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We prove that the category of Zn2 -manifolds has all finite products. Further, we show that a Zn2 -manifold (resp.,
a Zn2 -morphism) can be reconstructed from its algebra of global Zn2 -functions (resp., from its algebra morphism
between global Zn2 -function algebras). These results are of importance in the study of Zn2 Lie groups. The
investigation is all the more challenging, since the completed tensor product of the structure sheafs of two
Zn2 -manifolds is not a sheaf. We rely on a number of results on (pre)sheaves of topological algebras, which we
establish in the appendix.
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1. Introduction

Zn2 -Geometry is an emerging framework in mathematics and mathematical physics, which has
been introduced in the foundational papers [11] and [14]. This non-trivial extension of standard
Supergeometry allows for Zn2 -gradings, where

Zn2 = Z
×n
2 = Z2× · · · ×Z2 and n ∈ N .

The corresponding Zn2 -commutation rule for coordinates (uA)A with degrees deguA ∈ Zn2 does not
use the product of the (obviously defined) parities, but the scalar product 〈−,−〉 of Zn2 :

uAuB = (−1)〈deguA, deguB 〉uBuA . (1.1)

A brief description of the category Zn2Man of Zn2 -manifolds M = (M,OM ) and morphisms Φ =
(φ,φ∗) between them can be found in Section 2. For n = 1, one recovers the category SMan of
supermanifolds. A survey on Zn2 -Geometry is available in [31]. The differential calculus and the
splitting theorem for Zn2 -manifolds have been investigated in [13] and [12], respectively. In the
introduction of [7], the reader finds motivations for the study of Zn2 -Geometry. The present paper
uses the main results of [7].
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Applications of Zn2 -Geometry are based in particular on Zn2 Lie groups and their actions on
Zn2 -manifolds (supergravity), on Zn2 vector bundles and their sections (Zn2 Lie algebroids), on the
internal Hom functor in Zn2Man (Zn-gradings and Zn2 -parities in field theory), ... All these notions
rely themselves on products in the category Zn2Man. On the other hand, a comparison of different
approaches to Zn2 vector bundles is more challenging than in the supercase [2]. A generalization
to Zn2 -manifolds of the Schwarz-Voronov-Molotkov embedding is needed. This extension, which
embeds Zn2Man into the category of contravariant functors from Zn2 -points to a specific category
of Fréchet manifolds, uses the reconstructions of Zn2 -manifolds and Zn2 -morphisms from the Zn2 -
commutative associative unital R-algebras of global Zn2 -functions and the Zn2 -graded unital algebra
morphisms between them, respectively.

The existence of categorical products and the mentioned reconstruction theorems are the main
topics of the present paper. The text is organized as follows. Section 3 contains the proofs of the
above-mentioned Zn2 reconstruction results. The definition of a product Zn2 -manifold and the proof
of its meaningfulness are rather obvious, see Definition 4.1. However, the proof of the existence
of categorical products in Zn2Man is quite tough. It relies on the generalization of the well-known
isomorphism of topological vector spaces

C∞(Ω′)⊗̂C∞(Ω′′) ' C∞(Ω′×Ω′′)

(for open subsets Ω′ ⊂ Rp, Ω′′ ⊂ Rr ) to an isomorphism of locally convex topological algebras of
formal power series

C∞(Ω′)[[ξ]] ⊗̂ C∞(Ω′′)[[η]] ' C∞(Ω′×Ω′′)[[ξ,η]] (1.2)

(for Zn2 -domainsUp |q = (Ω′,C∞Ω′[[ξ]]) andVr |s = (Ω′′,C∞Ω′′[[η]]), with

ξ = (ξ1, . . . ,ξN (q)) and η = (η1, . . . ,ηN (s))) ,

see Theorem 4.2. The issue here is the formal power series, which replace the polynomials of
standard Supergeometry. Moreover, ifM = (M,OM ) and N = (N,ON ) are two Zn2 -manifolds, and
M×N = (M ×N, OM×N ) is their product Zn2 -manifold, one gets from (1.2) that, for an open subset
u× v ⊂ M ×N of the basis B made of products of Zn2 -chart domains, we have

E(u× v) ' OM×N (u× v) ,

where E is the B-presheaf

E(u× v) = OM (u) ⊗̂ ON (v) .

Let now F be the standard extension of the B-presheaf F that assigns to any open subset U ×V ⊂
M ×N (where U ⊂ M and V ⊂ N are not necessarily chart domains) the algebra

F (U ×V) = OM (U) ⊗̂ ON (V) .

The presheaf F and the sheaf OM×N are thus two extensions of the B-presheaf E. However, this
does not mean that F ' OM×N and that F is a sheaf. Indeed,B-sheaves have unique extensions, but
B-presheaves do not. Also the reconstruction results mentioned above do not allow us to prove that
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F is a sheaf. Hence, we prove the next best result, i.e., the existence of an isomorphism of sheaves
of algebras

OM×N ' F
+

(1.3)

between the structure sheaf of the product Zn2 -manifold and the sheafification of the presheaf F ,
see Theorem 4.4. In the case n = 1, we thus recover the definition of a product supermanifold used
in [3]. The isomorphism (1.3) allows us to prove the existence of all finite categorical products
in Zn2Man, see Theorem 4.8. The proof uses the results on sheafification and presheaves of locally
convex topological algebras proven in Subsections A.4 and A.5 of the Appendix. Products of Zn2 -
morphisms are obtained from the universality property of categorical products. They are explicitly
described in Proposition 4.9.

2. Zn2 -manifolds and their morphisms

We denote by Zn2 the cartesian product of n copies of Z2 . Further, we use systematically the fol-
lowing standard order of the 2n elements of Zn2 : first the even degrees are ordered lexicographically,
then the odd ones are also ordered lexicographically. For example,

Z3
2 = {(0,0,0),(0,1,1),(1,0,1),(1,1,0),(0,0,1),(0,1,0),(1,0,0),(1,1,1)} .

A Zn2 -domain has, aside from the usual coordinates x = (x1, . . . ,xp) of degree deg xi = 0 ∈ Zn2 ,
also formal coordinates or parameters ξ = (ξ1, . . . ,ξQ) of non-zero degrees degξa ∈ Zn2 . These coor-
dinates u = (x,ξ) commute according to the generalized sign rule

uAuB = (−1)〈deguA,deguB 〉uBuA , (2.1)

where 〈−,−〉 denotes the standard scalar product. For instance,

〈(0,1,1),(1,0,1)〉 = 1 .

Observe that, in contrast with ordinary Z2- or super-domains, even coordinates may anticommute,
odd coordinates may commute, and even nonzero degree coordinates are not nilpotent. Of course,
for n = 1, we recover the classical situation. We denote by p the number of coordinates xi of degree
0, by q1 the number of coordinates ξa which have the first non-zero degree of Zn2 , and so on. We get
that way a tuple q= (q1, . . . ,qN ) ∈N

N with N := 2n−1. The dimension of the considered Zn2 -domain
is then given by p|q. Clearly the Q above is the sum |q| =

∑N
i=1 qi.

We recall the definition of a Zn2 -manifold.

Definition 2.1. A locally Zn2 -ringed space is a pair (M,OM ) made of a topological space M and
a sheaf of Zn2 -graded Zn2 -commutative ( in the sense of (2.1) ) associative unital R-algebras over it,
such that at every point m ∈ M the stalk OM ,m is a local graded ring.

A smooth Zn2 -manifold of dimension p|q is a locally Zn2 -ringed spaceM = (M,OM ), which is
locally isomorphic to the smooth Zn2 -domain Rp |q := (Rp,C∞Rp [[ξ]]), and whose underlying topo-
logical space M is second-countable and Hausdorff. Sections of the structure sheaf C∞Rp [[ξ]] are
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formal power series in the Zn2 -commutative parameters ξ, with coefficients in smooth functions:

C∞Rp (U)[[ξ]] :=

{ ∑
α∈N×|q|

fα(x)ξα
�� fα ∈ C∞(U)

}
(U open in Rp) .

