (3.15) is given by Ipl, — Iz +1; —21; = 0. As 7= y)?l, X, is a trivial conditional symmetry.

3.2. Conditional invariant equations associated to X,

For the infinitesimal generator X, and its prolongation up to derivatives of fourth order we obtain
the following invariants:

Fo=xy, S = Put+>
y

I3 =

4 4

X
27 f2=x3ux+2)j>

[\

2 4

X X X
(yuy —xux—2u—6)?), I :x4uxx+2)?,

y
3

s = — (yuxy — XUy — Uy — 12%),
y y

2 2
x x x u x
Io=— (yuyy — 2y + — Uy — 4ty + 6=11, +6— -|—42—3) ,
y y y Y y
j7 = xsuxxx, ooy cf]] = x(’uxxxx.

(3.18)

The condition is given by .73 = 01i.e. € = yu, — xu, —2u— 6’y‘—§ =0 and we can construct a nonlinear

evolution PDE in terms of the invariants (3.18). It is:

A Iy+ I+ I =x5 [ty Uttty + U + (ux)z] ,

when ¢ = 0 and all its differential consequences.

(3.19)

A KdV like non-autonomous equation which may have the conditional symmetry given by X»
can be found by considering a different subset of the invariants (3.18), i.e.

that is

I+ A S v =0,

2
y X
uy + ;(uxxx + uuy) — 4)3 =0.

Lie point symmetries of (3.21) are

We observe that Z3 =

A 1
Z) =ydy,+ Ex&,c —uo,
A 1 2 6
2=~ {ay ~Eo+ <—u+ —3x2) au]
y y y y
73 = y78y +2y%x0, — 4y* (y*u — 3x%)d,
%)A(g. The invariants of Z3 are:
y
2
X 2x
lo=xy, I =x*(u+ ?), L= x> (u,+ yﬁ)’
2 6x>
iy
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and (3.21) is given by I3 + Iyl7 + IpI1 I, = 0. Thus the equation (3.21) is invariant under the vector
field Z3 of (3.22) and X is a trivial conditional symmetry.

3.3. Conditional invariant equations associated to X;

For the infinitesimal generator X3 and its prolongation up to derivatives of fourth order we obtain
the following invariants:

1 u x> 1 13 u X
Fo=xy— % A=+ -+ A= 2 3.24
0 Xy 6y) 1 y2 +y4 3Xy+ 18y7 2 y3+ y57 ( )
1. s 5 3 x? Uy 1
I3 = [+ Y ue +2y°x +yuy —xuy —2u— 6=,  SJyp=— +2—,
y y y y
g=E f“:%,....

The condition is given by %3 = 0 i.e. € = 4y® + y u, + 2y°x + yuy — xuy — 2u — 6’y‘—§ =0 and we
can construct a nonlinear evolution PDE in terms of the invariants (3.24), provided the condition is
satisfied. It is:

5 1
jz(jz - 9) +<ﬂ1] +f4<f] - gﬂ(}) - 36 == )} |:Myy +uuxx+uxxxX+ (MX)Z] 5 (325)
when € = 0 and all its differential consequences.
Then, the Boussinesq equation (3.1) has the conditional symmetry given by the vector field X;.
A KdV like non-autonomous equation which may have the conditional symmetry given by X3
can be found by considering a different subset of the invariants (3.24), i.e.

637 8
S It A) It Iy = oA =0 3.26
(75 0t ) At I - A (3.26)
We get:
49 4, 47229 52 53 ,, %
XUy + YUy +ully| = ==y u—y <—x——y )u ——xy +4—=. 3.27)
y [xxx x] 75 25 75 X 3 y3

The equation (3.27) has no point symmetries. Then (3.27) is a conditionally invariant KdV-like
equation.

3.4. Conditional invariant equations associated to X

For the infinitesimal generator X5 with ¢o = 0 and its prolongation up to second order we obtain the
following invariants:

| ,
o=y, S = x—4(12 +x2u), Ty — ;% (3.28)
|
f3:—5<x3ux—2x2u—48>, f4:u—y2y,...,
X X

I
S = — (= 1440 — 2420+ 1850, + g — 651 ).
X

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
288



D. Levi et al. / Differential Equations Invariant Under Conditional Symmetries

The condition is given by %3 =0 i.e. € = uy, — % — %8 = (0 and we can construct a nonlinear

evolution PDE in terms of the invariants (3.28). It is:
1
6.9+ 9, = = [ty 4wttt + e + ()] | (3.29)

when 4 = 0 and all its differential consequences.

Then, the Boussinesq equation (3.1) has the conditional symmetry given by Xs.

A KdV like non-autonomous equation which may have the conditional symmetry given by X¢
can be found by considering a different subset of the invariants of (3.28), i.e.

