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1. Introduction

Integrable discretizations of soliton equations have attracted much attention during the past few
years. The celebrated Landau-Lifshits equation [2]

st = [s,sxx + Js], s ∈ R3, J = diag(J1,J2,J3), J1 + J2 + J3 = 0, (1.1)

has two well-known integrable discretizations. One of them is the Sklyanin lattice which is deter-
mined by the Poisson brackets algebra (see (13) in [7] or [1]){

s(n)α ,s(n)0

}
= Jβγs(n)

β
s(n)γ ,

{
s(n)α ,s(n)

β

}
=−s(n)0 s(n)γ , (1.2)

and the discrete variant of the Landau-Lifshits Hamiltonian (see (23) in [7])

H(0) = ∑
n

ln
(

s(n+1)
0 s(n)0 +

3

∑
α=1

(K1

K0
− Jα

)
s(n+1)

α s(n)α

)
. (1.3)
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Another discretization of the Landau-Lifshits equation (1.1) is the so-called Shabat-Yamilov lattice
[5, 6]

ut =
2h

u+− v
+hv, vt =

2h
u− v−

−hu, (1.4)

where u = u(n, t), v = v(n, t), ut =
du(n,t)

dt , vt =
dv(n,t)

dt , u+ = E+u = u(n+1, t), v− = E−b = b(n−
1, t) (E± are the shift operators and (n, t) ∈ Z×R), h = h(u,v) is a symmetric polynomial of u, v
degree no higher than two with respect to each of the variables and huuu = 0. By introducing the
complexified stereographic projection

S = S(u,v) =
1

u− v
(1−uv, i+ iuv,u+ v), i =

√
−1, (1.5)

one may relate the Shabat-Yamilov lattice (1.4) to the Sklyanin lattice by a special transformation
of variables [1]. The linear combination of the flows of (1.4) and its shift

ut =
2h

u−− v
+hv, vt =

2h
u− v+

−hu, (1.6)

give rise to [5]

ut = ρ1

(
2h

u+− v
+hv

)
+ρ2

(
2h

u−− v
+hv

)
,

vt = ρ1

(
2h

u− v−
−hu

)
+ρ2

(
2h

u− v+
−hu

)
,

(1.7)

where ρ1, ρ2 are real constants. By specifying ρ1 = 1, ρ2 = 0, h= 1
2(u−v)2, the lattice (1.7) reduces

to the so-called Heisenberg ferromagnet (HF) lattice{
ut = (u− v)(u−u+)(u+− v)−1,

vt = (u− v)(v−− v)(u− v−)−1.
(1.8)

In the spin variables S (see (1.5)), the system (1.7) reads [1]

St = ρ1 〈S,KS 〉
(

[S,S+]
1+[S,S+]

+
[S,S−]

1+[S,S−]

)
−2ρ1[S,KS]

+ρ2 〈S,KS 〉
(

S+S+

1+[S,S+]
− S+S−

1+[S,S−]

)
,

(1.9)

where K = diag(K1,K2,K3) and |S| = 1. It is well-known that the lattice (1.9) is integrable with a
zero-curvature representation and can be reduced to the well-known Heisenberg lattice (see [1] and
references therein).

In this paper, we study quasi-periodic solutions of the whole Heisenberg ferromagnet hierarchy
by using algebro-geometric method. In section 2, we construct the stationary and time-dependent
HF hierarchy from its zero-curvature representation. Then spectral curves and an auxiliary function
ϕ are introduced in section 3. In section 4, based on analytic and asymptotic properties of ϕ , we
derive theta function representations for the entire HF hierarchy.
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2. Heisenberg ferromagnet hierarchy

In this section, we construct the Heisenberg ferromagnet hierarchy by developing zero-curvature
formulism of the HF lattice. For later use we denote by E± the shift operators acting on ψ =

{ψ(n, t)}+∞
n=−∞ ∈CZ according to (E±ψ)(n, t) = ψ(n±1, t), or E±ψ = ψ± for convenience. These

notations are followed by [4].
It is well-known that the HF lattice has symplectic operator, Hamiltonian structure, recursion

operator, nontrivial generalised symmetry and Lax representation [5]. To construct the HF hierarchy
we start from the following two 2×2 Lax matrices

U =U(λ ,u,v) =
(

λ −2u(u− v)−1 −2(u− v)−1

2uv(u− v)−1 λ +2v(u− v)−1

)
, (2.1)

V =V (λ ,u,v) = λ
−1(u− v−)−1

(
u+ v− 2
−2uv− −(u+ v−)

)
, (2.2)

where λ ∈ C is a spectral parameter and u, v are functions of the lattice variable n and the time
variable t.

