NONLINEAR ATLANTIS
MATHEMATICAL PRESS

PHYSICS

Journal of Nonlinear Mathematical
Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251
Journal Home Page: https://www.atlantis-press.com/journals/inmp

Products in the category of Z3-manifolds

Andrew Bruce, Norbert Poncin

To cite this article: Andrew Bruce, Norbert Poncin (2019) Products in the category of Z -
manifolds, Journal of Nonlinear Mathematical Physics 26:3, 420-453, DOI:
https://doi.org/10.1080/14029251.2019.1613051

To link to this article: https://doi.org/10.1080/14029251.2019.1613051

Published online: 04 January 2021



Journal of Nonlinear Mathematical Physics, Vol. 26, No. 3 (2019) 420-453

Products in the category of Z7-manifolds

Andrew Bruce

University of Luxembourg, Mathematics Research Unit,
4364 Esch-sur-Alzette, Luxembourg
andrew.bruce @uni.lu

Norbert Poncin

University of Luxembourg, Mathematics Research Unit,
4364 Esch-sur-Alzette, Luxembourg
norbert.poncin@uni.lu

Received 5 October 2018

Accepted 22 March 2019

We prove that the category of Z7 -manifolds has all finite products. Further, we show that a Z!)-manifold (resp.,
a Z7-morphism) can be reconstructed from its algebra of global Z7-functions (resp., from its algebra morphism
between global Zg-function algebras). These results are of importance in the study of Z;’ Lie groups. The
investigation is all the more challenging, since the completed tensor product of the structure sheafs of two
Zj-manifolds is not a sheaf. We rely on a number of results on (pre)sheaves of topological algebras, which we
establish in the appendix.
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1. Introduction

Z-Geometry is an emerging framework in mathematics and mathematical physics, which has
been introduced in the foundational papers [11] and [14]. This non-trivial extension of standard
Supergeometry allows for Z7-gradings, where

Zg:Z§n:Z2X“'XZZ and neN.

The corresponding Z7-commutation rule for coordinates (u?) 4 with degrees degu” € Z7 does not
use the product of the (obviously defined) parities, but the scalar product (—,—) of Z7 :

uhub = (—1)¢deeudegu®) B4 (1.1)

A brief description of the category ZJMan of Z7-manifolds M = (M,0p) and morphisms ¢ =
(¢,0") between them can be found in Section 2. For n = 1, one recovers the category SMan of
supermanifolds. A survey on Z7-Geometry is available in [31]. The differential calculus and the
splitting theorem for Z7-manifolds have been investigated in [13] and [12], respectively. In the
introduction of [7], the reader finds motivations for the study of Z7-Geometry. The present paper
uses the main results of [7].
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Applications of Z}-Geometry are based in particular on ZJ Lie groups and their actions on
Z7-manifolds (supergravity), on ZJ vector bundles and their sections (Z] Lie algebroids), on the
internal Hom functor in Z7Man (Z"-gradings and Z’-parities in field theory), ... All these notions
rely themselves on products in the category ZJMan. On the other hand, a comparison of different
approaches to Z7 vector bundles is more challenging than in the supercase [2]. A generalization
to Z7-manifolds of the Schwarz-Voronov-Molotkov embedding is needed. This extension, which
embeds Z7Man into the category of contravariant functors from Z7-points to a specific category
of Fréchet manifolds, uses the reconstructions of Z’)-manifolds and Z5-morphisms from the Z7-
commutative associative unital R-algebras of global Z7-functions and the ZJ-graded unital algebra
morphisms between them, respectively.

The existence of categorical products and the mentioned reconstruction theorems are the main
topics of the present paper. The text is organized as follows. Section 3 contains the proofs of the
above-mentioned Zj reconstruction results. The definition of a product Z5-manifold and the proof
of its meaningfulness are rather obvious, see Definition 4.1. However, the proof of the existence
of categorical products in Z7Man is quite tough. It relies on the generalization of the well-known
isomorphism of topological vector spaces

COO(QI)@ COO(QH) ~ COO(QI X Q/l)

(for open subsets Q' ¢ RP, Q" c R") to an isomorphism of locally convex topological algebras of
formal power series

CE@EN® C¥(Q)In]] = C=(Q' x Q")[[€n]] (1.2)

(for Z2-domains U9 = (', Cy[[£]]) and V'S = (Q”,C,[[7]]), with

E=(61,-én) and n=(1,....NNE) >

see Theorem 4.2. The issue here is the formal power series, which replace the polynomials of
standard Supergeometry. Moreover, if M = (M,0p) and N = (N,Oy) are two ZJ-manifolds, and
MXN =(M XN, Opxp) is their product Z7-manifold, one gets from (1.2) that, for an open subset
uXv C M XN of the basis B made of products of Z7-chart domains, we have

E(uxv) = Oyxn(uxv),
where & is the B-presheaf
Euxv)=0nu)® On®).

Let now F be the standard extension of the B-presheaf F that assigns to any open subset U XV C
M X N (where U C M and V C N are not necessarily chart domains) the algebra

FUXV)=0,U)8 ON(V).

The presheaf F and the sheaf Opmxn are thus two extensions of the B-presheaf &. However, this
does not mean that ¥ =~ Ops«n and that F is a sheaf. Indeed, B-sheaves have unique extensions, but
B-presheaves do not. Also the reconstruction results mentioned above do not allow us to prove that
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F is a sheaf. Hence, we prove the next best result, i.e., the existence of an isomorphism of sheaves
of algebras

Omxn ~F (1.3)

between the structure sheaf of the product Z7-manifold and the sheafification of the presheaf F,
see Theorem 4.4. In the case n = 1, we thus recover the definition of a product supermanifold used
in [3]. The isomorphism (1.3) allows us to prove the existence of all finite categorical products
in Z7Man, see Theorem 4.8. The proof uses the results on sheafification and presheaves of locally
convex topological algebras proven in Subsections A.4 and A.5 of the Appendix. Products of Z7-
morphisms are obtained from the universality property of categorical products. They are explicitly
described in Proposition 4.9.

2. Z’)-manifolds and their morphisms

We denote by Z7) the cartesian product of n copies of Z; . Further, we use systematically the fol-
lowing standard order of the 2" elements of ZZJ: first the even degrees are ordered lexicographically,
then the odd ones are also ordered lexicographically. For example,

Zg ={(0,0,0),(0,1,1),(1,0,1),(1,1,0),(0,0,1),(0,1,0),(1,0,0),(1,1,1)} .

A Z5-domain has, aside from the usual coordinates x = (x',...,xP) of degree degx’ =0 € Zy,
also formal coordinates or parameters & = (¢1,...,£2) of non-zero degrees degé¢ € Z}. These coor-
dinates u = (x,&) commute according to the generalized sign rule

MAMB — (_1)<deguA,deguB)uBuA, (21)
where (—,—) denotes the standard scalar product. For instance,
((0,1,1),(1,0,1)y = 1.

Observe that, in contrast with ordinary Z;- or super-domains, even coordinates may anticommute,
odd coordinates may commute, and even nonzero degree coordinates are not nilpotent. Of course,
for n = 1, we recover the classical situation. We denote by p the number of coordinates x’ of degree
0, by g1 the number of coordinates £ which have the first non-zero degree of Z7, and so on. We get
that way a tuple q = (q1,...,gn) € NV with N := 2" — 1. The dimension of the considered Z}-domain
is then given by p|q. Clearly the Q above is the sum |q| = Zfil qi-

‘We recall the definition of a Zg—manifold.

Definition 2.1. A locally Z5-ringed space is a pair (M,0)ps) made of a topological space M and
a sheaf of Z7-graded Z-commutative (in the sense of (2.1)) associative unital R-algebras over it,
such that at every point m € M the stalk Oy ,,, is a local graded ring.

A smooth Z%-manifold of dimension p|q is a locally Z7-ringed space M = (M,QOyr), which is
locally isomorphic to the smooth Z%-domain RP 9 .= (RP ,Cap[[€]]), and whose underlying topo-
logical space M is second-countable and Hausdorff. Sections of the structure sheaf C7,[[£]] are
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Jformal power series in the Z7-commutative parameters £, with coefficients in smooth functions:

S (ONIEN] :={ > fa(X)f"lfaeC‘”(U)} (Uopen in RP).

aeNXldl

Z3-morphisms between Zj-manifolds are just morphisms of Z7-ringed spaces, i.e., pairs ¢ =
(¢,¢"): (M,0Opr) — (N,On) made of a continuous map ¢ : M — N and a sheaf morphism ¢* : O —
$+0pm ., i.€., a family of ZJ-graded unital R-algebra morphisms, which commute with restrictions and
are defined, for any open V C N, by

¢y ON(V) > O (67! (V).
We denote the category of Z7-manifolds and Z7-morphisms between them by Z;Man.

Remark 2.2. Let us stress that the base space M corresponds to the degree zero coordinates (and
not to the even degree coordinates), and let us mention that it can be proven that the topological
base space M carries a natural smooth manifold structure of dimension p, that the continuous base
map ¢ : M — N is in fact smooth, and that the algebra morphisms

¢jn : O¢(m) -0, (meM)

between stalks, which are induced by the considered Z-morphism @ : M — N, respect the unique
homogeneous maximal ideals of the local graded rings Oy () and O,,.

3. Reconstructions of Z7-manifolds and Z}-morphisms

In this section, we reconstruct a Z7-manifold (M,Oy) from the ZJ-commutative unital algebra
Owm (M) of global sections of its function sheaf. We also reconstruct a Z5-morphism

D= (¢’¢*) : (M9OM) - (N’ON)
from its pullback Z7-graded unital algebra morphism
$n 1 ON(N) = Oy (M)

between global sections.

3.1. Reconstruction of the topological base space

Algebraic characterizations of spaces can be traced back to I. Gel’fand and A. Kolmogoroff [16].
In that paper, compact topological spaces K are characterized by the algebras C°(K) of continuous
functions on them. In particular, the points m of these spaces are identified with the maximal ideals

Ln={f € C%(K): f(m)=0}

of these algebras. A similar characterization holds for the points of second countable Hausdorff
smooth manifolds.