I3+ I+ I0| gy =0. (3.30)
=0
Eq. (3.30) reads:
2
ULl u u 288
uy+uxxx—4x—3+8x—4+l92;—x—5:() 3.31)

Equation (3.31) has only Lie point symmetry Z; = 9y.
Z) =0, (3.32)

So, (3.31) is a conditionally invariant equation.

3.5. Conditional invariant equation associated to ¥ = d,+ Ziya = 53 u

The generator ¥ = o+ ziyax — ;au was introduced by Momoniat [33] to describe the nonclassical
(conditional) symmetries of the Frank—Kamenetskii partial differential equation

0 10 d
= () e (39

modeling a thermal explosion in a cylindrical vessel. In [33] the obtained symmetry for (3.33) was
shown to correspond to a classical symmetry.

For the infinitesimal generator ¥ and its prolongation up to third order we obtain the following
invariants:

1
fo:l S =2Inx+u, S =xuy, f3:2—(2—|—xux—|—2yuy),
Yy

1 x2 1 x 1

X
j4:x2uxm ceey j6:uyy+;uxy+z)?uxx_z)ﬁux_;’

(3.34)

3
7 = X Uryx-

The condition is given by .#3 = 0 i.e. ¢ = 2+ xu, + 2yu, = 0 and we can construct, apart from
the Frank—Kamenetskii partial differential equation (3.33), a nonlinear KdV like evolution PDE in
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terms of the invariants (3.34). It is:

1
foe‘ﬁ'+fo,ﬂ7+l+§ﬂ2/ =0, Qe iy =Xty +e" (3.35)

i.e. a nonlinear dispersive non-autonomous KdV like equation. Lie point symmetries of (3.35) are
721 =0, (3.36)
N 1
Zr = yay + Exax — au

We observe that Z, = y¥. The invariants of Z, are:

Iy = 12, L =2Inx+4u, h =xu,, Iz :xzuy,..., I :x3uxxx, (3.37)
x

and (3.35) is given by Is — I; —exp(I;) = 0. Thus the equation (3.35) is invariant under Z, and ¥ is,
in this sense, a trivial conditional symmetry.
For this infinitesimal generator we can construct a conditionally invariant wave equation too,
2.9 S 2 1,
Io+ Iy ey =0, ie yuy —— XUy —

3
- “xiy — 14-x%" =0, (3.38)
%ﬂx:O 4

4

a nonlinear non autonomous wave equation which has as Lie point symmetries of infinitesimal
generators

W) = yo, (3.39)
Wz :x8x—68u
R 1 2 2 2 .
W3 = —0+—0dy——0d, =Y.
T xy +x2 Y a2 x2

In correspondance with W3, after some nontrivial calculations, we get the following invariants

1
JO — %7 -]l = 21nx+u, J2 = 72<2yuy —|—Xlxlx+2>, (340)
X 4yx
x? 1 /. 2
J3 = 4—y(2yuy—xux—2), Ja= 872(43’ Uy —X ”xx—x”x+4y”y)'

Then (3.38) is written in terms of the invariants (3.40) as J4 — J2Jy Ly %ej Wy 2 = 0. So, also the
equation (3.38) has in ¥ a trivial conditional symmetry.

4. Conclusions

In this article we presented a construction of nonlinear PDE’s having given conditional symmetries.
They are obtained starting from the invariants of the symmetry and imposing the extra condition
given by equating to zero the characteristic and its differential consequences. We showed in the case
of the Boussinesq equation that effectively the construction proposed works and allows to produce
other conditionally invariant nonlinear equations (3.12, 3.15, 3.21, 3.27, 3.31, 3.35, 3.38). Equations
(3.15, 3.21, 3.27, 3.31, 3.35) are non-autonomous KdV-like equations and it is well known that the
KdV equation has no non-singular conditional symmetries [16]. However, not all obtained equations
are conditionally invariant even if we constructed them in such a way. The obtained equations can
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still have the generator X as a point symmetry due to the arbitrary multiplicative factor 1(x,y, )
or &(x,y,u) under which the condition is defined. This is what happens in cases of the KdV-like
equations (3.15, 3.21, 3.35) and of the nonlinear wave equation (3.38).

An important point not touched in this work but on which we are presently working is under-
standing a priori if this technique can be used to characterize the class of nonlinear PDEs that allows
conditional symmetries (see the paper by Kunzinger and Popovych [27] for results on this problem).
Why most of the KdV like equation we have constructed are not conditionally invariant?

Moreover work is also in progress on solving by symmetry reduction the obtained conditionally
invariant KdV like equations and on the construction of conditional symmetry preserving discretiza-
tions of the Boussinesq equation.
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