In the following we temporarily view u, v as functions of only n and define the sequence
{a`,b`,c`}`∈N0 recursively by

2δ (a`+a+` −ub`− vb+` ) = b+`−1−b`−1, ` ∈ N0, (2.3)

2uvδ (a`+a+` + c`/u+ c+` /v) = c+`−1− c`−1, ` ∈ N0, (2.4)

2vδ (a`−a+` )−2uvδb`−2δc+` =−a`−1 +a+`−1, ` ∈ N0, (2.5)

where a`, b`, c` are polynomials of u, v and their shifts, and δ = (u− v)−1. In matrix form, the
relations (2.3)-(2.5) can be written as I +E+ −u− vE+ 0

I +E+ 0 u−1 + v−1E+

I−E+ −u v−1E+

a`
b`
c`


=

 0 (2δ )−1(E+− I) 0
0 0 (2uvδ )−1(E+− I)

E+− I 0 0

a`−1

b`−1

c`−1

 ,

(2.6)

where I is the identity operator from CZ to CZ. Apparently, once the initial value (a0, b0, c0) is given,
{a`, b`, c`}`∈N can be recursively determined by the relations (2.3)-(2.5) or (2.6). However, the cal-
culations involved are rather big and therefore it is uneasy to obtain explicit form of {a`, b`, c`}`∈N.
In spite of difficulties, we can still get the following result.

Theorem 2.1. Solutions of the system (2.3)-(2.5) are explicitly given by the following recursion
relations

a` =
u+ v−

u− v−
(E+− I)−1S1,`−1, ` ∈ N0, (2.7)

b` = S2,`−1 +
2

u− v−
(E+− I)−1S1,`−1, ` ∈ N0, (2.8)

c` = S3,`−1−
2uv−

u− v−
(E+− I)−1S1,`−1, ` ∈ N0, (2.9)
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where S1,`−1, S2,`−1, S3,`−1 are defined by

S1,`−1 =
u

u2− (v−)2

(v(b+`−1−b`−1)+a`−1−a+`−1

2δ

)−
− v

(u+)2− v2

(u(b+`−1−b`−1)+a`−1−a+`−1

2δ

)+
− u

u2− (v−)2

u(b+`−1−b`−1)+a`−1−a+`−1

2δ
+

v
(u+)2− v2

v(b+`−1−b`−1)+a`−1−a+`−1

2δ

+
b+`−1−b`−1

2δ
,

S2,`−1 =
1

u2− (v−)2

((v(b+`−1−b`−1)+a`−1−a+`−1

2δ

)−
−

u(b+`−1−b`−1)+a`−1−a+`−1

2δ

)
,

S3,`−1 =
uv−

u2− (v−)2

( u
v−

(v(b+`−1−b`−1)+a`−1−a+`−1

2δ

)−
− v−

u
v(b+`−1−b`−1)+a`−1−a+`−1

2δ

)
.

Proof. First, from (2.3)-(2.5) it follows

2uδ (a`−a+` ) =−2uvδb+` −2δc`+a`−1−a+`−1. (2.10)

Eliminating b+` from (2.3) and (2.10), we have

2uδ (2a`−ub`+
c`
u
) = u(b+`−1−b`−1)+a`−1−a+`−1. (2.11)

Then insertion of (2.3) into (2.5) yields

4vδa+` −2v2
δb+` +2δc+` = v(b+`−1−b`−1)+a`−1−a+`−1, (2.12)

or equivalently,

2a`− v−b`+
c`
v−

=
(v(b+`−1−b`−1)+a`−1−a+`−1

2vδ

)−
. (2.13)

Combining (2.11) with (2.13), we obtain

b`+
1

uv−
c` =

(v(b+`−1−b`−1)+a`−1−a+`−1

2vδ

)−
−

u(b+`−1−b`−1)+a`−1−a+`−1

2uδ
(2.14)

b`−
2a`

u+ v−
=

1
u2− (v−)2

(v(b+`−1−b`−1)+a`−1−a+`−1

2δ

)−
− 1

u2− (v−)2

×
u(b+`−1−b`−1)+a`−1−a+`−1

2δ
. (2.15)

Thus, inserting (2.15) into (2.3), we conclude (2.7) and (2.8) hold. Finally, the formula (2.9) can be
derived from the following two equalities