Let M = (M,O)p) be a ZJ-manifold. We denote the maximal spectrum of O(M) (subscript
omitted) by Spm(O(M)) (we actually consider here the real maximal spectrum, in the sense that the
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quotient O(M)/u by an ideal u in the spectrum is isomorphic to the field R of real numbers). Note
that any m € M induces a map

&m:OM)> [ (emf)m) R,
which is referred to as the evaluation map at m and is a Z7-graded unital R-algebra morphism
Em € HomZgUAlg(O(M),R) .
The kernel
pm =kerem ={f € O(M) : (ep f)(m) = 0} € Spm(O(M))
is a maximal ideal. More generally, the kernel of an arbitrary algebra morphism
Y € Homzpyaig(O(M),R)

is a maximal ideal, since O(M)/kery ~ R. Indeed, to any class [ f] in the quotient we can associate
the real number /(f). This map is well-defined and injective. It is also surjective, since, for any
r € R, the image of [r - 1o] is 7. It follows in particular that any class in the quotient is of type
[r - 1o(m)] for a unique r € R. We have the following

Proposition 3.1. The maps
b: M>mwe u, € Spm(O(M))
and
b: HomZ;UAlg(O(M),R) 3 ¥ - kery € Spm(O(M))

are 1 : 1 correspondences.

Proof. To prove that b is bijective, consider a maximal ideal u € Spm(O(M)). The image &ps(u) C
C*(M) is a maximal ideal. Indeed, it is an ideal, since the map &) is surjective (the short sequence
of sheaves [7, Equation (3)] is exact for the good reason that it is exact for any open subset of M).
To see that it is maximal, assume there is an ideal v, such that &x;(u) C v € C*(M), so that u C
s;} (v) € Op(M). 1t follows that s;/} (v)=por 81_\41 (v) =Op (M), and that v = gpr(u) or v = C*(M).
Hence,

em(W) =In={f € C*(M): f(m) =0},
since any maximal ideal of C*°(M) is known to be of type I,,, for a unique m € M. Finally, we get
p C &y (In) = {f € OM) : (sar f)(m) = 0} = 1y, € O(M) .

Since p,,, # O(M), we have u = u,,, which proves the bijectivity of b. Indeed, if u = u,,, we obtain
em(uy) C I,  C*®(M), so that

Iy = epm(pn) = em(pm) = L

and m = n.
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Since any u € Spm(O(M)) reads u = w,, = kere,, = b(e,,), the map b is surjective. Let ¢, ¢ be
unital algebra morphisms, such that kery =ker ¢ = u. For any f € O(M), there exists a unique r € R,
such that [f]=[r- 1oar)]. Thus y(f) =r = ¢(f) and ¢ = ¢, so that b is also injective. |

The next proposition relies on the Zariski and the Gel’fand topologies. The Gel’fand topology
is possibly less known than the Zariski topology. We recall its precise definition in the proof of the
proposition.

Proposition 3.2. The map
eyt - SPM(C™(M)) 3 Iy += &3} (In) = m € SPm(O(M))

is a homeomorphism with inverse €y, both, if the maximal spectra are endowed with their Zariski
topology and if they are endowed with their Gel fand topology. Hence, the Zariski and Gel fand
topologies coincide on Spm(O(M)). Further, the bijection

b:M>mw— uy, € Spm(O(M))
is a homeomorphism.
Proof. The maps
gyt - SPM(C™(M)) 3 Iy > &3 (In) = pim € SpM(O(M)
and
ey 2 Spm(O(M)) 5 pm > p(im) = I € Spm(C™(M))
are inverses of each other.

We first equip the spectrum Spm(C*(M)) as usual with the Zariski topology, which is defined
by its basis of open subsets Ve (f), f € C*(M), given by

Ve (f) = {Im € Spm(CT(M)) = f ¢ In}

and we proceed similarly for Spm(O(M)). It is straightforwardly checked that, if f = gy (F), we
have

e (Ves() = Vo(F) and  en(Vo(F)) = Ves(f) .
Hence the announced homeomorphism result for the Zariski topologies.

The Gel’fand topology of Spm(C*(M)) is defined by the basis of open subsets Bce(m,e€;
fiseoosfun), indexedby me M, e >0,neN, and fi,..., f,, € C*°(M), and defined by

B (m,€; fis.... fu) = {In € Spm(C™(M)) : | fi(n) - fi(m)| < €,Vi} .
The Gel’fand topology of Spm(QO(M)) is defined analogously by
Bo(m.e; Fy,....Fy) = {un € Spm(O(M)) : |(ep Fi)(n) — (ep Fi)(m)| < €,¥i},
where F; € O(M). If f; = ep;(F;), we have obviously
s,_v,l(Bcoo(m,e;ﬁ,. .o»fn)) = Bo(m,e; Fy,...,Fy,),
and similarly for &;;, so that the homeomorphism result holds also for the Gel’fand topologies.
Co-published by Atlantis Press and Taylor & Francis
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Since the Zariski and Gel’fand topologies coincide on Spm(C*(M)), it follows from the above
that there is a homeomorphism from Spm(O(M)) endowed with the Zariski topology to itself
endowed with the Gel’fand topology.

It is well-known that the map bew : M 3 m — I, € Spm(C*(M)) is a homeomorphism (see for
example [28]). Hence, the bijection b = el obew isa homeomorphism as well. O

3.2. Reconstruction of the structure sheaf

Proposition 3.3. Let (M,0n) be a Z}-manifold and let U C M be open. A Z-function F € Op (U)
is invertible if and only if its base projection f = ey (F) € Cy;(U) is invertible.

Proof. Tt is obvious that f is invertible if F is. Assume now that there exists f~' € C*(U) and
consider a cover of U by Z7-chart domains V;. For any i, we have f “y. = (flv.)"", i.e., the base
function ey, (Fly,) = ey(F)|y, is invertible in C*(V;), so that Fly, € O(V;) =~ C*(V;)[[¢]] has an
inverse Gy, € O(V;). It follows that, for any V; and V; with intersection V;;,

GV,’lVU = (F|V,~_,~)_1 = GV_,’lV[J' .

Hence, there is a unique Z7-function G € O(U), such that Gly, = Gy;,. Itis clear that G is the inverse
of F. m|

Reconstructions of a sheaf from its global sections have been thoroughly studied in algebraic
and differential geometry. A survey on such results can be found in [5] and [6]. The probably best
known example is the construction of the structure sheaf Ox of an affine scheme X = Spec R from
its global sections commutative unital ring Ox(X) = R. In this case, the ring Ox (V) of functions on
a Zariski open subset V¢, f € R, is defined as a localization of Ox(X). In the case of a Zg—manifold
(M,Opr), we reconstruct Oy (U) as the localization of Oy (M) with respect to the multiplicative
subset

Sy ={F ¢ OR,,(M) :(em F)|y is invertible } .

The chosen localization comes with a morphism that sends global sections with invertible projection
in Cy;(U) to invertible sections in Op(U), see Proposition 3.3.

Since the Z’)-functions in Sy are of degree 0, no sign issues do appear and the definitions of the
equivalence of fractions and the operations on their equivalence classes are the standard ones [1].

Proposition 3.4. The localization Op (M) - S{J1 is a Z5-commutative associative unital R-algebra
structure, whose grading is naturally induced by the grading of Oy (M) (for a homogeneous r, the
degree of rs™\ is the degree of r), and whose zero (resp., unit) is represented by 017" (resp., 1171).

Proof. Straightforward verification. m|
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We thus get a presheaf
Ly : Open(M) > U — Oy (M) - S, € ZJUALg

on M valued in the category of Z}-commutative associative unital R-algebras. Indeed, if V C U is
open, the obvious inclusion L%,l : Sy <= Sy provides a natural well-defined restriction

r‘l,/ cLyU) 3 Fs ' F(L%,]s)_1 e Ly(V),
and these restrictions satisfy the usual cocycle condition.

As indicated above, we will show (in several steps) that the presheaf £, coincides with the
structure sheaf Ojy.

First, since it follows from Proposition 3.3 that, for any s € Sy, the restriction s|y is invertible
in Oy (U), we have a map

Ay Ly (U)3 Fs™ o FlyGsly)™ € O (U) .

This map is well-defined. Indeed, if Fs~' = F’s’~!, there is o € Sy, such that (Flys'|y —
F'|luslu)olu = 0. Since the restrictions s|y, |y, and o |y are invertible in O (U), the claim
follows. Further, it can be straightforwardly checked that 4y is a morphism of Z7-graded unital
R-algebras.

In fact:

Proposition 3.5. For any open U C M, the localisation map Ay : Ly (U) — Oy (U) is a Z5-graded
unital R-algebra isomorphism.

The proof of this result uses a method that can be found in various works, see for instance [3],
[8], and [30]. We give this proof for completeness, as well as to show that it goes through in our
77 -graded stetting.

Proof. 1t suffices to explain why Ay is bijective.

(1) Injectivity: Assume that F|y(s|yy)~! =0, i.e., that F|y; = 0, and show that Fs~! ~ 017!, i.e., that
there is o € Sy, such that Fo = 0. Let (V;,4;) be a partition of unity of M, such that the V; are
Z%)-chart domains, so that Op|v; = Cy;lv;[[£]]. For any i, we have

Flynv, (x,€) = ZFalUnVi ()Y =0, e, Folunv, =0, Va.
a

Let
g eCy(Vy) C O](\),[(Vi), such that ojlyny, >0 and  oily,\wnv,) =0.