Zn2 -morphisms between Zn2 -manifolds are just morphisms of Zn2 -ringed spaces, i.e., pairs Φ =
(φ,φ∗) : (M,OM )→ (N,ON )made of a continuous map φ : M→ N and a sheaf morphism φ∗ :ON→

φ∗OM , i.e., a family of Zn2 -graded unitalR-algebra morphisms, which commute with restrictions and
are defined, for any open V ⊂ N , by

φ∗V : ON (V) → OM (φ
−1(V)) .

We denote the category of Zn2 -manifolds and Zn2 -morphisms between them by Zn2Man.

Remark 2.2. Let us stress that the base space M corresponds to the degree zero coordinates (and
not to the even degree coordinates), and let us mention that it can be proven that the topological
base space M carries a natural smooth manifold structure of dimension p, that the continuous base
map φ : M→ N is in fact smooth, and that the algebra morphisms

φ∗m : Oφ(m)→Om (m ∈ M)

between stalks, which are induced by the considered Zn2 -morphism Φ :M→N , respect the unique
homogeneous maximal ideals of the local graded rings Oφ(m) and Om.

3. Reconstructions of Zn2 -manifolds and Zn2 -morphisms

In this section, we reconstruct a Zn2 -manifold (M,OM ) from the Zn2 -commutative unital algebra
OM (M) of global sections of its function sheaf. We also reconstruct a Zn2 -morphism

Φ = (φ,φ∗) : (M,OM ) → (N,ON )

from its pullback Zn2 -graded unital algebra morphism

φ∗N : ON (N) → OM (M)

between global sections.

3.1. Reconstruction of the topological base space

Algebraic characterizations of spaces can be traced back to I. Gel’fand and A. Kolmogoroff [16].
In that paper, compact topological spaces K are characterized by the algebras C0(K) of continuous
functions on them. In particular, the points m of these spaces are identified with the maximal ideals

Im = { f ∈ C0(K) : f (m) = 0}

of these algebras. A similar characterization holds for the points of second countable Hausdorff
smooth manifolds.

Let M = (M,OM ) be a Zn2 -manifold. We denote the maximal spectrum of O(M) (subscript
omitted) by Spm(O(M)) (we actually consider here the real maximal spectrum, in the sense that the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

423



A. Bruce & N. Poncin / Products in the category of Zn2 -manifolds

quotient O(M)/µ by an ideal µ in the spectrum is isomorphic to the field R of real numbers). Note
that any m ∈ M induces a map

εm : O(M) 3 f 7→ (εM f )(m) ∈ R ,

which is referred to as the evaluation map at m and is a Zn2 -graded unital R-algebra morphism

εm ∈ HomZn2 UAlg(O(M),R) .

The kernel

µm = kerεm = { f ∈ O(M) : (εM f )(m) = 0} ∈ Spm(O(M))

is a maximal ideal. More generally, the kernel of an arbitrary algebra morphism

ψ ∈ HomZn2 UAlg(O(M),R)

is a maximal ideal, since O(M)/kerψ ' R. Indeed, to any class [ f ] in the quotient we can associate
the real number ψ( f ). This map is well-defined and injective. It is also surjective, since, for any
r ∈ R, the image of [r · 1O(M)] is r . It follows in particular that any class in the quotient is of type
[r ·1O(M)] for a unique r ∈ R. We have the following

Proposition 3.1. The maps

b : M 3 m 7→ µm ∈ Spm(O(M))

and

[ : HomZn2 UAlg(O(M),R) 3 ψ 7→ kerψ ∈ Spm(O(M))

are 1 : 1 correspondences.

Proof. To prove that b is bijective, consider a maximal ideal µ ∈ Spm(O(M)). The image εM (µ) ⊂
C∞(M) is a maximal ideal. Indeed, it is an ideal, since the map εM is surjective (the short sequence
of sheaves [7, Equation (3)] is exact for the good reason that it is exact for any open subset of M).
To see that it is maximal, assume there is an ideal ν, such that εM (µ) ⊂ ν ⊂ C∞(M), so that µ ⊂
ε−1
M (ν) ⊂ OM (M). It follows that ε−1

M (ν) = µ or ε−1
M (ν) = OM (M), and that ν = εM (µ) or ν =C∞(M).

Hence,

εM (µ) = Im = { f ∈ C∞(M) : f (m) = 0} ,

since any maximal ideal of C∞(M) is known to be of type Im for a unique m ∈ M . Finally, we get

µ ⊂ ε−1
M (Im) = { f ∈ O(M) : (εM f )(m) = 0} = µm ⊂ O(M) .

Since µm , O(M), we have µ = µm, which proves the bijectivity of b. Indeed, if µ = µn, we obtain
εM (µn) ⊂ In ⊂ C∞(M), so that

In = εM (µn) = εM (µm) = Im ,

and m = n.
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Since any µ ∈ Spm(O(M)) reads µ = µm = kerεm = [(εm), the map [ is surjective. Let ψ,φ be
unital algebra morphisms, such that kerψ = kerφ = µ. For any f ∈ O(M), there exists a unique r ∈ R,
such that [ f ] = [r ·1O(M)]. Thus ψ( f ) = r = φ( f ) and ψ = φ, so that [ is also injective. �

The next proposition relies on the Zariski and the Gel’fand topologies. The Gel’fand topology
is possibly less known than the Zariski topology. We recall its precise definition in the proof of the
proposition.

Proposition 3.2. The map

ε−1
M : Spm(C∞(M)) 3 Im 7→ ε−1

M (Im) = µm ∈ Spm(O(M))

is a homeomorphism with inverse εM , both, if the maximal spectra are endowed with their Zariski
topology and if they are endowed with their Gel’fand topology. Hence, the Zariski and Gel’fand
topologies coincide on Spm(O(M)). Further, the bijection

b : M 3 m 7→ µm ∈ Spm(O(M))

is a homeomorphism.

Proof. The maps

ε−1
M : Spm(C∞(M)) 3 Im 7→ ε−1

M (Im) = µm ∈ Spm(O(M))

and

εM : Spm(O(M)) 3 µm 7→ εM (µm) = Im ∈ Spm(C∞(M))

are inverses of each other.

We first equip the spectrum Spm(C∞(M)) as usual with the Zariski topology, which is defined
by its basis of open subsets VC∞( f ), f ∈ C∞(M), given by

VC∞( f ) = {Im ∈ Spm(C∞(M)) : f < Im} ,

and we proceed similarly for Spm(O(M)). It is straightforwardly checked that, if f = εM (F), we
have

ε−1
M (VC∞( f )) = VO(F) and εM (VO(F)) = VC∞( f ) .

Hence the announced homeomorphism result for the Zariski topologies.

The Gel’fand topology of Spm(C∞(M)) is defined by the basis of open subsets BC∞(m,ε ;
f1, . . . , fn), indexed by m ∈ M , ε > 0, n ∈ N, and f1, . . . , fn ∈ C∞(M), and defined by

BC∞(m,ε ; f1, . . . , fn) = {In ∈ Spm(C∞(M)) : | fi(n)− fi(m)| < ε,∀i} .

The Gel’fand topology of Spm(O(M)) is defined analogously by

BO(m,ε ; F1, . . . ,Fn) = {µn ∈ Spm(O(M)) : |(εMFi)(n)− (εMFi)(m)| < ε,∀i} ,

where Fi ∈ O(M). If fi = εM (Fi), we have obviously

ε−1
M (BC∞(m,ε ; f1, . . . , fn)) = BO(m,ε ; F1, . . . ,Fn) ,

and similarly for εM , so that the homeomorphism result holds also for the Gel’fand topologies.
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Since the Zariski and Gel’fand topologies coincide on Spm(C∞(M)), it follows from the above
that there is a homeomorphism from Spm(O(M)) endowed with the Zariski topology to itself
endowed with the Gel’fand topology.