2ua`−uv−b`+
u

v−
c` = u

(v(b+`−1−b`−1)+a`−1−a+`−1

2vδ

)−
, (2.16)

2v−a`−uv−b`+
v−

u
c` = v−

(v(b+`−1−b`−1)+a`−1−a+`−1

2uδ

)
. (2.17)

by eliminating b`. �
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Next we compute the stationary HF hierarchy. To this end we start from the stationary zero-
curvature equation

0 =UW − (EW )U, W =

(
A B
C −A

)
, (2.18)

where A, B, C, D are polynomials of λ :

A =
N+1

∑
`=1

aN+1−`λ
−`, B =

N+1

∑
`=1

bN+1−`λ
−`, C =

N+1

∑
`=1

cN+1−`λ
−`, N ∈ N. (2.19)

Using (2.1), one may rewrite Eq. (2.18) as

(λ −2uδ )A−2δC = (λ −2uδ )A++2uvδB+, (2.20)

(λ −2uδ )B+2δA =−2δA++(λ +2vδ )B+, (2.21)

2uvδA+(λ +2vδ )C = (λ −2uδ )C+−2uvδA+, (2.22)

2uvδB− (λ +2vδ )A =−2δC+− (λ +2uv)δA+. (2.23)

Inserting (2.19) into (2.20)-(2.23) and taking into account (2.3)-(2.5), one derives the stationary HF
hierarchy

aN−a+N = 0,

bN−b+N = 0, (2.24)

cN− c+N = 0.

In the case N = 0, the system (2.24) is reduced to the stationary HF lattice

(u− v)(u−u+)(u+− v)−1 = 0,

(u− v)(v−− v)(u− v−)−1 = 0.
(2.25)

The time-dependent HF hierarchy can be derived as follows. First, a`, b`, c` are considered
as functions of both n and t. To distinguish different higher order flows that are related to different
time variables, we replace t by tr. Then inserting (2.1), (2.3)-(2.5) and (2.19) into the time-dependent
zero-curvature equation

0 =Utr +UW − (E+W )U, (2.26)

we obtain the r-th equation in the HF hierarchy

(2uδ )tr =−ar +a+r , (2.27)

(2δ )tr =−br +b+r , (2.28)

(2uvδ )tr = cr− c+r , (2.29)

(2vδ )tr =−ar +a+r . (2.30)

The system (2.27)-(2.30) is overdetermined and can be simplified into the r-th HF lattice.
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Theorem 2.2. The r-th HF lattice has the form of

utr =
u− v

2
(
u(br−b+r )−ar +a+r

)
, (2.31)

vtr =
u− v

2
(
v(br−b+r )−ar +a+r

)
, r ∈ N0. (2.32)

Proof. First, using (2.27), we obtain

2utr δ +2uδtr =−ar +a+r . (2.33)

Then the relations (2.28) and (2.33) give rise to

2utr δ = u(br−b+r )−ar +a+r , (2.34)

and hence (2.31) holds. Using (2.28) and (2.30), we arrive at (2.32). To complete the proof, it
remains to show that (2.28), (2.29) are compatible with (2.31), (2.32). Actually, using (2.31) and
(2.32), we obtain

(2δ )tr =

(
2

u− v

)
tr

= −2δ
2(utr − vtr)

= −δ (u(br−b+r )−ar +a+r )+δ (v(br−b+r )−ar +a+r )

= −br +b+r . (2.35)

Then by (2.31), (2.32) and (2.35), it follows

2utr vδ = uv(br−b+r )− v(ar−a+r ),

2uvtr δ = uv(br−b+r )−u(ar−a+r ),

2uvδtr =−uv(br−b+r ),

and consequently,

(2uvδ )tr = 2utr vδ +2uvtr δ +2uvδtr

= uv(br−b+r )− (u+ v)(ar−a+r )

= cr− c+r . (2.36)

Here we use the recursion relations

2vδ (a`−a+` )−2uvδb`−2δc+` =−a`−1 +a+`−1, ` ∈ N0,

2uδ (a`−a+` )+2uvδb`+2δc+` = a`−1−a+`−1, ` ∈ N0

in the last equality of (2.36). �

3. Spectral curves and a basic meromorphic function

In this section, we first introduce the spectral curves associated with the HF hierarchy. Then we
introduce a basic meromorphic function ϕ and study its analytic and asymptotic properties.
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Let (ψ1,ψ2)
T and (φ1,φ2)