It follows that F|y,o; = 0. The Z7-function o = }; o € O&(M ) has the required properties.
Indeed, the open subsets V; and Q; = M \ supp; cover M and Foy; vanishes on both, V; and
Q;, so that Fo = Y,; Foy; = 0. In addition, for any m € U, we have (ey;)(m) > 0, for all i, and
there is at least one j, such that (ey;)(m) > 0. Since (ey;)|a, = 0, we get m € UNV;, so that
(o ey)(m) >0,

(e0)(m) = ) (o &) (m) > 0,

4

and o € Sy.
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(2) Surjectivity: We must express an arbitrary f € Op(U) as a product f = Fly(s|ly)~!, with
F € Op (M) and s € Syy. To construct the global sections F and s, consider an increasing count-
able family of seminorms p,, that implements the locally convex topology of the Fréchet space
Oy (M). Take also a countable open cover U,, of U, such that U,, Cc U, as well as bump functions
Yn € O&(M ), which satisty y, |y, =1 (which implies that (epsyn)lu, = 1), suppy, C U, and
emyn = 0. The following series converge in O/ (M) and provide us with the required global
sections:

Yn f 1 Vn
F = E — and s:= E — .
=0 2" 14 pp(Yn) + Pu(¥n f) =0 2" 14 pp(yn) + pn(yn f)

Indeed, convergence follows, if we can show that the series are Cauchy, i.e., if they are Cauchy
with respect to each p,,. If r,s — oo, we get r > m, and, since the seminorms are increasing, we
have

Pm(¥n f)
m - O
P Z 2n 1 +pn(7n)+pn(7n f) Z 2" 1+ pu(yn) + Pn(¥n f) Z

whether the factor f is present or not. On the other hand, as restrictions are continuous, it is
clear that F|y = fs|y, so that f = F|y(s|y)~', provided we show that s € OY v (M) belongs to
Sy, i.e., that (gpr5)(m) # 0, for all m € U. To see this, note that (id,e) : (M,C;;) — (M,Oyy) is
a morphism of Z7-manifolds, so that £y : Op (M) — Cy;(M) is continuous, see [7, Theorem
19]. For any U, of the cover of U, we thus get

3 (emyn)lu,,
(SMS)lUm = nz_;) 2_" 1 +pn('yn)+[7n(7n f)

in view of the properties of y,,.

O

Theorem 3.6. The Z%-commutative associative unital R-algebra O (M) of global sections of the
structure sheaf of a Z}-manifold (M,On) fully determines this sheaf. More precisely, there is a
presheaf isomorphism A : Ly — Oy, so that the presheaf Ly, which is obtained from Oy (M), is
actually a sheaf, which is isomorphic to the structure sheaf Oyy.

Proof. 1Tt suffices to check that the family Ay : Ly (U) — Oy (U), U € Open(M), of ZJ-graded
unital R-algebra isomorphisms, commutes with the restrictions r‘[,] in Ljs and pg in Oy (VCU,
V € Open(M)). This is actually obvious:

Ay () (Fs™)) = Fly(slv)™ = py (y(Fs™")) .

3.3. Reconstruction of a Z’)-morphism

In algebraic geometry, any commutative unital ring morphism ¢ : S — R defines a morphism
of affine schemes @ = (¢,¢") : (Spec R,Ospec r) — (Spec S,Ospecs), Whose continuous base map ¢
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associates to each prime ideal p the prime ideal ~!(p). A similar result exists in the category of
Z7-manifolds and Z7-morphisms, with the same definition of the continuous base map.

Theorem 3.7. Let M = (M,Oypy) and N = (N,Op) be Z-manifolds. The map
B HomZ;lMan(M,N) 50 =(¢,¢") ¢*N € HomZ;lUAlg (ON(N)’OM(M))
is a bijection.
Proof. To show that § is surjective, we consider ¥ € Homzpua1¢(On(N),Op(M)) and construct
De HomZ;Man(M,N), such that ¢3, = .

Since M (resp., N) endowed with its base space topology is homeomorphic to Spm(Ops(M))
(resp., Spm(On(N))) endowed with the Zariski topology, we define ¢ by

¢ : Spm(Opr(M)) 3 ker g, — ker(g;,, o) = kerg, € Spm(On(N)),

see Propositions 3.2 and 3.1. This map is continuous. Indeed, for any F € On(N), the preimage by
¢ of the open subset

V(F) = {kerg,, € Spm(On(N)) : £,(F) # 0}
is the subset
¢~ (V(F)) = {ker&,, € Spm(Onr(M)) : m($(F)) # 0} = V(Y (F)) .
To define, for any open V C N, a ZJ-graded unital R-algebra morphism

¢y :On(V) = (6.0M)(V),

we rely on the isomorphism of Z7-graded unital R-algebras On(V) ~ L (V) and the similar iso-
morphism in M. Hence, we define ¢y, by

¢y LN(V)3 Fs™ ' o y(F(s)™ € Lu(¢7 (V).

This map is actually well-defined. Since s ¢ kereg,, for all n € V, we have s ¢ ker(e,, o ¢), for all
m € ¢~1(V), what means that y(s) € Ss-1(v)- In view of this, it is easy to see that the image is
independent of the representative. The map ¢y, is a Z7-graded unital R-algebra morphism, because
W is.

As the family ¢}, V € Open(N ), commutes obviously with restrictions, the continuous base map
¢ and the family of algebra morphisms ¢}, V € Open(N), define a ZJ-morphism ¢ : M — N. To
see that S(®) = ¢}, = ¥, it suffices to note that Ay : Ly(N) — On(N) sends the fraction F s~ to
the section Fs~! (and similarly for M), so that ¢ and ¢ coincide.

It remains to prove that 3 is injective. Let thus ¢ = (¢,¢") and ¥ = (,¢*) be two ZJ-morphisms
from M to N, such that ¢}, = . Since the pullbacks by a Z7-morphism commute with the base
projections, we get, for any m € M,

¢(m) = kerggm) = {F € O(N) : (enF) 0 $)(m) = 0} = {F € O(N) : (em (¢ F))(m) = 0} .
Hence, the continuous base maps ¢ and ¢ coincide. Similarly, for any open V C N, each Fy €

On (V) reads uniquely Fy = Ay(Fs™') = Fly(sly)™", with F € On(N) and s € Sy € On(N), see
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Proposition 3.5. As the family of pullbacks ¢* commutes with restrictions, we obtain

¢y (Fv) = (b FIv) (8yshv) ™" = (@3 Flg1v) (S8l g -
Hence ¢}, = ;. O

The preceding theorem, which allows us to characterize M-points Homzzyan(M, N) of a Z5-
manifold AV by algebra morphisms, has some noteworthy corollaries.

Corollary 3.8. The covariant functor
F :Z)Man — ZjUA1g®?,

which is defined on objects by (M) = Op (M) and on morphisms by F(®) = ¢y, is fully faithful,
so that Z Man can be viewed as full subcategory of ZyUA1g®P.

The statement regarding the full subcategory is based on the well-known fact that any fully faith-
ful functor is injective up to isomorphism on objects. This means that the existence of an isomor-
phism O (M) = On(N) of Z7-graded unital R-algebras implies the existence of an isomorphism
M = N of Zj-manifolds.

Corollary 3.9. Let M = (M,On) and N = (N,On) be Z%-manifolds. The Z7-manifolds M and N
are diffeomorphic if and only if their Z}-commutative associative unital R-algebras Op (M) and
ON(N) of global Z}-functions are isomorphic.

Such Pursell-Shanks type results have been studied extensively by one of the authors of this
paper. Algebraic characterizations similar to Corollary 3.9 exist for instance for the Lie algebras of
first order differential operators, of differential operators, and symbols of differential operators on a
smooth manifold, for the super Lie algebras of vector fields and first order differential operators on
a smooth supermanifold, as well as for the Lie algebra of sections of an Atiyah algebroid, see [18],
[19], [20], [21].

Corollary 3.10. The Z7-manifold & = (0,0) (resp., RO = ({pt},R)) is the initial (resp., terminal)
object of the category of Z-manifolds.
Proof. For any Z7-manifold M = (M,Ops), we have bijections
Homzzyan (6, M) = Homzryaig(Op (M),0) = {F +— 0}
and

HomZ;’Man(M,ROIO) = Homzzyng(R,Om(M)) = {r>r-1}.

4. Finite products in the category of Z-manifolds
4.1. Cartesian product of Z}-manifolds

Let M =(M,0p) and N = (N,On) be two Z-manifolds of dimension p|q and r|s, respectively.
The products U XV, U c M and V C N open, form a basis 8B of the (second-countable, Hausdorff)
product topology of M X N. Better, since the Z7-chart domains U; in M (resp., V; in N) are a basis
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of the topology of M (resp., of N), the products U; X V; form a basis B of the product topology
of M X N. As Z7-chart domains are diffeomorphic to open subsets of some coordinate space R",
we identify the U; and the V; with the diffeomorphic U; ¢ RP and V; C R". Further, we denote the
coordinates of the charts with domains U; (resp., V;) by (x;,&;) (resp., (y;,177)), or, in case we use
only two domains U; (resp., V;), we write also (x,£) and (x”,&’) (resp., (y,n7) and (y’,1")).

Definition 4.1. Let M = (M,0p) and N = (N,Op) be two Z7-manifolds of dimension p|q and
r|s, respectively. The product Z7-manifold M x N, of dimension p +r|q+s, is the locally Z7-
ringed space (M X N,Opxn), Where M X N is the product topological space and where the sheaf
Onrxn is glued from the sheaves Ci.;,-xvj (xi,yj)[[&i,m;]] associated to the basis B:

Omxnluixv; = Cywy, (5 y)Emy]] - 4.1

Recall that sheaves can be glued. More precisely, if (U;); is an open cover of a topological space
M, if ; is a sheaf on U;, and if ¢;; : Filu;nu; — Fjlu;nu; s a sheaf isomorphism such that the usual
cocycle condition ¢y ¢j; = ¢x; holds, then there is a unique sheaf ¥ on M such that F |y, ~ 7;. In
the following, we set U;; = U; N U;.

Let now C(°J°l_ v [[£,m]] be the standard sheaf of Z7-graded Z’)-commutative associative unital

R-algebras of formal power series in (&,77) with coefficients in sections of the sheaf Ci.;,- XV, The
isomorphisms ¢ ;; between the appropriate restrictions of the sheaves of algebras Cp;! XV, [[£,7]] on
the open cover (U; X V;);,; of M x N are induced as follows. Since M is a Z%-manifold, there are
Z}-isomorphisms

®; = (¢i.¢;) : (UiOmlu,) — (Ui, Cyp [[€]D)
which induce Z7-isomorphisms or coordinate transformations
Wy = 0i0; " : (Ui, C us [[€]1]) = (Ui, CF o [[€TD) -

As we view Uj; as both, an open subset of M and an open subset of R”, we implicitly identify U;
with its diffeomorphic image ¢;(U;), so that ¢; = idy, . Hence, the coordinate transformations reduce
to the isomorphisms

Ui = (6170 4.2)
of sheaves of Z7-commutative R-algebras:
v Colus E) = Cp o, [T - (4.3)
Similar coordinate transformations exist for N:
ul Cly, L1 = Gl 1) - (44)

We denote the base coordinates in U; (resp., U;) by x (resp., x") and those in V; (resp., V;) by y
(resp., y’). The coordinate transformations (4.3), x = x(x’,&’), & = é(x",¢), and (4.4), y = y(y’,n"),
n=n(y’,n’), implement coordinate transformations or isomorphisms of sheaves of ZJ-commutative
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R-algebras
Piiij = l//;: Xl,//{; : C{ZxVi |Uiix\/_,-i[[f,,77']] - C;ZXV]- |Uii><vji[[€:’rl]] .