It is well-known that the map bC∞ : M 3 m 7→ Im ∈ Spm(C∞(M)) is a homeomorphism (see for
example [28]). Hence, the bijection b = ε−1

M ◦ bC∞ is a homeomorphism as well. �

3.2. Reconstruction of the structure sheaf

Proposition 3.3. Let (M,OM ) be a Zn2 -manifold and let U ⊂ M be open. A Zn2 -function F ∈ OM (U)
is invertible if and only if its base projection f = εU (F) ∈ C∞M (U) is invertible.

Proof. It is obvious that f is invertible if F is. Assume now that there exists f −1 ∈ C∞(U) and
consider a cover of U by Zn2 -chart domains Vi. For any i, we have f −1 |Vi = ( f |Vi )

−1, i.e., the base
function εVi (F |Vi ) = εU (F)|Vi is invertible in C∞(Vi), so that F |Vi ∈ O(Vi) ' C∞(Vi)[[ξ]] has an
inverse GVi ∈ O(Vi). It follows that, for any Vi and Vj with intersection Vi j ,

GVi |Vi j = (F |Vi j )
−1 = GVj |Vi j .

Hence, there is a unique Zn2 -function G ∈ O(U), such that G |Vi =GVi . It is clear that G is the inverse
of F. �

Reconstructions of a sheaf from its global sections have been thoroughly studied in algebraic
and differential geometry. A survey on such results can be found in [5] and [6]. The probably best
known example is the construction of the structure sheaf OX of an affine scheme X = Spec R from
its global sections commutative unital ring OX(X) = R. In this case, the ring OX(Vf ) of functions on
a Zariski open subset Vf , f ∈ R, is defined as a localization of OX(X). In the case of a Zn2 -manifold
(M,OM ), we reconstruct OM (U) as the localization of OM (M) with respect to the multiplicative
subset

SU = {F ∈ O0
M (M) : (εMF)|U is invertible } .

The chosen localization comes with a morphism that sends global sections with invertible projection
in C∞M (U) to invertible sections in OM (U), see Proposition 3.3.

Since the Zn2 -functions in SU are of degree 0, no sign issues do appear and the definitions of the
equivalence of fractions and the operations on their equivalence classes are the standard ones [1].

Proposition 3.4. The localization OM (M) · S−1
U is a Zn2 -commutative associative unital R-algebra

structure, whose grading is naturally induced by the grading of OM (M) (for a homogeneous r, the
degree of rs−1 is the degree of r), and whose zero (resp., unit) is represented by 01−1 (resp., 11−1).

Proof. Straightforward verification. �
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We thus get a presheaf

LM : Open(M) 3 U 7→ OM (M) · S−1
U ∈ Z

n
2UAlg

on M valued in the category of Zn2 -commutative associative unital R-algebras. Indeed, if V ⊂ U is
open, the obvious inclusion ιUV : SU ↪→ SV provides a natural well-defined restriction

rUV : LM (U) 3 Fs−1 7→ F (ιUV s)−1 ∈ LM (V) ,

and these restrictions satisfy the usual cocycle condition.

As indicated above, we will show (in several steps) that the presheaf LM coincides with the
structure sheaf OM .

First, since it follows from Proposition 3.3 that, for any s ∈ SU , the restriction s |U is invertible
in OM (U), we have a map

λU : LM (U) 3 Fs−1 7→ F |U (s |U )−1 ∈ OM (U) .

This map is well-defined. Indeed, if Fs−1 = F ′s′−1, there is σ ∈ SU , such that (F |U s′ |U −
F ′ |U s |U )σ |U = 0. Since the restrictions s |U , s′ |U , and σ |U are invertible in OM (U), the claim
follows. Further, it can be straightforwardly checked that λU is a morphism of Zn2 -graded unital
R-algebras.

In fact:

Proposition 3.5. For any open U ⊂ M, the localisation map λU :LM (U)→ OM (U) is a Zn2 -graded
unital R-algebra isomorphism.

The proof of this result uses a method that can be found in various works, see for instance [3],
[8], and [30]. We give this proof for completeness, as well as to show that it goes through in our
Zn2 -graded stetting.

Proof. It suffices to explain why λU is bijective.

(1) Injectivity: Assume that F |U (s |U )−1 = 0, i.e., that F |U = 0, and show that Fs−1 ∼ 01−1, i.e., that
there is σ ∈ SU , such that Fσ = 0. Let (Vi,ψi) be a partition of unity ofM, such that the Vi are
Zn2 -chart domains, so that OM |Vi ' C∞M |Vi [[ξ]]. For any i, we have

F |U∩Vi (x,ξ) =
∑
α

Fα |U∩Vi (x)ξ
α = 0, i.e., Fα |U∩Vi = 0, ∀α .

Let

σi ∈ C∞M (Vi) ⊂ O
0
M (Vi), such that σi |U∩Vi > 0 and σi |Vi\(U∩Vi ) = 0 .

It follows that F |Viσi = 0. The Zn2 -function σ =
∑

iσiψi ∈ O
0
M (M) has the required properties.

Indeed, the open subsets Vi and Ωi = M \ suppψi cover M and Fσiψi vanishes on both, Vi and
Ωi, so that Fσ =

∑
i Fσiψi = 0. In addition, for any m ∈U, we have (εψi)(m) ≥ 0, for all i, and

there is at least one j, such that (εψj)(m) > 0. Since (εψj)|Ω j = 0, we get m ∈ U ∩Vj , so that
(σj εψj)(m) > 0,

(εσ)(m) =
∑
i

(σi εψi)(m) > 0 ,

and σ ∈ SU .
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(2) Surjectivity: We must express an arbitrary f ∈ OM (U) as a product f = F |U (s |U )−1, with
F ∈ OM (M) and s ∈ SU . To construct the global sections F and s, consider an increasing count-
able family of seminorms pn that implements the locally convex topology of the Fréchet space
OM (M). Take also a countable open cover Un of U, such that Un ⊂U, as well as bump functions
γn ∈ O

0
M (M), which satisfy γn |Un = 1 (which implies that (εMγn)|Un = 1), suppγn ⊂ U, and

εMγn ≥ 0. The following series converge in OM (M) and provide us with the required global
sections:

F :=
∞∑
n=0

1
2n

γn f
1+ pn(γn)+ pn(γn f )

and s :=
∞∑
n=0

1
2n

γn
1+ pn(γn)+ pn(γn f )

.

Indeed, convergence follows, if we can show that the series are Cauchy, i.e., if they are Cauchy
with respect to each pm. If r,s→∞, we get r ≥ m, and, since the seminorms are increasing, we
have

pm

(
s∑

n=r

1
2n

γn f
1+ pn(γn)+ pn(γn f )

)
≤

s∑
n=r

1
2n

pm(γn f )
1+ pn(γn)+ pn(γn f )

<

s∑
n=r

1
2n
→ 0,

whether the factor f is present or not. On the other hand, as restrictions are continuous, it is
clear that F |U = f s |U , so that f = F |U (s |U )−1, provided we show that s ∈ O 0

M (M) belongs to
SU , i.e., that (εM s)(m) , 0, for all m ∈ U. To see this, note that (id,ε) : (M,C∞M ) → (M,OM ) is
a morphism of Zn2 -manifolds, so that εM : OM (M) → C∞M (M) is continuous, see [7, Theorem
19]. For any Um of the cover of U, we thus get

(εM s)|Um :=
∞∑
n=0

1
2n

(εMγn)|Um

1+ pn(γn)+ pn(γn f )
> 0 ,

in view of the properties of γn.

�

Theorem 3.6. The Zn2 -commutative associative unital R-algebra OM (M) of global sections of the
structure sheaf of a Zn2 -manifold (M,OM ) fully determines this sheaf. More precisely, there is a
presheaf isomorphism λ : LM →OM , so that the presheaf LM , which is obtained from OM (M), is
actually a sheaf, which is isomorphic to the structure sheaf OM .