T be two fundamental solutions of auxiliary linear problem

E+
Φ(λ ,n, tr) =U(λ ,n, tr)Φ(λ ,n, tr),

Φtr(λ ,n, tr) =W (λ ,n, tr)Φ(λ ,n, tr),
(3.1)

where Φ(λ ,n, tr) = (Φ1(λ ,n, tr),Φ2(λ ,n, tr))T . Moreover, we define

f (λ ,n, tr) =−(λ 2−2λ )−n
ψ1(λ ,n, tr)φ1(λ ,n, tr), (3.2)

h(λ ,n, tr) = (λ 2−2λ )−n
ψ2(λ ,n, tr)φ2(λ ,n, tr), (3.3)

g(λ ,n, tr) = 2−1(λ 2−2λ )−n(ψ1(λ ,n, tr)φ2(λ ,n, tr)+φ1(λ ,n, tr)ψ2(λ ,n, tr)). (3.4)

Theorem 3.1. The functions f , g, h defined in (3.2)-(3.4) satisfy

(
g f
h −g

)+

=U
(

g f
h −g

)
U−1, (3.5)(

g f
h −g

)
tr

=

[(
A B
C −A

)
,

(
g f
h −g

)]
, (3.6)

where [·, ·] is the Lie bracket of two matrices P, Q

[P,Q] = PQ−QP

and g2 + f h is independent of x and tr.

Proof. The relation (3.5) can be derived from (3.1), (3.2), (3.3) and (3.4). Indeed, we have

g+ = 2−1(λ 2−2λ )−(n+1)
ψ

+
1 φ

+
2 +φ

+
1 ψ

+
2

= 2−1(λ 2−2λ )−(n+1)(((λ −2uδ )ψ1−2δψ2)(2uvδφ1 +(λ +2vδ )φ2)

+((λ −2uδ )φ1−2δφ2)(2uvδψ1 +(λ +2vδ )ψ2)
)

= − (λ 2−2λ )−1(2uvδ (λ −2uδ ) f − (λ −2uδ )(λ +2vδ )g

+4uvδ
2g+2δ (λ +2vδ )h,

f+ = − (λ 2−2λ )−(n+1)
ψ

+
1 φ

+
1

= − (λ 2−2λ )−(n+1)((λ −2uδ )ψ1−2δψ2)((λ −2uδ )φ1−2δφ2)

= (λ 2−2λ )−1((λ −2uδ )(λ −2uδ ) f +2δ (λ −2uδ )2g− (−2δ )2h),

h+ = (λ 2−2λ )−(n+1)
ψ

+
2 φ

+
2 ,

= (λ 2−2λ )−(n+1)(2uvδψ1 +(λ +2vδ )ψ2)(2uvδφ1 +(λ +2vδ )φ2)

= (λ 2−2λ )−1(−(2uvδ )2 f +2uvδ (λ +2vδ )2g+(λ +2vδ )2h).
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Similarly, according to the definition of f , g, h, φ1, φ2, ψ1, ψ1, it follows that

gtr = 2−1(λ 2−2λ )−n(ψ1,tr φ2 +ψ1φ2,tr +φ1,tr ψ2 +φ1ψ2,tN )

= 2−1(λ 2−2λ )−n((Aψ1 +Bψ2)φ2 +ψ1(Cφ1−Aφ2)

+(Aφ1 +Bφ2)ψ2 +φ1(Cψ1−Aψ2))

= Bh−C f ,

ftr = − (λ 2−2λ )−n(ψ1φ1)tr =−(λ 2−2λ )−n(ψ1,tr φ1 +ψ1φ1,tr)

= − (λ 2−2λ )−n((Aψ1 +Bψ2)φ1 +ψ1(Aφ1 +Bφ2))

= 2A f −2Bg

htr = (λ 2−2λ )−n(ψ2φ2)tr = (λ 2−2λ )−n(ψ2,tr φ2 +ψ2φ2,tr)

= (λ 2−2λ )−n((Cψ1−Aψ2)φ2 +ψ2(Cφ1−Aφ2))

= 2Cg−2Ah,

which indicates (3.6) holds. Finally, using(
det
(

g f
h −g

))
tr

= det
(

g f
h −g

)
tr

((
g f
h −g

)
tr

(
g f
h −g

)−1
)
, (3.7)

det
(

g f
h −g

)
=−g2− f h, (3.8)

we conclude that g2 + f h is independent of n and tr. �

In what follows it is convenient to introduce

gM =
M+1

∑
`=1

aM+1−`λ
−`, fM =

M+1

∑
`=1

bM+1−`λ
−`, hM =

M+1

∑
`=1

cM+1−`λ
−`, M ∈ N0. (3.9)

Then one may obtain the following result.