In view of (4.2), the ¢;; ;; satisfy the cocycle condition. We thus get a unique glued sheaf Opsxn of
Z;-commutative R-algebras over M X N which restricts on U; X V; to

OMXNlU,'XVJ' = C(ojolxvj [[5,77]] ’

i.e., we obtain a ZJ-manifold, which we refer to as the product M x N of M and N.

4.2. Fundamental isomorphisms
Theorem 4.2. Let R4 (resp., R™18) be the usual Z}y-domain (RP,Cg, [[£]]) (resp., (R",Cy>. [[n]])),

and let Q' C RP and Q" C R" be open. There is an isomorphism of topological algebras

Cp (QIE11® C ()] = Cep i (' X QE,1], (4.5)

where the completion is taken with respect to any locally convex topology on the algebraic tensor

product Cgi, (Q)[[£]] ® Cgi. (Q7)[[n]].

Proof. Let R be a commutative von Neumann regular ring. For any families (M), and (Ng)g of
free R-modules, the natural R-linear map

(]—[ M,,) ®r (]_[ Nﬁ) — [ [ (Mo ®r Np)
@ B af
is injective, if and only if R is injective as a module over itself [17]. Since any field is von Neumann

regular, the regularity and injective module conditions are satisfied for R = R. Hence, the linear map

a B
is injective. Further, in view of [7, Corollary 17], the map

CU@MEN 2 ) fal)E* = (fadaen € | | C¥(@) (4.6)

aceA aceA

® - [ [(c=@)ec=@")

af

is a TVS-isomorphism between the source and the target equipped with the standard topology and
the product topology of the standard topologies, respectively. In the sequence of canonical maps

o[ [cv@)|- [] (c=@)ec~@)

BeB aceA,BeB

C@NI[glleCc™@Q)[n]] = (]—[ C™(Q)

aeA

- [] cr@xen=cr@xeignl. @)
aeA,BeB

the first =~ is a linear bijection, the first — is a linear injection, and the second = is a TVS-
isomorphism for the topologies used in (4.6). In

Co(Q)RCU(Q) - CO(QN)RCT(Q) =~ C™(Q xQ), (4.8)

the isomorphism = is the well-known TVS-isomorphism [22] (the target is endowed with its stan-
dard topology and the source with the topology of the completion with respect to any (C*(Q’) is
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nuclear) locally convex topology on C*(Q’)® C*(C) — we will not specify the latter topology), and
the arrow — is the continuous linear inclusion (any TVS is a topological vector subspace (TVSS)
of its completion, see Proposition A.6). This — induces the second — in (4.7), which is the inclu-
sion of the source vector subspace into the target vector space. The source becomes a TVSS of the
target when endowed with the induced topology (the induced topology is coarser than the product
topology of the induced topologies). Finally, we equip the first space in (4.7) with the initial topol-
ogy with respect to the first —, so that the first space gets promoted to a TVSS of the second, see
Proposition A.4, and the first — becomes the continuous linear inclusion. The composite

L CU@EN®CQIN 3 D fa€™® ) g1’ > ) fa®gee™n € C¥(Q X Q)[£1]]
a B af

of the maps of (4.7) is now the inclusion of a the source TVSS into the target TVS.

Note that, since the target is a LCTVS, see [7, Lemma 16], the source TVSS is also a LCTVS, see
Proposition A.9 (since C*(Q")[[£]] is nuclear, see [7, Lemma 16], the completion of the source is
independent of the chosen locally convex topology). In view of Proposition A.8, the completion of
the source is a TVSS of the completion of the target, which, as the target is complete, see [7, Lemma
16], can be identified with the target due to Remark A.7. In other words, the continuous extension

i CT(Q)EN®C™(Q)n]] — C¥(Q x Q")[[€n]] (4.9)

of the inclusion 1 is an injective continuous linear map, see text above Proposition A.8. We will now
prove that this map is surjective.

Let

S= > Fap&if € C™(Q xQ")[[€]]
aff

be a formal series in the target space. In view of (4.8), we have [22], for any (@,8) € AX B,

= lim
043 N—)+cx) aﬁ ’

where f(fﬁ € C*(Q’) and g{lﬁ € C*(Q"), and where the limit is taken in C*(Q’ x Q). Recall that
A = N¥IT % Z;lq”|, and similarly for 8. The product A X B is countable, since it is a finite product
of countable sets. Let [ : A X B — N be an injective map valued in N. The map J : AXxB — 71,
with T = I(A X B), is thus a 1:1 correspondence. We identify A x 8 with I via J. For any j € N,
we set,

e forany o € Aandanyi€ 7,

0, ifi=~(y,9)# (a,9),

£l ifi = (1,60) = (@.0), and,

C(Q) 3 ¢, = {
e forany fe Bandanyic 7,

S Y Y Jj _ Q’ ifi ~ (’)/,6) # (%ﬂ) >
D2, = {g;ﬁ, ifi = (1,0) = (1,5
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Note that J is a finite set {0,1,...,L}, L € N, (resp., is N), if A x B is finite (resp., if A X B is
countably infinite). For all j € N and all (a,8) € A X B, we get

Z¢’ @l = f13®8,,

when M € I N [J(a,B),+oo[. Indeed, if i =~ (y,5) # (@,), then, either y #a and ¢{n. =0,ord # 8

and l//,JB = 0. However, if i ~ (v,6) = (a,8), then ¢{u‘ = C{B and 'ﬁ,jﬁ = giyﬁ,
result follows. Hence, for any j € N and any («,8) € A X B, we have

so that the announced

J
Am Z ¢, ® Wl ® 8

where the sequence is constant for M > J(a,) and where the limit is computed in the topology of
C®(Q' x Q). If a finite number of sequences of a TVS do converge, then their sum converges to
the sum of the limits. It follows that, for any (a,8) € A X B and any N € N,

N M
s S 5ot S s
Jj=0 i=

so that, for all (@,8) € AX B,

N M N
— J Jo_

Jim Jim D D00, @i = Jim ) fp @ 8 = Fap

j=0 i=0 Jj=0
in C*(Q'xQ"), and

N M

M A Z DAL = (Fap)(a prexs (4.10)
J=0i=0 (@.B)eAXB

in the product topology of [[,3 C*(Q"xQ"), i.e., in the topology of the TVS C*(Q"x Q")[[£,7]].
Therefore, the sequence

N M
ZZ& oyl =) (Zcb f‘f@;w{ﬁnﬁ) e C¥(@Q)[[£]l® C=(Q")[[n]]

j=0i=0 (@.B) j=0i=0

is a Cauchy sequence in C*(Q’ x Q”)[[£,7]], so a Cauchy sequence in the TVSS C*(Q)[[£]] ®
C=(Q")[[n]], and also in the topological vector supspace C(Q")[[¢]]® C*(Q"")[[n]]. Since this
completion is sequentially complete, the Cauchy sequence considered converges in this space:

N M
Jim Mli_{gmz(; ZO (Z ¢l.£%® ;wzﬁ nﬁ) e C(Q)[ENNB C™(Q)nl]
Jj=0i=0 \ a

where the limit is taken in the topology of C*(Q)[[¢]]® C*(Q")[[5]]. Since the inclusion 7, see
Equation (4.9), is sequentially continuous, we get

N M
i 35V Tl ) -

7=0i=0
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N M
RLPLEDININALEINW AL

N M
. . J sa _ e —
NI 0 242 O = ) Fon 1P =S,
CI
in view of (4.10). This shows that the continuous linear inclusion
P: C¥QN[EN@ C™ Q] = C=(Q' x Q)[[é1]]

is bijective, so that the source TVSS of the target coincides with the target as TVS.

Since the completed tensor product of two nuclear Fréchet algebras is again a nuclear Fréchet
algebra [15, Lemma 1.2.13], the source and target are actually topological algebras. We leave it to
the reader to check that the preceding identification respects the multiplications. O

Remark 4.3. If p|q = p|0 and r|s = 0Ols, it follows from Theorem 4.2 that
Co(Q@rRI[£]] = C(QI£]],
and, if p|q = 0|q and r|s = O|s, we get
R[[£]l@r RI[7]] = R[[£7]] -

Conversely, the general isomorphism of Theorem 4.2 is a consequence of the preceding particular
cases and the fact that the category of complete nuclear spaces is a symmetric monoidal category
with respect to the completed tensor product [9].

Theorem 4.4. There is an isomorphism of sheaves of Z]-commutative R-algebras
Omxn = (O0y@0N)"*

between the structure sheaf of a product Z)-manifold and the sheafification of the standard extension
of the B-presheaf

OMQBON :UXVis OM(U)QON(V) .

Proof. Recall that B (resp., B) is the basis of the product topology of M x N made of the rectangular
subsets U XV, where U C M and V C N are open (resp., of the rectangular subsets U; X V;, where
U; € M and V; C N are Z}-chart domains). Let

FUxXV):= 0 (U)@O0n(V) 4.11)

be the completed tensor product of the nuclear ZJ-graded Fréchet algebras Oy (U) and Oy (V) (with
respect to any (reasonable) locally convex topology, e.g., the projective one). If U’ XV’ c UXV, the
restrictions pg, :Op(U) » Oy (U’) and p‘é, :ONn(V) = On (V') of the Fréchet sheaves Oy, and
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Oy are continuous linear maps. The continuous extension of the continuous linear map pg, ® p“f,
is a continuous linear map [22]

P @ Py : O(U)®ON(V) = Om(U)®ON(V),
which we denote by

UYL F(UXV) — F(U'xV')

Since the pg, and the p“f, satisfy the standard presheaf conditions and the linear maps pg,xx‘(,,

continuous, it is clear that the latter satisfy these conditions as well. Hence, the pair (F,p) is a
Set-valued B-presheaf.

are

This B-presheaf can be extended to a Set-valued presheaf (7_-“,5). Indeed, set, for any open
QCMXN,

F(Q) :=A{(fab)ab : fab € F(Ua X Vi),Ua X Vi, € Q ,such that pj* 8 (fun) = o, (fun)}
(4.12)
and consider, for any Q' C €, the map

po  F(Q) > F(Q)

which sends any element of (<) to the element of (') that we obtain by suppressing the fup,
for which U, XV}, is not a subset of Q’. The ,T)g, satisfy of course the standard presheaf conditions.
Further, the presheaf (F,p) extends the B-presheaf (F,p). Indeed, for Q = U XV, any f € F(Q)
provides a unique family f,p = pg:;/‘,h (f) in F(Q), thus defining a map bg : F(Q) — F(Q). If
ba(f) = ba(g), then, in particular,

=0 =p0 (@) =¢g.