Proof. It suffices to check that the family λU : LM (U) → OM (U), U ∈ Open(M), of Zn2 -graded
unital R-algebra isomorphisms, commutes with the restrictions rUV in LM and ρUV in OM (V ⊂ U,
V ∈ Open(M)). This is actually obvious:

λV (rUV (Fs−1)) = F |V (s |V )−1 = ρUV (λU (Fs−1)) .

�

3.3. Reconstruction of a Zn2 -morphism

In algebraic geometry, any commutative unital ring morphism ψ : S→ R defines a morphism
of affine schemes Φ = (φ,φ∗) : (Spec R,OSpecR) → (Spec S,OSpecS), whose continuous base map φ
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associates to each prime ideal p the prime ideal ψ−1(p). A similar result exists in the category of
Zn2 -manifolds and Zn2 -morphisms, with the same definition of the continuous base map.

Theorem 3.7. LetM = (M,OM ) and N = (N,ON ) be Zn2 -manifolds. The map

β : HomZn2 Man
(
M,N

)
3 Φ = (φ,φ∗) 7→ φ∗N ∈ HomZn2 UAlg

(
ON (N),OM (M)

)
is a bijection.

Proof. To show that β is surjective, we consider ψ ∈ HomZn2 UAlg(ON (N),OM (M)) and construct
Φ ∈ HomZn2 Man(M,N), such that φ∗N = ψ.

Since M (resp., N) endowed with its base space topology is homeomorphic to Spm(OM (M))
(resp., Spm(ON (N))) endowed with the Zariski topology, we define φ by

φ : Spm(OM (M)) 3 kerεm 7→ ker(εm ◦ψ) = kerεn ∈ Spm(ON (N)) ,

see Propositions 3.2 and 3.1. This map is continuous. Indeed, for any F ∈ ON (N), the preimage by
φ of the open subset

V(F) = {kerεn ∈ Spm(ON (N)) : εn(F) , 0}

is the subset

φ−1(V(F)) = {kerεm ∈ Spm(OM (M)) : εm(ψ(F)) , 0} = V(ψ(F)) .

To define, for any open V ⊂ N , a Zn2 -graded unital R-algebra morphism

φ∗V : ON (V) → (φ∗OM )(V) ,

we rely on the isomorphism of Zn2 -graded unital R-algebras ON (V) ' LN (V) and the similar iso-
morphism in M . Hence, we define φ∗V by

φ∗V : LN (V) 3 Fs−1 7→ ψ(F)ψ(s)−1 ∈ LM (φ
−1(V)) .

This map is actually well-defined. Since s < kerεn, for all n ∈ V , we have s < ker(εm ◦ψ), for all
m ∈ φ−1(V), what means that ψ(s) ∈ Sφ−1(V ). In view of this, it is easy to see that the image is
independent of the representative. The map φ∗V is a Zn2 -graded unital R-algebra morphism, because
ψ is.

As the family φ∗V , V ∈ Open(N), commutes obviously with restrictions, the continuous base map
φ and the family of algebra morphisms φ∗V , V ∈ Open(N), define a Zn2 -morphism Φ :M→N . To
see that β(Φ) = φ∗N = ψ, it suffices to note that λN : LN (N) → ON (N) sends the fraction Fs−1 to
the section Fs−1 (and similarly for M), so that φ∗N and ψ coincide.

It remains to prove that β is injective. Let thus Φ = (φ,φ∗) and Ψ = (ψ,ψ∗) be two Zn2 -morphisms
fromM to N , such that φ∗N = ψ

∗
N . Since the pullbacks by a Zn2 -morphism commute with the base

projections, we get, for any m ∈ M ,

φ(m) ' kerεφ(m) = {F ∈ O(N) : ((εNF) ◦φ)(m) = 0} = {F ∈ O(N) : (εM (φ∗NF))(m) = 0} .

Hence, the continuous base maps φ and ψ coincide. Similarly, for any open V ⊂ N , each FV ∈
ON (V) reads uniquely FV = λV (Fs−1) = F |V (s |V )−1, with F ∈ ON (N) and s ∈ SV ⊂ ON (N), see
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Proposition 3.5. As the family of pullbacks φ∗ commutes with restrictions, we obtain

φ∗V (FV ) = (φ
∗
V F |V ) (φ∗V s |V )−1 = (φ∗NF)|φ−1(V ) (φ

∗
N s)|−1

φ−1(V )
.

Hence φ∗V = ψ
∗
V . �

The preceding theorem, which allows us to characterizeM-points HomZn2 Man(M,N) of a Zn2 -
manifold N by algebra morphisms, has some noteworthy corollaries.

Corollary 3.8. The covariant functor

F : Zn2Man→ Z
n
2UAlg

op ,

which is defined on objects by F (M) = OM (M) and on morphisms by F (Φ) = φ∗N , is fully faithful,
so that Zn2Man can be viewed as full subcategory of Zn2UAlg

op.

The statement regarding the full subcategory is based on the well-known fact that any fully faith-
ful functor is injective up to isomorphism on objects. This means that the existence of an isomor-
phism OM (M) ' ON (N) of Zn2 -graded unital R-algebras implies the existence of an isomorphism
M 'N of Zn2 -manifolds.

Corollary 3.9. LetM = (M,OM ) and N = (N,ON ) be Zn2 -manifolds. The Zn2 -manifoldsM and N
are diffeomorphic if and only if their Zn2 -commutative associative unital R-algebras OM (M) and
ON (N) of global Zn2 -functions are isomorphic.

Such Pursell-Shanks type results have been studied extensively by one of the authors of this
paper. Algebraic characterizations similar to Corollary 3.9 exist for instance for the Lie algebras of
first order differential operators, of differential operators, and symbols of differential operators on a
smooth manifold, for the super Lie algebras of vector fields and first order differential operators on
a smooth supermanifold, as well as for the Lie algebra of sections of an Atiyah algebroid, see [18],
[19], [20], [21].

Corollary 3.10. The Zn2 -manifold E = (∅,0) (resp., R0 |0 = ({pt},R)) is the initial (resp., terminal)
object of the category of Zn2 -manifolds.

Proof. For any Zn2 -manifoldM = (M,OM ), we have bijections

HomZn2 Man(E,M) ' HomZn2 UAlg(OM (M),0) ' {F 7→ 0}

and

HomZn2 Man(M,R0 |0) ' HomZn2 UAlg(R,OM (M)) ' {r 7→ r ·1} .

�

4. Finite products in the category of Zn2 -manifolds

4.1. Cartesian product of Zn2 -manifolds

LetM = (M,OM ) andN = (N,ON ) be two Zn2 -manifolds of dimension p|q and r |s , respectively.
The products U ×V , U ⊂ M and V ⊂ N open, form a basis B of the (second-countable, Hausdorff)
product topology of M ×N . Better, since the Zn2 -chart domains Ui in M (resp., Vj in N) are a basis
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of the topology of M (resp., of N), the products Ui ×Vj form a basis B of the product topology
of M × N . As Zn2 -chart domains are diffeomorphic to open subsets of some coordinate space Rn,
we identify the Ui and the Vj with the diffeomorphic Ui ⊂ R

p and Vj ⊂ R
r . Further, we denote the

coordinates of the charts with domains Ui (resp., Vj) by (xi,ξi) (resp., (yj,ηj)), or, in case we use
only two domains Ui (resp., Vj), we write also (x,ξ) and (x ′,ξ ′) (resp., (y,η) and (y′,η′)).