Theorem 3.2. Assume u, v are solutions of the r-th HF lattice and the M-th stationary HF lattice
(2.24). Then for fixed M ∈ N0,

g = gM, f = fM, h = hM, (3.10)

solve the system (3.6).

Proof. First we show that (3.10) satisfy the first equation in (3.6). To this end we make the ansatz

g =
M+1

∑
`=1

ăM+1−`λ
−`, f =

M+1

∑
`=1

b̆M+1−`λ
−`, h =

M+1

∑
`=1

c̆M+1−`λ
−`, (3.11)

where ă j, b̆ j, c̆ j, j = 1, . . . ,M+1 are polynomials with respect to u,v and their shift. Inserting (3.11)
into (3.6), one derives

ă j = a j, b̆ j = b j, c̆ j = c j, j = 1, . . . ,M+1. (3.12)

and hence (3.10) and (3.9) hold. To complete the proof, one has to prove that g, f ,h also satisfy
(3.6). Since u, v are both solutions of the M-th time-independent lattice, there exists a common
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eigenfunction χ = (χ1,χ2) for the following two linear problems

χ
+ =Uχ, VMχ = λ

−(M+1)yχ, (3.13)

where the 2×2 matrix

VM =

(
gM fM

hM −gM

)
. (3.14)

The relation (3.13) implies

λ
M+1(g2

M + fMhM)1/2 = y.

Next we introduce a new function

ϕ
′ =

χ2

χ1
=

λ−(M+1)y−gM

fM
=

hM

λ−(M+1)y+gM
. (3.15)

A direct computation shows that ϕ ′ satisfies

(λ −2uδ )ϕ ′+−2δϕ
′
ϕ
′ = 2uvδ +(λ +2vδ )ϕ ′. (3.16)

Differentiating (3.16) with respect to tN then yields(
(λ −2uδ −2δϕ

′)E+−2δϕ
′+− (λ +2vδ )

)
ϕ
′
tr = (2uvδ )tr +(2vδ )tr ϕ

′+(λ +2vδ )ϕ ′tr . (3.17)

On the other hand, we have(
(λ −2uδ −2δϕ

′)E+−2δϕ
′+− (λ +2vδ )

)(
C−2Aϕ

′−B(ϕ ′)2)
= (λ −2uδ −2δϕ

′)C+−2δϕ
′+C− (λ +2vδ )C+

(2uvδ +(λ +2vδ )ϕ ′

ϕ ′+
E+

+
2uvδ − (λ −2uδ )ϕ ′+

ϕ ′

)(
−2Aϕ

′−B(ϕ ′+)2)
= (2uvδ )tr +(2vδ )tr ϕ

′+(λ +2vδ )ϕ ′tr . (3.18)

Combining (3.17) with (3.18), one obtains(
λ −2uδ −2δϕ

′)E+−2δϕ
′+− (λ +2vδ )

)
(ϕ ′tr −C+2Aϕ

′+B(ϕ ′)2) = 0, (3.19)

and consequently,

ϕ
′
tr =C−2Aϕ

′−B(ϕ ′)2. (3.20)

On the other hand, from the definition of ψi, φi, one infers that the function ϕ (see (3.32)) satisfies

(λ −2uδ )ϕ+−2δϕ
+

ϕ−2uvδ − (λ +2vδ )ϕ = 0. (3.21)

Then by (3.1), we have (
ψ2

ψ1

)
tr

=
ψ2,tN ψ1−ψ2ψ1,tN

ψ2
1

=
Cψ1−Aψ2

ψ1
− ψ2

ψ1

Aψ1 +Bψ2

ψ1

= C−2A
ψ2

ψ1
−B

(
ψ2

ψ1

)2

. (3.22)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

476



P. Zhao et al. / Quasiperiodic solutions of the Heisenberg ferromagnet hierarchy

Similarly one may derive (
φ2

φ1

)
tr

= C−2A
φ2

φ1
−B

(
φ2

φ1

)2

. (3.23)

Thus one arrives at

ϕtr =C−2Aϕ−Bϕ
2. (3.24)