In fact bg is a 1:1 correspondence. Indeed, any family f,; in ?(Q) contains f € F(Q), and f,, =
pg:;/vb (f), so that ba(f) = (fab)ab- Hence,

buxy : FUXV) — F(UXV). (4.13)
Moreover, if Q' =U'xV' c Q=UxV,and if f € F(U xV), then
P Ousv () = burv (o5 (),

since both sides are made of the family of restrictions pgjzvb (f), forall U, xV;, c U’ x V',
Let now U; X V; € B be a Cartesian product of ZJ-chart domains, and let Q C U; X' V; be any
open subset. Recall Definition (4.12). Since U, C U; and Vj, C V; are Z7-chart domains, we get in

view of (4.5) and of (4.1),

F(Uqax Vi) = Op(Ua)®ON (Vi) = CO(U)IIE]1® C™(Vi)[[;]]
= C®(Ua x V)€1l = Opxn(Ua X V) . (4.14)

Due to the continuity and linearity of the restrictions pg,xx‘(,, of ¥ and the restrictions Pg, of Oprxn,»

the restrictions in (4.12) coincide with the corresponding restrictions P of the structure sheaf of
the product Z5-manifold, as both reduce to the same restrictions of classical functions. It follows
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from (4.12) and (4.14) that any family f,;, € F(Q) is made of Z-functions fup € Oprsn (Ua X Vi),
which are defined on the cover of Q by all the U, XV}, C Q, and whose P-restrictions coincide on
all intersections. Hence, any family f,; € F(Q) can be glued in the sheaf Oysxn and thus provides
a unique Zj-function f € Opxn(€2) such that P‘[}uva (f) = fup- The resulting map bg, : F(Q) -
Onmxn(Q) is clearly injective. It is also surjective, since the restrictions f,p, := Pga <V, (f) of any

f € Opxn(Q) define a family f;, € F(Q) whose image by bg is f. Therefore, if Q C U; XV}, we
have a 1:1 correspondence

bo : F(Q) — Opxn(Q) . (4.15)
Moreover,
P2 obg =by ops . (4.16)
Indeed, if (fup)ap € ?(Q), the LHS map sends this family f,5, U, XV}, C Q, first to the unique
f € Oprxn(Q) such that Pga <V (f) = fap, and then to the restriction Pg,( f). The RHS map sends
this family first to the subfamily foz, Uy X Vg C ', then to the unique g € Oprxn(€’) such that
U XV (g) = fap- Itis clear that g = P2 (f). Hence,
0 Fluxv, — Omxnluixy,
is a presheaf isomorphism, so that %|Ui><v,- is a sheaf.
Remark 4.5. Let us recall and emphasize that the superscript + refers to sheafification.
We denote the sheafification of the presheaf F by ¢ : F - 7_-“+ (p" refers to the restrictions
of 7"+). Recall that any presheaf and its sheafification have the same stalks, i.e., that the maps
— ~ —+
Pm,n - 7:m,n B 7:m,n s
(m,n) € M x N, induced on stalks by the presheaf morphism ¢ are isomorphisms. Therefore, the
sheaf morphism ¢|y, xV; ?|U1XVJ - T IUleJ is a sheaf isomorphism. This means that
go: F(Q) S F (@)

is an isomorphism, or, here, a 1:1 correspondence, for any open Q C U; XV}, so that
— —t ~
o :=bgopy 1 F (Q) — Omxn(Q)
is also 1:1. In particular, for any U; X V; € B, we have
- ~
wixv; * F (Ui xXV;) — Opxn (Ui XVj) . 4.17)

Since ¢ commutes with restrictions, we get, for any U; X V; C U; X U,
_UiXVj —1 | _+Ui><Uj
Puxv; °Puxu; = Puxvi ° P uxvi
so that, when taking also (4.16) into account, we obtain

U;xV; —+ Ui xUj
Pysy owixv; = wsvi © P sy’ - (4.18)

Due to (4.17) and (4.18), the map ¢ is a B-sheaf isomorphism between ?Jr and Oprxn viewed as
B-sheaves. Since a B-sheaf morphism extends to a unique sheaf morphism, there exists a sheaf
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isomorphism
— -
I:F — OMXN .

The morphism Iis actually an isomorphism of sheaves of Z7-commutative R-algebras. It suffices
to show that  is an isomorphism of B-sheaves of such algebras, i.e., that 1y,xy; is a morphism of
Z%-graded unital R-algebras. We will prove that 1q, Q C U; XV}, is an algebra morphism, leaving
the remaining checks to the reader. The space 7 (U x V) is a nuclear Fréchet algebra, because it is
the completed tensor product of nuclear Fréchet algebras [15, Lemma 1.2.13]. Its multiplication e &
is continuous. It is given by

ifi ® gi 'Ti hj®k; = ii(_1)<gi’hj>(ﬁhj)®(gikj) :
0 =0

i=0 j=0
The multiplication e induces a multiplication ez on F(Q), @ C M x N, which is defined by

(fab)ab *F(8ab)ab = (fab ®F 8ab)ab -

Addition and scalar multiplication on F(Q) are defined similarly. As F is thus a presheaf of alge-
bras, its sheafification ?Jr is a sheaf of algebras and the ¢q : ?(Q) — ?j(Q) are algebra mor-
phisms, see Subsection A.4 of the Appendix. For Q C U; XV}, this morphism ¢q is an algebra
isomorphism and so is gog_zl. The map bg : F(Q) = Opxn(Q) associates to each (fab)ab the f such
that Pgava (f) = fap. Hence, the image by bg of a product (fup)ab o¢(gab)ab is the function A
such that Pgﬂ xVb(h) = fub @7 gap- On the other hand, the product f - g in Oprxn () of the images
by bq satisfies

Uava(f g)= Panvh(f) PQava(g) fab - 8ab = fab ®F 8ab ;

see Theorem 4.2. It follows that 2 = f-g. The map bg is in fact an algebra morphism. Finally
1g=bgo (pé] is a morphism of algebras, as needed. m|

Remark 4.6. In view of (4.15), (4.13), and (4.11) (as well as in view of (4.1) and (4.5)), it is clear
that, for any U; X V; € B, we have

Omxn (Ui X V) = O (U®ON(V)),
but we were unable to convince ourselves that the same holds true for any U XV € 8.

Indeed, it is well-known that tensor products of sheaves (and in particular completed tensor
products of function sheaves) require a sheafification (see [32, Section 3]). However, section spaces
of the sheafification of a presheaf do not agree with the corresponding section spaces of the presheaf.

On the other hand, attempts to get rid of the problem in Remark 4.6 using the reconstruction
results from Section 3 below, are not really promising.

Further, although Opsxn and F are two presheaves that extend the B-presheaf Oy ® Oy, they
do not necessarily coincide: B-sheaves have unique extensions, but B-presheaves do not. Indeed,
to show that Opxn = 7" we would have to decompose sections of Opsxn into sections of the
B-presheaf and then reglue them in #, which is impossible, since F is only a presheaf.
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There is actually a condition for the presheaf F that extends the B-presheaf = O ® On to
be a sheaf.

The explanation of this result needs some preparation.

For any open U XV C M x N, we set Oaf. (U X V) := Op(U). Similarly, for any open U’ x V' C
U X%V, we define

rOxY, oM J(UxV)—OM (U'xV")

to be pg, : O (U) = Op(U"). 1t is straightforwardly checked that 011\\/14>< n is a nuclear Fréchet
sheaf of algebras, hence, in particular a nuclear locally convex topological sheaf of algebras. The

assignment
F:UXV i O nUXVIBON, N(UXV)=0y(U)R0N(V)
defines a presheaf F on MXN. Applying [25, Equation (2.2)], we would get
Orxn(UXV) = F (UxV) = Op(U)80N(V), (4.19)

for any open U XV C M XN, if O%X N Of Oz\l\éx  determined a topologically dual weakly flabby
precosheaf.

Just as a presheaf G on a topological space T with values in a concrete category C is a
contravariant functor G : Open(T)°? — C, a precosheaf HH on T with values in C is a covari-
ant functor H : Open(7) — C. The point is that, for open subsets V C U, there is a C-morphism
eg :H(V) — H(U), which we refer to as extension morphism. The relevant example for our pur-
pose is the topologically dual precosheaf V'’ of vector spaces of a topological sheaf V of vector
spaces on a Hausdorff space T'. This precosheaf is defined, for any open U C T, by

V'(U) = Homys(V(U),R),
and, for any open subsets V C U, by
ey, ="RY V' (V)s - [(RY)E:V(U) 3 v LRYv) eR] € V'(U),
where R‘If denotes the restriction in V. The precosheaf V' is weakly flabby if, for any open U C T,
the morphism e¥ :V'(U) - V/(T) is surjective.

We should prove that the topologically dual precosheaf of V = OAA;IX ~ 1s weakly flabby, i.e., that,
for any open U C M and for any L € Homys(Ops(M),R), there exists £ € Homrys(Op (U),R), such
that ng ¢ = L. It turns out that this condition is not satisfied, so that we cannot conclude that (4.19)
holds. Indeed, assume that the condition is satisfied, so that it is in particular valid for M = (R, Cfg’ ).
Choose now any x € R and any open interval / C R that does not contain x. The evaluation map

ex 1 CRR)> f> f(x)eR

is linear. It is also continuous, since there exists a compact C C R that contains x and since, for any
f € CR(R), we have | f(x)| < supc | f|. In view of our assumption, there exists £ € Homrys(Cy'(1),R),
such that, for any f € C’(R), we have £(f|;) = f(x). If we take now two functions f, g € C’(R)
that coincide in / and have different values at x, we get the contradiction

) =€(f1r) = £@glr) = g(x) -
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4.3. Categorical products of 7’ -manifolds
We recommend to first read Subsections A.4 and A.5 of the Appendix.