Definition 4.1. Let M = (M,OM ) and N = (N,ON ) be two Zn2 -manifolds of dimension p|q and
r |s , respectively. The product Zn2 -manifold M×N , of dimension p+ r |q+ s, is the locally Zn2 -
ringed space (M × N,OM×N ), where M × N is the product topological space and where the sheaf
OM×N is glued from the sheaves C∞Ui×Vj

(xi,yj)[[ξi,ηj]] associated to the basis B:

OM×N |Ui×Vj ' C∞Ui×Vj
(xi,yj)[[ξi,ηj]] . (4.1)

Recall that sheaves can be glued. More precisely, if (Ui)i is an open cover of a topological space
M , if Fi is a sheaf on Ui, and if ϕji : Fi |Ui∩Uj →Fj |Ui∩Uj is a sheaf isomorphism such that the usual
cocycle condition ϕk j ϕji = ϕki holds, then there is a unique sheaf F on M such that F |Ui ' Fi. In
the following, we set Ui j =Ui ∩Uj .

Let now C∞Ui×Vj
[[ξ,η]] be the standard sheaf of Zn2 -graded Zn2 -commutative associative unital

R-algebras of formal power series in (ξ,η) with coefficients in sections of the sheaf C∞Ui×Vj
. The

isomorphisms ϕij,i j between the appropriate restrictions of the sheaves of algebras C∞Ui×Vj
[[ξ,η]] on

the open cover (Ui ×Vj)i, j of M ×N are induced as follows. SinceM is a Zn2 -manifold, there are
Zn2 -isomorphisms

Φi = (φi,φ
∗
i ) : (Ui,OM |Ui ) → (Ui,C∞Ui

[[ξ]]) ,

which induce Zn2 -isomorphisms or coordinate transformations

Ψii = ΦiΦ
−1
i : (Uii,C∞Ui

|Uii [[ξ]]) → (Uii,C∞Ui
|Uii [[ξ

′]]) .

As we view Ui as both, an open subset of M and an open subset of Rp, we implicitly identify Ui

with its diffeomorphic image φi(Ui), so that φi = idUi . Hence, the coordinate transformations reduce
to the isomorphisms

ψ∗
ii = (φ

∗
i )
−1φ∗

i
(4.2)

of sheaves of Zn2 -commutative R-algebras:

ψ∗
ii : C∞Ui

|Uii [[ξ
′]] → C∞Ui

|Uii [[ξ]] . (4.3)

Similar coordinate transformations exist for N :

ψ∗
j j : C∞Vj |Vj j[[η

′]] → C∞Vj
|Vj j[[η]] . (4.4)

We denote the base coordinates in Ui (resp., Ui) by x (resp., x ′) and those in Vj (resp., Vj) by y

(resp., y′). The coordinate transformations (4.3), x = x(x ′,ξ ′), ξ = ξ(x ′,ξ ′), and (4.4), y = y(y′,η′),
η = η(y′,η′), implement coordinate transformations or isomorphisms of sheaves of Zn2 -commutative
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R-algebras

ϕij,i j = ψ
∗
ii ×ψ

∗
j j : C∞Ui×Vj

|Uii×Vj j[[ξ
′,η′]] → C∞Ui×Vj

|Uii×Vj j[[ξ,η]] .

In view of (4.2), the ϕij,i j satisfy the cocycle condition. We thus get a unique glued sheaf OM×N of
Zn2 -commutative R-algebras over M ×N which restricts on Ui ×Vj to

OM×N |Ui×Vj ' C∞Ui×Vj
[[ξ,η]] ,

i.e., we obtain a Zn2 -manifold, which we refer to as the productM×N ofM and N .

4.2. Fundamental isomorphisms

Theorem 4.2. Let Rp |q (resp., Rr |s) be the usual Zn2 -domain (Rp,C∞Rp [[ξ]]) (resp., (Rr,C∞Rr [[η]])),
and let Ω′ ⊂ Rp and Ω′′ ⊂ Rr be open. There is an isomorphism of topological algebras

C∞Rp (Ω′)[[ξ]] ⊗̂ C∞Rr (Ω
′′)[[η]] ' C∞Rp×Rr (Ω

′×Ω′′)[[ξ,η]] , (4.5)

where the completion is taken with respect to any locally convex topology on the algebraic tensor
product C∞Rp (Ω′)[[ξ]] ⊗C∞Rr (Ω

′′)[[η]].

Proof. Let R be a commutative von Neumann regular ring. For any families (Mα)α and (Nβ)β of
free R-modules, the natural R-linear map(∏

α

Mα

)
⊗R

(∏
β

Nβ

)
→

∏
αβ

(
Mα ⊗R Nβ

)
is injective, if and only if R is injective as a module over itself [17]. Since any field is von Neumann
regular, the regularity and injective module conditions are satisfied for R =R. Hence, the linear map(∏

α

C∞(Ω′)

)
⊗

(∏
β

C∞(Ω′′)

)
→

∏
αβ

(
C∞(Ω′) ⊗C∞(Ω′′)

)
is injective. Further, in view of [7, Corollary 17], the map

C∞(Ω′)[[ξ]] 3
∑
α∈A

fα(x)ξα 7→ ( fα)α∈A ∈
∏
α∈A

C∞(Ω′) (4.6)

is a TVS-isomorphism between the source and the target equipped with the standard topology and
the product topology of the standard topologies, respectively. In the sequence of canonical maps

C∞(Ω′)[[ξ]] ⊗C∞(Ω′′)[[η]] '

(∏
α∈A

C∞(Ω′)

)
⊗

©­«
∏
β∈B

C∞(Ω′′)ª®¬→
∏

α∈A , β∈B

(
C∞(Ω′) ⊗C∞(Ω′′)

)
→

∏
α∈A , β∈B

C∞(Ω′×Ω′′) ' C∞(Ω′×Ω′′)[[ξ,η]] , (4.7)

the first ' is a linear bijection, the first → is a linear injection, and the second ' is a TVS-
isomorphism for the topologies used in (4.6). In

C∞(Ω′) ⊗C∞(Ω′′) → C∞(Ω′)⊗̂C∞(Ω′′) ' C∞(Ω′×Ω′′) , (4.8)

the isomorphism ' is the well-known TVS-isomorphism [22] (the target is endowed with its stan-
dard topology and the source with the topology of the completion with respect to any (C∞(Ω′) is
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nuclear) locally convex topology on C∞(Ω′) ⊗C∞(C) – we will not specify the latter topology), and
the arrow → is the continuous linear inclusion (any TVS is a topological vector subspace (TVSS)
of its completion, see Proposition A.6). This→ induces the second→ in (4.7), which is the inclu-
sion of the source vector subspace into the target vector space. The source becomes a TVSS of the
target when endowed with the induced topology (the induced topology is coarser than the product
topology of the induced topologies). Finally, we equip the first space in (4.7) with the initial topol-
ogy with respect to the first→, so that the first space gets promoted to a TVSS of the second, see
Proposition A.4, and the first→ becomes the continuous linear inclusion. The composite

ı : C∞(Ω′)[[ξ]] ⊗C∞(Ω′′)[[η]] 3
∑
α

fα ξα ⊗
∑
β

gβ η
β 7→

∑
αβ

fα ⊗ gβ ξαηβ ∈ C∞(Ω′×Ω′′)[[ξ,η]]

of the maps of (4.7) is now the inclusion of a the source TVSS into the target TVS.

Note that, since the target is a LCTVS, see [7, Lemma 16], the source TVSS is also a LCTVS, see
Proposition A.9 (since C∞(Ω′)[[ξ]] is nuclear, see [7, Lemma 16], the completion of the source is
independent of the chosen locally convex topology). In view of Proposition A.8, the completion of
the source is a TVSS of the completion of the target, which, as the target is complete, see [7, Lemma
16], can be identified with the target due to Remark A.7. In other words, the continuous extension

ı̂ : C∞(Ω′)[[ξ]]⊗̂C∞(Ω′′)[[η]] → C∞(Ω′×Ω′′)[[ξ,η]] (4.9)

of the inclusion ı is an injective continuous linear map, see text above Proposition A.8. We will now
prove that this map is surjective.