A comparison of (3.17), (3.20), (3.21) and (3.24) yields

ϕ = F(λ )ϕ ′, (3.25)

where F(λ ) is an arbitrary function of λ . Without loss of generality, one can take F(λ )≡ 1. There-
fore, one infers from (3.25) that there exists common eigenfunctions of the following linear system

χ
+ =Uχ, (3.26)

χtr =V χ, (3.27)

VMχ = λ
−(M+1)yχ. (3.28)

From the compatibility condition of (3.27) and (3.28), we finally obtain

VM,tr = [V,VM], (3.29)

which completes the proof. �

Next let us define

∆±(λ ,n, tr) =±2−1(λ 2−2λ )−n(ψ1(λ ,n, tr)φ2(λ ,n, tr)−φ1(λ ,n, tr)ψ2(λ ,n, tr)). (3.30)

It is not difficult to check that ∆± satisfy

∆
2
±(λ ,n, tr) = g2(λ ,n, tr)+ f (λ ,n, tr)h(λ ,n, tr),

∆+(λ ,n, tr)+g(λ ,n, tr) =−∆−(λ ,n, tr)+g(λ ,n, tr) = (λ 2−2λ )−n
ψ1(λ ,n, tr)φ2(λ ,n, tr),

φ2(λ ,n, tr)/φ1(λ ,n, tr) = (∆−(λ ,n, tr)−g(λ ,n, tr))/ f (λ ,n, tr),

ψ2/ψ1(λ ,n, tr) = h(λ ,n, tr)/(∆+(λ ,n, tr)+g(λ ,n, tr)) = (∆+(λ ,n, tr)−g(λ ,n, tr))/ f (λ ,n, tr).

For fixed M ∈ N, the spectral curve KM−1 of genus M−1 can be introduced as follows

KM−1 : y2 = λ
2M+2( f 2 +gh) =

2M−1

∏
j=0

(λ −E j), E j ∈ C.

Throughout this paper, one assumes that

E j 6= E`, j 6= `, j = 0,1, . . . ,2M−1. (3.31)

The next step is crucial; we lift the functions φ2/φ1 and ψ2/ψ1 on the Riemann surface KM−1 by

ϕ(P,x, tr) =

{
ψ2(λ ,n, tr)/ψ1(λ ,n, tr), P ∈K +

M−1

φ2(λ ,n, tr)/φ1(λ ,n, tr), P ∈K −
M−1,

(3.32)

where K ±
M−1 are two sheets of KM−1. The spectral curve KM−1 is compactified by the point at

infinity P∞. A point on KM−1 is denoted by P = (λ ,y(P)), where λ ∈ C and y(P) is a holomorphic

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

477



P. Zhao et al. / Quasiperiodic solutions of the Heisenberg ferromagnet hierarchy

function defined on the two sheets K ±
M−1 of KM−1:

y(P) =


√

∏
2M−1
j=0 (λ −E j), P ∈K +

M−1

−
√

∏
2M−1
j=0 (λ −E j), P ∈K −

M−1.
(3.33)

In particular, one introduces P0± =
(
0,±(Π2M−1

j=0 E j)
1/2
)
.

Based on above preparations, we turn to study the analytic and asymptotic properties of ϕ .

Lemma 3.3. The function ϕ defined in (3.32) is meromorphic. Its divisor is given by a

(ϕ(·,n, tr)) = Dν̂(n,tr)ν̂M(n,tr)−Dµ̂(n,tr)µ̂M(n,tr). (3.34)

Here the notations ν̂(n, tr) and ν̂(n, tr) represent two vectors

ν̂(n, tr) = (ν̂1(n, tr), . . . , ν̂M−1(n, tr)), µ̂(n, tr) = (µ̂1(n, tr), . . . , µ̂M−1(n, tr)).

Lemma 3.4. Near the points P0±, the function ϕ has the following expansions

ϕ(·,n, tr) = c∞±+O(ζ ), P→ P∞±, ζ = λ
−1 (3.35)

and

ϕ(·,n, tr) =


−v−−E−1 (v− v−)(u− v)

2(u− v−)
ζ +O(ζ 2), P→ P0+, ζ = λ ,

−u+
(u+−u)(u− v)

2(u+− v)
ζ +O(ζ 2). P→ P0−, ζ = λ ,

(3.36)

where c∞± are lattice constants.