Lemma 4.7. Let My, M, € Z)Man. The presheaf F considered in Theorem 4.4 is an object of the
category PSh(M| X M,,LCTA1g) of presheaves of locally convex topological algebras over My X Mj.

Proof. In the proof of Theorem 4.4 we showed that F e PSh(M, x M5,Alg) for the obvious restric-
tions and algebra operations.

Recall that, for any open Q C M; X M>, the algebra () is given by

FQ) = {(fablas * fab € F(Ua X Vi) Uq x Vi € Qsuch that gl N (fun) = plf %y, (o)}
and is thus a subalgebra of

[T FWaxvi)= [] Om(U)EOu, (Vi)

UaxVpCcQ UgxVyCcQ

We equip F(Q) with the topology induced by the product of the topologies of the locally convex
topological algebras (LCTA-s) Ops, (U,)® Oy, (V). Since a product of LCTVS-s and a subspace of
a LCTVS are themselves LCTVS-s, the algebra 7 (Q) is a LCTVS. Its multiplication

ab)ap *7(8ab)ab = (fab ®F 8ab)ab

is Continugls, since the multiplication e is, see Proof of Theorem 4.4 and Lemma A.12. Hence,
the space F(Q) is a LCTA.

A restriction ﬁg, (Q’_C Q) — it sends any family (f,p)ap of 7_-”(Q) indexed by the U, XV}, C Q
to the family (fup)ap of F(Q’) indexed by the U, XV}, C © —is known to be an algebra morphism.
It is continuous, since it is continuous as a map

pa: || FWaxv)—» ] FWaxW).

U,xVpCcQ UyxVy, Q)

in view of the definition of the product topology. m|

Theorem 4.8. The category ZiMan has all finite products.

Proof.  Since Z3Man has a terminal object (see Corollary 3.10), it suffices to prove that it has
binary products. Let M, M, € Z;Man. We will show that the product Z})-manifold M x M, (see
Definition 4.1) is the categorical binary product of M; and M.

We first define Z)-morphisms
II; = (mi,m}) : My X Mo — M;, i€ {1,2}.

The base maps m; : M; X M, — M; are the canonical smooth projections. In the following, we
consider the case i = 1 and use the notation introduced above.
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The maps
Ty - OMI(U) E) f — f® le (7T1,*(/L-)(U) s

U € Open(M;), define a morphism T : Op, — 7117*7_-' in PSh(M;,LCTAlg). Indeed, we have
Owum,, 7r1,*?' € PSh(M;,LCTAlg), see [7, Theorem 14] and Proof of Proposition A.19. It is easy to
see that the maps Ty commute with restrictions and are algebra morphisms. To show that 7Ty is
continuous, it suffices to check that the linear map

Ty ZOMI(U) 5f fel EOMI(U)®0M2(M2) 4.20)

is continuous for the projective tensor topology on the target. We apply Theorem A.10 and Propo-
sition A.11. Let pc,p ® px a be any of the seminorms that induce the projective tensor topology.
Recall that C c U and K C M, are compact subsets, and that D and A are differential operators act-
ing on Oy, (U) and Oy, (M>), respectively. We must prove that there is a finite number of seminorms
pc,..p, on the source and a constant C > 0, such that

pce.p(f) pr.a(l) < Cm]?-Xka,Dk(f),

for any f € Op, (U). It suffices to use a single source seminorm pc, p, , namely pc p. Indeed, if
€ = pk.a(1) = 0, the previous condition is satisfied with C = 1, and if € > 0, it is satisfied with
Cc==C.

It follows from Proposition A.15 that T : O;{,Il — (m,f)+ is a morphism in Sh(M;,LCTAlg).
Moreover, in view of Proposition A.19, there is an Sh(M;,LCTAlg)-morphism ¢ : (7r1,*7_-”)Jr —
711,*7_7+. The composite toT™ : Oy, — m,*?_-j is a morphism in Sh(M;,LCTAlg). Proposition A.15
and Theorem 4.4 allow us to interpret it as a morphism

7TT=LOT+ZOM1 —>7T1,*OM1><M2 (4.21)

in Sh(M},Alg). The map nj is actually a morphism of sheaves of Z-commutative associative unital
algebras, so that the map II; = (ﬂl,zrf) : My X My — M, is a morphism in Z7Man (the results of the
appendix we use in this proof extend obviously to the graded unital setting: when speaking in the
rest of the proof about algebras, we actually mean Z7-commutative associative unital algebras).

It remains to check the universality of our construction. Let N € ZJMan and let ®; = (¢;,¢;) :
N — M, be morphisms in Z7Man. We will prove that there exists a unique Z5Man-morphism ¥ =
W *) : N = My X My, such that IT; o ¥ = ®;, for both i.

We set & = (d1,¢2) : N — My X M. As for y*, observe that, for any open U; C M;, the map
by, Oum, (U;) — ON(¢;1(U1~)) is a continuous algebra (Z7-graded unital algebra) morphism, see
[7, Theorem 19]. Denote now by V = V| NV, the open subset

V=VinV,=¢"(U)Ng;' (U2) =y (U xUp) C N,

and denote by my = — - — the multiplication of On(V). In view of [7, Theorem 14] and Proposi-
tions A.17 and A.18, the map

PUxU; =iy 0 (py' B py) o (6] 1, 85 11,) : O, (U1B Oy (Un) — On(V),
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where p“j‘ and p“;z are restrictions in Oy, is a continuous algebra morphism between nuclear Fréchet
algebras. The maps

Py FULXUD) 3 Y fi8g 0 Y py' 6t 1 - o030, 87 € WONUr xUs)  (4.22)
j=0 j=0

define a morphism of B-presheaves of locally convex topological algebras. The latter extends to a
morphism p : F — .0 of presheaves of locally convex topological algebras over M; X M5 .

In view of Propositions A.15 and A.19, there are morphisms
pt F (W.ON)" and ¢: (Y. ON)" - Y. Op,
in Sh(M; X M,,LCTAlg). As above, we can view their composite as a morphism
W' =109" : Ontyxm, = YOn (4.23)

of sheaves of algebras, so that ¥ = (,¢*) : N — M X M, is a morphism in Z7Man.

To prove that I1; o W = &;, it suffices to show that

Ut xm, © i, = BULi o) = B(Pi) = ¢; s,

see Theorem 3.7. The latter is a straightforward consequence of Equations (4.20), (4.21), (4.22),
(4.23), (A.3), and (A.5).

Letnow X = (y, x*) : N = M; X M be another Z5Man-morphism that satisfies I; 0 X = &;. As
the category of smooth manifolds has finite products, we get y = . We will check that 8(X) = (),
i.e., that, for all o € T+(M1 X M>), we have

/\(XllxMzo' = (//;,leMzo' €On(N).

It suffices to show that these sections coincide in a neighborhood of an arbitrary point ngp € N. We
use the compact notation m € M instead of (m,my) € M X M,. Recall that

o =([sln)mem »
where s € F(U) (U =U, xU, > m) reads s = Z;’;ij ®gj (fj € Opm,(U1), gj € Opm,(U2)).
In view of (4.22), (4.23), (A.3), and (A.5),
‘//X/leMzo— = ([Z pxl ¢T,U1 f/ : p\‘;ij;,yz gj]n)neN 5 4.24)
7=0

where we take the germ at n of the section induced by the representative s of the germ at y(n) € M.
Let mo =¥ (ng) € M. Since s is constant in a neighborhood Uy = U} o X Ua,o of my, the representative
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in the RHS of the preceding equation is constant in the neighborhood

Vo=VionVao=¢7'Uio)Ne5' (Uro) = v (Up)

of ny. Hence,

V V-
pVO‘//Mlngo- Zp 10¢1’U1’0f} pv30¢2 Uso 8 € On(W) .

j=0
On the other hand, since I1; o X = &;, we have, for any open U; C M and any f € Oy, (Uy),
Xl*jlxMz([f® l]m)mEleMz = ¢T,U1f 5

due to (4.20), (4.21), (A.3), and (A.5). For any open U, C M», we get

KoL ® mdmev = 0 o X o (L © Undmevipas, = oY 010, f - (425)

An analogous result holds for i = 2. Observe now that

0 N
[ij@’gj} = ”lei}VnZJ?@?gj
Jj=0 " meM J=0 meM
N 00
lim Z f08dm| = D (@8 m)men - (4.26)
Jj= meM J=0

see Proof of Proposition A.15. As the pullbacks y* and the restriction p‘% are continuous algebra
morphisms, we get

'm "
pV()XMlxMzO- pr IEU))XM([f]®g]]m)mEM =

V * V;
ZXUO f]®1]m)m€U0 XUO(“@g]]m)mer ZP 10¢1,U1_0f] pvzo¢2 Us,08J »
Jj=0 j=0
due to (4.25). O

4.4. Products of Z}-morphisms

We use again abbreviations of the type n = (n1,n;) € N = N; X N (which we introduced in the
proof of Theorem 4.8).

Proposition 4.9. Let ¥; : M; — N;, i € {1,2}, be a Z}-morphism with base map y; and pullback
sheaf morphism ;. Due to the universality of the product of Z%-manifolds, there is a canonical
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Z-morphism
Y=Y Xx¥ MixM; > NI XN, .

Its base map is ¥ = Y1 Xy and its pullback sheaf morphism * = (Y| Xn)* is given, for each open
subset Q C N1 X Ny, by

va=| || @i®wuom|o@omdmes1) -

mey~1(Q)

The first map in the RHS is the product of the morphisms between stalks induced by the morphism
Uiey;  Fn =T m

(of presheaves of locally convex topological algebras), where F N is the presheaf defined by
On,® O, and similarly for F p;. The second map in the RHS is the tuple of morphisms

Py(m) - 1_[ ?N,n - ?N,xp(m) .
neQ
To understand this claim, recall that
" —+ — _ —+ _ —
Vo ONQ =F Q) [ |[Fvn—> Ou™ (@) =Fy @) || Fum.
neQ mey~1(Q)
Note now that
(Py(m)mey-1(Q) - On(Q) = l_[ F N
mey~1(Q)
and that
[T wigwwm: [] Fyvam— || Fum

mey~1(Q) mey~1(Q) mey~1(Q)

so that the composite of these maps may coincide with y,.