Let

S =
∑
αβ

Fαβ ξαηβ ∈ C∞(Ω′×Ω′′)[[ξ,η]]

be a formal series in the target space. In view of (4.8), we have [22], for any (α,β) ∈ A ×B,

Fαβ = lim
N→+∞

N∑
j=0

f j
αβ ⊗ g

j
αβ ,

where f j
αβ ∈ C∞(Ω′) and g

j
αβ ∈ C∞(Ω′′), and where the limit is taken in C∞(Ω′×Ω′′). Recall that

A =N×|q
′ | ×Z

×|q′′ |
2 , and similarly for B. The productA×B is countable, since it is a finite product

of countable sets. Let I : A×B → N be an injective map valued in N. The map J : A×B → I,
with I = I(A ×B), is thus a 1:1 correspondence. We identify A×B with I via J. For any j ∈ N,
we set,

• for any α ∈ A and any i ∈ I,

C∞(Ω′) 3 φ j
αi =

{
0, if i ' (γ,δ) , (α,δ) ,

f j
αδ, if i ' (γ,δ) = (α,δ) ,

and,

• for any β ∈ B and any i ∈ I,

C∞(Ω′′) 3 ψ j
iβ =

{
0, if i ' (γ,δ) , (γ, β) ,
g
j
γβ, if i ' (γ,δ) = (γ, β) .
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Note that I is a finite set {0,1, . . . ,L}, L ∈ N, (resp., is N), if A ×B is finite (resp., if A ×B is
countably infinite). For all j ∈ N and all (α,β) ∈ A ×B, we get

M∑
i=0

φ
j
αi ⊗ψ

j
iβ = f j

αβ ⊗ g
j
αβ ,

when M ∈ I ∩ [J(α,β),+∞[. Indeed, if i ' (γ,δ) , (α,β), then, either γ , α and φ j
αi = 0, or δ , β

and ψ j
iβ = 0. However, if i ' (γ,δ) = (α,β), then φ

j
αi = f j

αβ and ψ j
iβ = g

j
αβ , so that the announced

result follows. Hence, for any j ∈ N and any (α,β) ∈ A ×B, we have

lim
M→+∞

M∑
i=0

φ
j
αi ⊗ψ

j
iβ = f j

αβ ⊗ g
j
αβ ,

where the sequence is constant for M ≥ J(α,β) and where the limit is computed in the topology of
C∞(Ω′×Ω′′). If a finite number of sequences of a TVS do converge, then their sum converges to
the sum of the limits. It follows that, for any (α,β) ∈ A ×B and any N ∈ N,

lim
M→+∞

N∑
j=0

M∑
i=0

φ
j
αi ⊗ψ

j
iβ =

N∑
j=0

f j
αβ ⊗ g

j
αβ ,

so that, for all (α,β) ∈ A ×B,

lim
N→+∞

lim
M→+∞

N∑
j=0

M∑
i=0

φ
j
αi ⊗ψ

j
iβ = lim

N→+∞

N∑
j=0

f j
αβ ⊗ g

j
αβ = Fαβ

in C∞(Ω′×Ω′′), and

lim
N→+∞

lim
M→+∞

©­«
N∑
j=0

M∑
i=0

φ
j
αi ⊗ψ

j
iβ

ª®¬(α,β)∈A×B =
(
Fαβ

)
(α,β)∈A×B (4.10)

in the product topology of
∏
αβC∞(Ω′×Ω′′), i.e., in the topology of the TVS C∞(Ω′×Ω′′)[[ξ,η]].

Therefore, the sequence

©­«
N∑
j=0

M∑
i=0

φ
j
αi ⊗ψ

j
iβ

ª®¬(α,β) =
N∑
j=0

M∑
i=0

(∑
α

φ
j
αi ξ

α ⊗
∑
β

ψ
j
iβ η

β

)
∈ C∞(Ω′)[[ξ]] ⊗C∞(Ω′′)[[η]]

is a Cauchy sequence in C∞(Ω′ ×Ω′′)[[ξ,η]], so a Cauchy sequence in the TVSS C∞(Ω′)[[ξ]] ⊗
C∞(Ω′′)[[η]], and also in the topological vector supspace C∞(Ω′)[[ξ]]⊗̂C∞(Ω′′)[[η]]. Since this
completion is sequentially complete, the Cauchy sequence considered converges in this space:

lim
N→+∞

lim
M→+∞

N∑
j=0

M∑
i=0

(∑
α

φ
j
αi ξ

α ⊗
∑
β

ψ
j
iβ η

β

)
∈ C∞(Ω′)[[ξ]]⊗̂C∞(Ω′′)[[η]] ,

where the limit is taken in the topology of C∞(Ω′)[[ξ]]⊗̂C∞(Ω′′)[[η]]. Since the inclusion ı̂, see
Equation (4.9), is sequentially continuous, we get

ı̂ lim
N→+∞

lim
M→+∞

N∑
j=0

M∑
i=0

(∑
α

φ
j
αi ξ

α ⊗
∑
β

ψ
j
iβ η

β

)
=
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lim
N→+∞

lim
M→+∞

ı̂

N∑
j=0

M∑
i=0

(∑
α

φ
j
αi ξ

α ⊗
∑
β

ψ
j
iβ η

β

)
=

lim
N→+∞

lim
M→+∞

∑
αβ

N∑
j=0

M∑
i=0

φ
j
αi ⊗ψ

j
iβ ξ

αηβ =
∑
αβ

Fαβ ξαηβ = S ,

in view of (4.10). This shows that the continuous linear inclusion

ı̂ : C∞(Ω′)[[ξ]]⊗̂C∞(Ω′′)[[η]] → C∞(Ω′×Ω′′)[[ξ,η]]

is bijective, so that the source TVSS of the target coincides with the target as TVS.

Since the completed tensor product of two nuclear Fréchet algebras is again a nuclear Fréchet
algebra [15, Lemma 1.2.13], the source and target are actually topological algebras. We leave it to
the reader to check that the preceding identification respects the multiplications. �

Remark 4.3. If p|q = p|0 and r |s = 0|s, it follows from Theorem 4.2 that

C∞(Ω)⊗̂RR[[ξ]] ' C∞(Ω)[[ξ]] ,

and, if p|q = 0|q and r |s = 0|s, we get

R[[ξ]]⊗̂RR[[η]] ' R[[ξ,η]] .

Conversely, the general isomorphism of Theorem 4.2 is a consequence of the preceding particular
cases and the fact that the category of complete nuclear spaces is a symmetric monoidal category
with respect to the completed tensor product [9].

Theorem 4.4. There is an isomorphism of sheaves of Zn2 -commutative R-algebras

OM×N ' (OM ⊗̂ ON )
−+

between the structure sheaf of a product Zn2 -manifold and the sheafification of the standard extension
of the B-presheaf

OM ⊗̂ ON : U ×V 7→ OM (U)⊗̂ ON (V) .

Proof. Recall thatB (resp.,B) is the basis of the product topology of M×N made of the rectangular
subsets U ×V , where U ⊂ M and V ⊂ N are open (resp., of the rectangular subsets Ui ×Vj , where
Ui ⊂ M and Vj ⊂ N are Zn2 -chart domains). Let

F (U ×V) := OM (U)⊗̂ ON (V) (4.11)

be the completed tensor product of the nuclear Zn2 -graded Fréchet algebras OM (U) and ON (V) (with
respect to any (reasonable) locally convex topology, e.g., the projective one). If U ′×V ′ ⊂U×V , the
restrictions ρUU′ : OM (U) → OM (U ′) and ρVV ′ : ON (V) → ON (V ′) of the Fréchet sheaves OM and
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ON are continuous linear maps. The continuous extension of the continuous linear map ρUU′ ⊗ ρ
V
V ′

is a continuous linear map [22]

ρUU′ ⊗̂ ρ
V
V ′ : OM (U)⊗̂ ON (V) → OM (U ′)⊗̂ ON (V ′) ,

which we denote by

ρU×VU′×V ′ : F (U ×V) → F (U ′×V ′) .