Proof. First one observes that the expansion (3.35) can be easily derived from the definition of ϕ .
Thus it suffices to compute the expansions of ϕ near P0±. Using the relation

∆
2
± = g2 + f h = λ

−2(M+1)
(( N

∑
i=0

giλ
i)2−

( N

∑
i=0

fiλ
i)( N

∑
i=0

hiλ
i))

= λ
−2(M+1)

N

∑
i=0

( i

∑
k=0

(
gkgi−k− fkhi−k

))
λ

i,

one infers

∆±
ζ→0
= ±ζ

−(M+1)
√

g2
0 + f0h0

(
1+

1
2

2g0g1 + f0h1 + f1h0

g2
0 + f0h0

ζ +O(ζ 2)
)
, (3.37)

aFor the meaning of these notations one may refer to [4].
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as P→ P0±. Then from the relation g2
0 + f0h0 = 1 and (3.32), it follows

ϕ(·,n, tr) =


1− u+v−

u−v−
2

u−v−
+O(ζ ), P→ P0+, λ = ζ ,

−1− u+v−
u−v−

2
u−v−

+O(ζ ), P→ P0−, λ = ζ ,

=

{
−v−+O(ζ ), P→ P0+, λ = ζ ,

−u+O(ζ ), P→ P0−, λ = ζ .
(3.38)

To get the coefficient of ζ in (3.36), we use the equation (see (3.16))

(λ −2uδ )ϕ+−2δϕ
+

ϕ = 2uvδ +(λ +2vδ )ϕ. (3.39)

Inserting the ansatz

ϕ = ϕ0±+ϕ1±ζ +ϕ2±ζ
2 +O(ζ 3), as P→ P0± (3.40)

into (3.39) and comparing the coefficients of ζ lead to

ϕ
+
0±−2uδϕ

+
1±−2δϕ

+
0±ϕ1±−2δϕ0±ϕ

+
1± = ϕ0±+2vδϕ1±. (3.41)

Explicitly, Eq. (3.41) can be equivalently written as

− v−2uδϕ
+
1++2vδϕ1++2v−δϕ

+
1+ =−v−+2vδϕ1+, (3.42)

−u+−2uδϕ
+
1−+2u+δϕ1−+2uδϕ

+
1− =−u+2vδϕ1−, (3.43)

which implies

ϕ1+ = E−1 (v− v−)(u− v)
2(v−−u)

, ϕ1− =
(u+−u)(u− v)

2(u+− v)
. (3.44)

Using similar method we can prove (3.35). �

4. Quasi-periodic solutions

In this section, we obtain theta function representations for the meromorphic function ϕ and quasi-
periodic solutions u, v.

First, we choose a convenient base point Q0 ∈KM−1\{P∞±, P0±}. The Abel maps AQ0
(·), αQ0

(·)
are defined by

AQ0
: X → J(X) = CM−1/LM−1,

P 7→ AQ0
(P) = (AQ0,1(P), . . . ,AQ0,M−1(P))

=

(∫ P

Q0

ω1, . . . ,
∫ P

Q0

ωM−1

)
(mod LM−1),
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and

αQ0
: Div(X)→ J(X),

D 7→ αQ0
(D) = ∑

P∈KM−1

D(P)AQ0
(P),

where LM−1 =
{

z ∈ CM−1 | z = N +ΓM, N, M ∈ ZM−1
}

, and Γ, ΞQ0
are the Riemann matrix and

the vector of Riemann constants, respectively. Moreover, we choose a homology basis {a j,b j}M−1
j=1

on X in such a way that the intersection matrix of the cycles satisfies

a j ◦bk = δ j,k, a j ◦ak = 0, b j ◦bk = 0, j, k = 1, . . . ,n. (4.1)

For brevity, we introduce

z(P,Q) = ΞQ0
−AQ0

(P)+αQ0
(DQ),

P ∈KM−1, Q = (Q1, . . . ,QM−1) ∈ σM−1KM−1, (4.2)

where z(·,Q) is independent of the choice of Q0. The Riemann theta function θ(z) associated with
X and the homology homology basis {a j,b j}M−1

j=1 is defined by

θ(z) = ∑
n∈Z

exp(2πi 〈n,z〉 +πi 〈n,nΓ〉) , z ∈ CM−1,

where 〈B,C 〉 = ∑
M−1
j=1 B jC j is the scalar product in CM−1.