Proof. Fori e {1,2}, we denote by Hf (resp., Hl.T) the Z-morphism HL.S My x My — M; (resp.,
7 : Ny X Na — N;). The composite ®; = ¥; oII7 is a Z5-morphism ®; : M; x My — N;. In view
of the universality of the product 'y X N2, there is a unique Z5-morphism ¥ : M; X My — N1 XN,
such that HiT oY = &;. We denote this morphism ¥ by ¥ X ¥, and refer to it as the product of the
Z%-morphisms ‘¥;. We showed in the proof of Theorem 4.8 that the base map of ¥ is

Y=@oni aons) =y Xy .

We investigate now the pullback morphisms . Let Q C N be open, so that ¥, : On(Q2) —
O (W~ (Q)), and let o € On(Q) =~ %;\,(Q). Recall once again that o = ([s],)neq, Where s € Fn(U)
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(U =Uy xU, > n) reads
5= £8g (f; €On(U1).g €On,(U2)).
Jj=0

It follows from Equation (4.24) that

Yoo = [Z oy T o i PV w0, g,-] : (4.27)
J=0 " mey1(Q)

where
V=VinV, Vi=@3)"'(W;), and W;=y;'(U;)  (obviously V=W, xW,).
We interpret ¢/} U, fj € Ong (Wy) as

([l//ik,Ul Jilm, )ml ew; € OIJ\r/Il W),

so that

Py T w0, i = (W 0, fi© ) e »

due to Equations (4.20) and (4.21), as well as to the observation that m; € W is equivalent to
mp = nls (m) (m € Vq). A similar result holds for the second factor in the RHS of (4.27), so that, in
view of (4.26), we obtain

‘r//;za' = [Z([‘/’TUI f/ ®l//§,U2 gj],u),uev}

=0 " mey1()

[([t/fi“,u1 Y3 1, Z fi® gj]u)uev] . (4.28)
7=0

" mey1@)

This image is a family (indexed by m) of elements of ?le ~ ?M,m. The isomorphism between
a stalk of a presheaf and the corresponding stalk of its sheafification is described in the proof of
Lemma 6.17.2 of the Stacks Project. The description shows that

Yoo = [‘ﬁ;ﬁ,ul@‘ﬁ;,uz Z fie gj]
Jj=0 m mezp’l(Q)

- 1_[ (lﬁik@w;)z//(m) ((plp(m))mew—l(g) 0').

mey~!(Q)

A. Appendices
We prove and recall results on topological vector spaces and on topological algebras.
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A.1. Topological vector subspaces

Definition A.1. A topological vector subspace S of a TVS V (TVSS for short) is a subset S C V
which is a TVS for the linear operations and the topology of V.

Proposition A.2. A subset S CV of a TVSV is a TVSS of V if and only if S is a linear subspace of
V and is endowed with the topology induced by the topology of V.

Proof. The restrictions to S of the continuous addition and scalar multiplication in V are continuous
in the topology induced on S by V. m|

Note also that, if V is a TVS, and if § C V is a TVSS, then S is a TVS and the inclusion : S >
s = s € V is an injective continuous linear map. Conversely, if § C V is a TVS and the inclusion ¢ is
an injective continuous linear map, then the linear structure on S C V is the same as in V, but S can
have a topology that is finer than the induced one, so that S is not necessarily a TVSS.

Proposition A.3. Leti:V — W be an injective linear map between TVS-s. When equipped with the
induced topology, the linear subspace (V) is a TVSS of W. The bijective linear map i:V — (V)
is a TVS-isomorphism, i.e., a linear homeomorphism, if and only if the topology of V is the initial
topology of 1: V. — W. In this case, the space V can be viewed as a TVSS V ~ (V) of W.

Proof. 1t suffices to prove the second claim. If 7 is an isomorphism, then the topology 7 (V) of V is
given by

TOV)={T'aV)NUw) ="' @(V)NUw) = (V) N7 (Uw) =7 (Uw) : Uw € T(W)},

hence, it is the initial topology of 1 : V. — W. Conversely, if 7 (V) is the initial topology of 1, the
maps 7 and 7! are continuous. Indeed, as just explained, we have 7! (V)N Uw) = " {(Uw) € T(V),
so that 7 is continuous (but it would still be continuous for a finer topology on V). For i~! we have
i (Uw)) = (V)N Uw € T(V)). o

Proposition A.4. Let1:V — W be an injective linear map from a vector space V to a TVS W. When
equipped with the initial topology of 1, the linear space V is a TVS and can be viewed as a TVSS of
Ww.

Proof. The linear operations on V are continuous when V has the initial topology. Indeed, denote
by +v (resp., +w) the addition in V (resp., W), and let :=! (Uyw ), Uw € 7 (W), be an arbitrary open
subset in 7 (V). Then,

(+v) T Uw)) = {(v,v) € VXV ta(v) +w (V') € Uy} =

{v) € VXV (1(),i(v") € (+w) " (Uw)} = (x0) ((+w) ™' (Uw))

isopen in V XV, since 1 and +yw are continuous. The case of the scalar multiplication is similar. The
second claim follows now from Proposition A.3. |

Remark A.5. When passing above from topological vector subspace structures on included subsets
to topological vector subspace structures on injected subsets, we replaced the induced topology by
the initial topology. Of course, if the injection is the inclusion, the initial topology with respect to it
coincides with the induced topology.
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A.2. Completions of topological vector spaces
We recall now well-known properties of the completion of a TVS [29].

For any TVS V, there is a complete TVS V, and an injective linear map::V — V, such that the
linear subspace (V) C V is dense in V. Moreover, when endowed with the induced topology, the
image (V) C V becomes a TVSS of V, and the map 7: V — (V) is promoted to a linear homeomor-
phism, or, equivalently, to a TVS-isomorphism. It follows from Proposition A.3 that the topology of
V is the initial topology of 1 : V — V, and that V =~ (V) is a TVSS of V. In short, the complete TVS
?, which we refer to as the completion of the TVS V, contains V as a dense TVSS:

Proposition A.6. The completion % of V contains V as a dense subset, and it induces on 'V the
original topology and original linear structure.

Remark A.7. If V is already a complete TVS, then::V — Visa TVS-isomorphism.

Further, let S C V bea TVSS of V and let1: S — V be the 1njectlve continuous linear inclusion.
The continuous extension of i, which we denote by 7:85 >V, is an injective continuous linear
map. If i(S) carries the induced topology, the map i : S — i(S) is a TVS- 1s0m0rph1sm In view of
Proposition A.3 this means that the topology of S is the initial topology of 7: S —V,andthat S ~ l(S )
is a TVSS of V. In short:

Proposition A.8. The completion of a TVSS S C V is a TVSS ScVv of the completion.

A.3. Locally convex spaces

Proposition A.9. The initial topology of a linear map € : V — W from a vector space V to a LCTVS
W endows V with a LCTVS structure. In particular, the induced topology on a vector subspace S c W
of a LCTVS endows S with a LCTVS structure.

Proof. The topology of W has a convex basis B. As the preimage of a convex set by a linear
map is convex, the family ¢£~!(38) is a convex basis of the initial topology. In view of the proof
of Proposition A.4, the initial topology endows V with a LCTVS structure. The second claim is a
special case of the first one. O

We close this subsection recalling two results.
Theorem A.10. Let V and W be two LCTVS-s and let (p;)ic; and (qj)jcy be two families of semi-

norms that induce the topologies of V and W, respectively. The projective tensor topology m on
V®W is induced by (p; ® q;)ij. Moreover, for any t € VW, we have

N N
(pi®q;)(1) = inf{prvk)q,(wk) tr= ) w@w eV, weW, N € N} :
k=1

k=1

and, forany v € V.and w € W, we have

Pi®g))(vew)=pi(v)gw).

Proposition A.11. Let V and W be two LCTVS-s and let (p;)ier and (q;);es be two families of semi-
norms that induce the topologies of V. and W, respectively. A linear map € : V — W is continuous if
and only if, for any j € J, there exist iy,...,iy € I and C > 0, such that, for all v € V, one has

g;(C() < Cmaxpy, (v)
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A.4. Presheaves of topological algebras and sheafification
In the following, we need two lemmas.

Unless otherwise stated, all cartesian products [[, 7, of topological spaces T, are endowed
with the product topology, i.e., the weakest topology for which all projections pg : [[, T, — Tp are
continuous.

Lemma A.12. Let (T}), (i € {1,2,3}) be families of topological spaces, and let (mg)q be a family
Mg : TV X T2 — T3 of continuous maps. Then the map

m: [ 7 % [ 72 2 () (ta)a) = (maltata))a € | |72
a a (04
is continuous.

Proof.  Since the cartesian product [], 7T, of topological spaces T, equipped with the product
topology, is the product in the category of topological spaces, it follows from the universal property
that amap f : T — [], T, from a topological space to a product space is continuous if and only if
all the pgo f : T — Tg are continuous. However, the map p; om: ((Ta)a(ta)a) = mg(1p,1g) is the

composite mg o (p[lg X pé), which is of course continuous. O

Lemma A.13. Let V be a vector space, let (Vy)q be a family of LCTVS, let £, : Vo, — V be a family
of linear maps, and let V be equipped with the finest locally convex vector space topology, for which
all the €, are continuous (V is then a LCTVS). If W is a LCTVS, a linear map € : V — W is continuous
if and only if all the maps € o £, : Vo, — W are continuous.

Proof. See [4, Proposition 2.3.5] O

In the present text:

Definition A.14. A ropological algebra (TA for short) (resp., a locally convex topological algebra
(LCTA for short)) is a (real) topological vector space (resp., a locally convex (real) topological vector
space), with an associative, bilinear, and (jointly) continuous multiplication. A morphism of topo-
logical algebras (resp., a morphism of locally convex topological algebras) is a continuous algebra
morphism. We denote the category of topological algebras (resp., of locally convex topological
algebras) and morphisms between them by TAlg (resp., by LCTAlg).