Since the ρUU′ and the ρVV ′ satisfy the standard presheaf conditions and the linear maps ρU×VU′×V ′ are
continuous, it is clear that the latter satisfy these conditions as well. Hence, the pair (F , ρ) is a
Set-valued B-presheaf.

This B-presheaf can be extended to a Set-valued presheaf (F , ρ). Indeed, set, for any open
Ω ⊂ M ×N ,

F (Ω) := {( fab)ab : fab ∈ F (Ua ×Vb),Ua ×Vb ⊂ Ω ,such that ρUa×Vb

Uaa×Vbb
( fab) = ρ

Ua×Vb
Uaa×Vbb

( fab)} ,
(4.12)

and consider, for any Ω′ ⊂ Ω, the map

ρΩ
Ω′ : F (Ω) → F (Ω′)

which sends any element of F (Ω) to the element of F (Ω′) that we obtain by suppressing the fab
for which Ua ×Vb is not a subset of Ω′. The ρΩ

Ω′ satisfy of course the standard presheaf conditions.
Further, the presheaf (F , ρ) extends the B-presheaf (F , ρ). Indeed, for Ω = U ×V , any f ∈ F (Ω)
provides a unique family fab = ρU×VUa×Vb

( f ) in F (Ω), thus defining a map [Ω : F (Ω) → F (Ω). If
[Ω( f ) = [Ω(g), then, in particular,

f = ρU×VU×V ( f ) = ρ
U×V
U×V (g) = g .

In fact [Ω is a 1:1 correspondence. Indeed, any family fab in F (Ω) contains f ∈ F (Ω), and fab =
ρU×VUa×Vb

( f ), so that [Ω( f ) = ( fab)ab. Hence,

[U×V : F (U ×V)
∼
−→ F (U ×V) . (4.13)

Moreover, if Ω′ =U ′×V ′ ⊂ Ω =U ×V , and if f ∈ F (U ×V), then

ρU×VU′×V ′([U×V ( f )) = [U′×V ′(ρ
U×V
U′×V ′( f )) ,

since both sides are made of the family of restrictions ρU×VUa×Vb
( f ), for all Ua ×Vb ⊂ U ′×V ′.

Let now Ui ×Vj ∈ B be a Cartesian product of Zn2 -chart domains, and let Ω ⊂ Ui ×Vj be any
open subset. Recall Definition (4.12). Since Ua ⊂ Ui and Vb ⊂ Vj are Zn2 -chart domains, we get in
view of (4.5) and of (4.1),

F (Ua ×Vb) = OM (Ua)⊗̂ ON (Vb) = C∞(Ua)[[ξi]]⊗̂C∞(Vb)[[ηj]]

' C∞(Ua ×Vb)[[ξi,ηj]] = OM×N (Ua ×Vb) . (4.14)

Due to the continuity and linearity of the restrictions ρU×VU′×V ′ of F and the restrictions PΩ
Ω′ of OM×N ,

the restrictions in (4.12) coincide with the corresponding restrictions P of the structure sheaf of
the product Zn2 -manifold, as both reduce to the same restrictions of classical functions. It follows
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from (4.12) and (4.14) that any family fab ∈ F (Ω) is made of Zn2 -functions fab ∈ OM×N (Ua ×Vb),
which are defined on the cover of Ω by all the Ua ×Vb ⊂ Ω, and whose P-restrictions coincide on
all intersections. Hence, any family fab ∈ F (Ω) can be glued in the sheaf OM×N and thus provides
a unique Zn2 -function f ∈ OM×N (Ω) such that PΩ

Ua×Vb
( f ) = fab. The resulting map bΩ : F (Ω) →

OM×N (Ω) is clearly injective. It is also surjective, since the restrictions fab := PΩ
Ua×Vb

( f ) of any

f ∈ OM×N (Ω) define a family fab ∈ F (Ω) whose image by bΩ is f . Therefore, if Ω ⊂ Ui ×Vj , we
have a 1:1 correspondence

bΩ : F (Ω) ∼−→ OM×N (Ω) . (4.15)

Moreover,

PΩ
Ω′ ◦ bΩ = bΩ′ ◦ ρ

Ω
Ω′ . (4.16)

Indeed, if ( fab)ab ∈ F (Ω), the LHS map sends this family fab, Ua ×Vb ⊂ Ω, first to the unique
f ∈ OM×N (Ω) such that PΩ

Ua×Vb
( f ) = fab, and then to the restriction PΩ

Ω′( f ). The RHS map sends
this family first to the subfamily fαβ , Uα ×Vβ ⊂ Ω′, then to the unique g ∈ OM×N (Ω′) such that
PΩ′
Uα×Vβ

(g) = fαβ . It is clear that g = PΩ
Ω′( f ). Hence,

b : F |Ui×Vj

∼
−→ OM×N |Ui×Vj

is a presheaf isomorphism, so that F |Ui×Vj is a sheaf.

Remark 4.5. Let us recall and emphasize that the superscript + refers to sheafification.

We denote the sheafification of the presheaf F by ϕ : F → F
+

(ρ+ refers to the restrictions
of F

+
). Recall that any presheaf and its sheafification have the same stalks, i.e., that the maps

ϕm,n : Fm,n
∼
−→ F

+

m,n ,

(m,n) ∈ M × N , induced on stalks by the presheaf morphism ϕ are isomorphisms. Therefore, the
sheaf morphism ϕ|Ui×Vj : F |Ui×Vj →F

+
|Ui×Vj is a sheaf isomorphism. This means that

ϕΩ : F (Ω) ∼−→ F
+
(Ω)

is an isomorphism, or, here, a 1:1 correspondence, for any open Ω ⊂ Ui ×Vj , so that

ιΩ := bΩ ◦ϕ
−1
Ω : F

+
(Ω) ∼−→ OM×N (Ω)

is also 1:1. In particular, for any Ui ×Vj ∈ B, we have

ιUi×Vj : F
+
(Ui ×Vj)

∼
−→ OM×N (Ui ×Vj) . (4.17)

Since ϕ commutes with restrictions, we get, for any Ui ×Vj ⊂ Ui ×Uj ,

ρ
Ui×Vj

Ui×Vj
◦ϕ−1

Ui×Uj
= ϕ−1

Ui×Vj
◦ ρ+

Ui×Uj

Ui×Vj
,

so that, when taking also (4.16) into account, we obtain

PUi×Vj

Ui×Vj
◦ ιUi×Vj = ιUi×Vj ◦ ρ

+Ui×Uj

Ui×Vj
. (4.18)

Due to (4.17) and (4.18), the map ι is a B-sheaf isomorphism between F
+

and OM×N viewed as
B-sheaves. Since a B-sheaf morphism extends to a unique sheaf morphism, there exists a sheaf
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isomorphism

I : F
+ ∼
−→ OM×N .

The morphism I is actually an isomorphism of sheaves of Zn2 -commutativeR-algebras. It suffices
to show that ı is an isomorphism of B-sheaves of such algebras, i.e., that ıUi×Vj is a morphism of
Zn2 -graded unital R-algebras. We will prove that ıΩ, Ω ⊂ Ui ×Vj , is an algebra morphism, leaving
the remaining checks to the reader. The space F (U ×V) is a nuclear Fréchet algebra, because it is
the completed tensor product of nuclear Fréchet algebras [15, Lemma 1.2.13]. Its multiplication •F
is continuous. It is given by

∞∑
i=0

fi ⊗ gi •F
∞∑
j=0

hj ⊗ k j =

∞∑
i=0

∞∑
j=0
(−1)〈gi ,h j 〉( fihj) ⊗ (gik j) .