Next, we introduce the differential of the third kind with simple zero and pole respectively at
ν̂M(n, tr) and µ̂M(n, tr) by

ω
(3)
ν̂M(n,tr)µ̂M(n,tr)

(P) =
(

y+ y(ν̂M(n, tr))
λ −νM(n, tr)

− y+ y(µ̂M(n, tr))
λ −µM(n, tr)

)
dλ

2y
+

λ0

y

M−2

∏
i=1

(λ −λ j)dλ ,

where λ j, j = 0, . . . ,M− 2, are constants that are uniquely determined by the requirement of van-
ishing a-period, i.e. ∫

a j

ω
(3)
ν̂M(n,tr)µ̂M(n,tr)

(P) = 0, j = 1, . . . ,M−1. (4.3)

A simple computation shows

∫ P

Q0

ω
(3)
ν̂M(n,tr)µ̂M(n,tr)

(P) =


lnζ +d0(n, tr)+O(ζ ), P→ ν̂M(n, tr),

− lnζ +d1(n, tr)+O(ζ ), P→ µ̂M(n, tr),

dP0±+O(ζ ) P→ P0±,

dP∞±+d2(n, tr)ζ +O(ζ 2), P→ P∞±.

Here d0(n, tr), d1(n, tr), d2(n, tr) are functions of variables n, tr and dP∞± , dP0± are integration con-
stants.

Theta function representations for quasiperiodic solutions of the rth HF lattice can be obtained
as follows.
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Theorem 4.1. The function ϕ defined in (3.32) is meromorphic on KM−1 and has the following
theta function representation

ϕ(P,n, tr) = cP∞+

θ(λ (P∞+, µ̂(n, tr)))

θ(λ (P∞+, ν̂(n, tr)))
θ(λ (P, ν̂(n, tr)))
θ(λ (P, µ̂(n, tr)))

exp
(∫ P

Q0

ω
(3)
ν̂M(n,tr)µ̂M(n,tr)

−dP∞+

)
. (4.4)

Proof. To derive the formula (4.4), one has to use Riemann vanishing theorem and Riemann-Roch
theorem in standard literature [3]. From Lemma 2.3, one infers that the function ϕ(P,n, tN) take the
form

ϕ(P,n, tr) =C(n, tr)
θ(λ (P, ν̂(n, tr)))
θ(λ (P, µ̂(n, tr)))

exp
(∫ P

Q0

ω
(3)
ν̂M(n,tr)µ̂M(n,tr)

)
, (4.5)

where C(n, tr) is an undetermined function. Then taking the limit P→ P∞+ on both sides of (4.5),
one derives

cP∞+ =C(n, tN)
θ(λ (P∞+, ν̂(n, tr)))
θ(λ (P∞+, µ̂(n, tr)))

exp(dP∞+). (4.6)

Inserting(4.6) into (4.5) and eliminating C(n, tr), one finally obtains (4.4). �

Next, we obtain theta function representations for solutions u,v with the help of (4.4).

Theorem 4.2. Quasiperiodic solutions of the r-th HF lattice have the following Riemann theta
function representation

u(n, tr) = − cP∞+

θ(λ (P∞+, µ̂(n, tr)))

θ(λ (P∞+, ν̂(n, tr)))
θ(λ (P0−, ν̂(n, tr)))
θ(λ (P0−, µ̂(n, tr)))

exp
(
dP0−−dP∞+

)
, (4.7)

v(n, tr) = − cP∞+

θ(λ (P∞+, µ̂
+(n, tr)))

θ(λ (P∞+, ν̂
+(n, tr)))

θ(λ (P0+, ν̂
+(n, tr)))

θ(λ (P0+, µ̂
+(n, tr)))

exp
(
dP0+−dP∞+

)
. (4.8)

Proof. Using the coordinate λ = ζ near P0±, we have

ϕ(n,x, tr) = cP∞+

θ(λ (P∞+, µ̂(n, tr)))

θ(λ (P∞+, ν̂(n, tr)))
θ(λ (P, ν̂(x, tr)))
θ(λ (P, µ̂(x, tr)))

× exp
(∫ P

Q0

ω
(3)
ν̂M(x,tr)µ̂M(x,tr)

−dP∞+

)
ζ→0
= cP∞+

θ(λ (P∞+, µ̂(n, tr)))

θ(λ (P∞+, ν̂(n, tr)))
θ(λ (P0±, ν̂(x, tr)))
θ(λ (P0±, µ̂(x, tr)))

× exp
(
dP0±−dP∞+

)
(1+O(ζ )). (4.9)

Comparing the leading coefficients of (3.36) and (4.9) naturally gives rise to (4.7) and (4.8). �
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