The category of Fréchet algebras is a full subcategory of the category of locally convex topo-
logical algebras, itself a full subcategory of the category of topological algebras.

We denote by PSh(7,TAlg) (resp., Sh(7,TAlg)) the category of presheaves (resp., sheaves) of
TA-s over a topological space T. Similarly, the category PSh(7,LCTAlg) (resp., Sh(T, LCTAlg)) is
the category of presheaves (resp., sheaves) of LCTA-s over T, and the category PSh(T,Alg) (resp.,
Sh(T,Alg)) is the category of presheaves (resp., sheaves) of algebras over 7.

Proposition A.15. Denote by + the sheafification functor
+ : PSh(T,Alg) — Sh(T,Alg) : For,
i.e., the left adjoint of the forgetful functor For. If ¥ € PSh(T,TAlg), we have F* € Sh(T,TAlg), and

the morphism i : F — F* of presheaves of algebras is a morphism of presheaves of TA-s. Moreover,
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if o2 F — F' is a morphism in PSh(T,TAlg), then ¢* : F+ — F'* is a morphism in Sh(T,TAlg).
The same results hold, if we replace TA-s by LCTA-s.

Proof. We study the case ¥ € PSh(7T,LCTAlg) (in particular ¥ € PSh(7,Alg)).

Since sheafification is based on stalks 7, (x € T), i.e., on inductive limits, and since the inductive
limit of a directed system of sets endowed with a same algebraic structure has as underlying set the
inductive limit of the directed system of underlying sets, it is natural that the same result holds for
sheafification functors. Let + be the sheafification functor

+:PSh(T,Alg) > F — F* € Sh(T,Alg) : For .

Recall that F*(U) (U € Open(T)) is defined as the subset of (IIF)(U) := [, ey Fx, Which is made
of those elements o = (0 )xecu = ([$]x)xeu, for whom the section s is constant in a neighborhood
of any point of U. The algebra operations on F*(U) are naturally induced by those of the stalks.
Restrictions are the obvious algebra morphisms. The morphism i : ¥ — F* of presheaves of alge-
bras is defined by

iy : F(U) 35— ([sli)xev € FU), (A.D)

and iy is injective, if F is separated. If G € Sh(T,Alg), the morphismi: G — G is an isomorphism
of sheaves of algebras. Further, if j : # — G is a morphism of presheaves of algebras, the unique
morphism j : 7 — G of sheaves of algebras, such that joi = j, is given by iy = [,y jx,» Where
Jx : Fx — G is the morphism of algebras induced by j:

iv: FHU) 3 ([slo)xev = (xlsloxev € 7 (U) = G(U) . (A2)

Similarly, if 7, € PSh(T,Alg) and ¢ : ¥ — F' is a presheaf morphism, the components of the
sheaf morphism ¢* : F+ — F'* are

¢y FH(U) 3 ([slo)xev = (oxlslixer € F7(U) .

The stalk #, (x € T) is the inductive limit algebra ¥, = li_r)nUax F(U) of the directed system

of algebras (¥ (U), pg ), where U is an open neighborhood of x and pg the restriction from U to
V c U. This system is actually a directed system of LCTA-s, in the sense that the 7 (U) are LCTA-s
and the p%,] are continuous algebra morphisms. If we endow the inductive limit algebra ¥, with
the final locally convex vector space topology with respect to the canonical algebra morphisms
ny, » F(U) — Fx (i.e., with the finest locally convex vector space topology, for which the 77, are
all continuous), the limit 7 is a LCTVS, whose multiplication is (jointly) continuous [26, Lemma
2.2], i.e., the stalk F, is a LCTA.

In the following, the algebra ¥+ (U) c (IIF )(U) carries the induced topology of the product
topology. Since any product of LCTVS-s and any subspace of a LCTVS are LCTVS-s, the algebra
F*(U) is a LCTVS. The multiplication on #*(U) is continuous in view of Lemma A.12, so that
F*(U) is a LCTA.
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To show that #* € Sh(T,LCTAlg), it suffices to prove that any restriction
ry : (IF)U) 3 (0x)xev > (0x)xev € (IF)(V)
is continuous, i.e., that, for all y € V, the map
py ory =pY : (MF)U) 3 (0x)xev - oy € Fy

is continuous — which is a consequence of the definition of the product topology.

The next step consists in proving that the morphism i : ¥ — F ' of presheaves of algebras
defined by (A.1), is a morphism of presheaves of LCTA-s, i.e., in proving that, for any y € U, the
map

p;JOiU:ﬂ{]:T(U)BSH[s]yGTy
is continuous. This holds true by definition of the final topology on ¥

Let ¢ : ¥ — F' be a morphism in PSh(7,LCTAlg). To show that ¢* : F* — F’* is a morphism
in Sh(7,LCTAlg), it suffices to show that

n @x : (F)U) > ([slo)xev = (@xlsl)xev € TIF)(U) (A.3)

xeU

is continuous. This is the case if and only if ¢, : ¥ — F/, x € U, is continuous. In view of
Lemma A.13, the algebra morphism ¢, is continuous if and only if

pxomy =ay opy :F (V)35 exlsle =[ovsl € 77,

V > x, is continuous. This condition is obviously fulfilled. O

Corollary A.16. When equipped with the final locally convex vector space topology with respect
to the canonical algebra morphisms ny, : ¥(U) — %, a stalk Fx, x € T, of a presheaf ¥ € PSh
(T,TAlg) is the inductive limit in TALlg of the directed system (F (U), pg). The same statement holds
in LCTAlg.

Proof.  Clearly, the iy, : #(U) — ¥ are morphisms in (LC)TAlg. Let (F,py) be made of F €
(LC)TAlg and (LC)TAlg-morphisms py : F(U) — F, such that py o pg = py. Due to Lemma A.13,
the unique Alg-morphism u : F, — F, such that uo 7y, = py, is continuous, since the u o 7y, = py
are all continuous. Hence, the claim. O

Proposition A.17. Let o : A — C and B: B — D be two continuous algebra morphisms between
nuclear Fréchet algebras. Then a®pB : A®B — C®D is a continuous algebra morphism between
nuclear Fréchet algebras.

Proof. Since a and B are continuous linear maps between locally convex spaces, the map a ® 3 :
A®B — C® D is continuous linear, and its continuous extension @®8 : A®B — C®D is continuous
linear as well.
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The source and the target of @®g are nuclear Fréchet algebras [15, Lemma 1.2.13]. It remains to
show that «®f respects their (continuous) multiplications. Leta = 372 ja; ® b; and b = Z;io aj’. ® b;.
be two elements of A®B. Using continuity, we get

(@®B)(a-) =limlim >" > (a(a)a(a)) @ (BbB®)) .
i=0 j=0

It is straightforwardly seen that (¢®p)a - (@®p)b is given by the same limit of sums of tensor prod-
ucts. O

Proposition A.18. The multiplication m : AX A — A of a nuclear Fréchet algebra A extends to a
continuous algebra morphism in : ARA — A between nuclear Fréchet algebras.

Proof. We equip A® A with the projective tensor topology. The continuous bilinear maps from A X
A to A correspond exactly to the continuous linear maps from A® A to A. Hence, the multiplication
m can be viewed as a continuous linear map m : A® A — A. The latter extends to a continuous linear
map 71 : ARA — A. This extension respects the (continuous) multiplications. The proof is similar
to the one of Proposition A.17. O

A.5. Direct image and sheafification

Proposition A.19. Let ¥ € PSh(T,LCTAlg) and let f € C(T,T"). There is a morphism
(AP - L FT
in Sh(T’,LCTAlg).
Proof. The assignment
£.F :0pen(T’) 3 V > F(f~'(V)) € LCTAlg

together with the restrictions

vy . ’
Pl (BFV) = (L),
where p are the restrictions of ¥ in LCTAlg, is a presheaf f.¥ € PSh(T’,LCTAlg). In view of Propo-
sition A.15, we get (f.F )" € Sh(T’,LCTAlg). Similarly, we have f, ¥+ € Sh(7’,LCTAlg).

Further, for x € T'and U > U’ 5 x, the LCTAlg-morphisms 7y, : ¥ (U) — ¥ and ny), : F(U’) —
Fx satisfy nj;, o pg, = n};. As, due to Corollary A.16, the stalk (f.F)y(x) € LCTAlg is the inductive
limit in LCTAlg of the directed system

-1
FS VP VOV f(0),
there exists a unique LCTAlg-morphism
Ux : (f*gj)f(x) - Fx, (A.4)

such that u orr‘];(x) = n}‘ i.e., such that uy [s]¢(x) = [s], forall s € F(f~'(V))and all V 5 f(x).

71(‘/)’
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For any V € Open(7”), the map

w  (AAFNV) 3 (sly)yev > (xSl xer-1v) = (SI)xep-1v) € AFNFHV))  (AS5)

is a continuous algebra morphism. Indeed, the algebraic operations are defined component-wise.
For instance, the image of a product ([s]y - [s”]y)yev is the product (ux[s]rx) - tx [5"]f(x))xef-1(v) OF
the images. Moreover, the map ¢y is continuous if and only if the maps

P Vow  (AEFNV) 3 (sly)yey - tx sl € Fe (x € f7HV))

are. The preimage by p{c_](v) oty of any open w C ¥ is the product over y € V, whose factors
indexed by y # f(x) are (f,F), and whose factor indexed by f(x) is the open subset u;!(w) of

(feF)f(x)- The preimage by p,{_l(v) oy is thus open in (II( £, F))(V).

The restriction of ¢y to (£ F)*(V), still denoted by ty, arrives in (f. F)(V). Assume that
([s]y)yev is implemented in a neighborhood Vj,, of an arbitrary point yp € V by a same section
te(fF)Vy,), let x € f7X(V), and set Uy, = f‘](Vf(XO)). For any x € U,,, we have

Uy [s]f(x) = Ux [t]f(x) =[t]y,
with 1 € F(Uy,).
The restriction ¢y : (£ F)*(V) — (f F7)(V) is obviously a morphism in LCTAlg. Since these ty

commute with restrictions, they define the sheaf morphism ¢ announced in Proposition A.19. |
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