The multiplication •F induces a multiplication •
F

on F (Ω), Ω ⊂ M ×N , which is defined by

( fab)ab •F (gab)ab = ( fab •F gab)ab .

Addition and scalar multiplication on F (Ω) are defined similarly. As F is thus a presheaf of alge-
bras, its sheafification F

+
is a sheaf of algebras and the ϕΩ : F (Ω) → F

+
(Ω) are algebra mor-

phisms, see Subsection A.4 of the Appendix. For Ω ⊂ Ui ×Vj , this morphism ϕΩ is an algebra
isomorphism and so is ϕ−1

Ω . The map bΩ : F (Ω) → OM×N (Ω) associates to each ( fab)ab the f such
that PΩ

Ua×Vb
( f ) = fab. Hence, the image by bΩ of a product ( fab)ab •F (gab)ab is the function h

such that PΩ
Ua×Vb

(h) = fab •F gab. On the other hand, the product f · g in OM×N (Ω) of the images
by bΩ satisfies

PΩ
Ua×Vb

( f · g) = PΩ
Ua×Vb

( f ) ·PΩ
Ua×Vb

(g) = fab · gab = fab •F gab ,

see Theorem 4.2. It follows that h = f · g. The map bΩ is in fact an algebra morphism. Finally
ıΩ = bΩ ◦ϕ

−1
Ω is a morphism of algebras, as needed. �

Remark 4.6. In view of (4.15), (4.13), and (4.11) (as well as in view of (4.1) and (4.5) ), it is clear
that, for any Ui ×Vj ∈ B, we have

OM×N (Ui ×Vj) = OM (Ui)⊗̂ ON (Vj) ,

but we were unable to convince ourselves that the same holds true for any U ×V ∈ B.

Indeed, it is well-known that tensor products of sheaves (and in particular completed tensor
products of function sheaves) require a sheafification (see [32, Section 3]). However, section spaces
of the sheafification of a presheaf do not agree with the corresponding section spaces of the presheaf.

On the other hand, attempts to get rid of the problem in Remark 4.6 using the reconstruction
results from Section 3 below, are not really promising.

Further, although OM×N and F are two presheaves that extend the B-presheaf OM ⊗̂ ON , they
do not necessarily coincide: B-sheaves have unique extensions, but B-presheaves do not. Indeed,
to show that OM×N ' F , we would have to decompose sections of OM×N into sections of the
B-presheaf and then reglue them in F , which is impossible, since F is only a presheaf.
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There is actually a condition for the presheaf F that extends the B-presheaf F = OM ⊗̂ ON to
be a sheaf.

The explanation of this result needs some preparation.

For any open U×V ⊂ M×N , we set OM
M×N (U×V) := OM (U). Similarly, for any open U ′×V ′ ⊂

U ×V , we define

rU×VU′×V ′ : OM
M×N (U ×V) → OM

M×N (U
′×V ′)

to be ρUU′ : OM (U) → OM (U ′). It is straightforwardly checked that OM
M×N is a nuclear Fréchet

sheaf of algebras, hence, in particular a nuclear locally convex topological sheaf of algebras. The
assignment

F : U ×V 7→ OM
M×N (U ×V) ⊗̂ ON

M×N (U ×V) = OM (U) ⊗̂ ON (V)

defines a presheaf F on M ×N . Applying [25, Equation (2.2)], we would get

OM×N (U ×V) ' F
+
(U ×V) ' OM (U) ⊗̂ ON (V) , (4.19)

for any open U ×V ⊂ M × N , if OM
M×N or ON

M×N determined a topologically dual weakly flabby
precosheaf.

Just as a presheaf G on a topological space T with values in a concrete category C is a
contravariant functor G : Open(T)op → C, a precosheaf H on T with values in C is a covari-
ant functor H : Open(T) → C. The point is that, for open subsets V ⊂ U, there is a C-morphism
eVU :H(V) → H(U), which we refer to as extension morphism. The relevant example for our pur-
pose is the topologically dual precosheaf V ′ of vector spaces of a topological sheaf V of vector
spaces on a Hausdorff space T . This precosheaf is defined, for any open U ⊂ T , by

V ′(U) = HomTVS(V(U),R) ,

and, for any open subsets V ⊂ U, by

eVU =
tRU

V :V ′(V) 3 ` 7→ [(tRU
V )` :V(U) 3 v 7→ `(RU

V v) ∈ R] ∈ V ′(U) ,

where RU
V denotes the restriction inV. The precosheafV ′ is weakly flabby if, for any open U ⊂ T ,

the morphism eUT :V ′(U) →V ′(T) is surjective.

We should prove that the topologically dual precosheaf ofV =OM
M×N is weakly flabby, i.e., that,

for any open U ⊂ M and for any L ∈ HomTVS(OM (M),R), there exists ` ∈ HomTVS(OM (U),R), such
that tρMU ` = L. It turns out that this condition is not satisfied, so that we cannot conclude that (4.19)
holds. Indeed, assume that the condition is satisfied, so that it is in particular valid forM = (R,C∞R ).
Choose now any x ∈ R and any open interval I ⊂ R that does not contain x. The evaluation map

εx : C∞R (R) 3 f 7→ f (x) ∈ R

is linear. It is also continuous, since there exists a compact C ⊂ R that contains x and since, for any
f ∈C∞R (R), we have | f (x)| ≤ supC | f |. In view of our assumption, there exists ` ∈ HomTVS(C∞R (I),R),
such that, for any f ∈ C∞R (R), we have `( f |I ) = f (x). If we take now two functions f , g ∈ C∞R (R)
that coincide in I and have different values at x, we get the contradiction

f (x) = `( f |I ) = `(g |I ) = g(x) .
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4.3. Categorical products of Zn2 -manifolds

We recommend to first read Subsections A.4 and A.5 of the Appendix.

Lemma 4.7. LetM1,M2 ∈ Z
n
2Man. The presheaf F considered in Theorem 4.4 is an object of the

category PSh(M1×M2,LCTAlg) of presheaves of locally convex topological algebras over M1×M2.

Proof. In the proof of Theorem 4.4 we showed that F ∈ PSh(M1×M2,Alg) for the obvious restric-
tions and algebra operations.

Recall that, for any open Ω ⊂ M1×M2, the algebra F (Ω) is given by

F (Ω) :=
{
( fab)ab : fab ∈ F (Ua ×Vb),Ua ×Vb ⊂ Ω ,such that ρUa×Vb

Uaa×Vbb
( fab) = ρ

Ua×Vb
Uaa×Vbb

( fab)
}

and is thus a subalgebra of∏
Ua×Vb ⊂Ω

F (Ua ×Vb) =
∏

Ua×Vb ⊂Ω
OM1(Ua) ⊗̂ OM2(Vb) .

We equip F (Ω) with the topology induced by the product of the topologies of the locally convex
topological algebras (LCTA-s) OM1(Ua) ⊗̂ OM2(Vb). Since a product of LCTVS-s and a subspace of
a LCTVS are themselves LCTVS-s, the algebra F (Ω) is a LCTVS. Its multiplication

ab)ab •F (gab)ab = ( fab •F gab)ab

is continuous, since the multiplication •F is, see Proof of Theorem 4.4 and Lemma A.12. Hence,
the space F (Ω) is a LCTA.

A restriction ρΩ
Ω′ (Ω′ ⊂ Ω) – it sends any family ( fab)ab of F (Ω) indexed by the Ua ×Vb ⊂ Ω

to the family ( fab)ab of F (Ω′) indexed by the Ua ×Vb ⊂ Ω′ – is known to be an algebra morphism.
It is continuous, since it is continuous as a map

ρΩ
Ω′ :

∏
Ua×Vb ⊂Ω

F (Ua ×Vb) →
∏

Ua×Vb ⊂Ω′
F (Ua ×Vb) ,

in view of the definition of the product topology. �

Theorem 4.8. The category Zn2Man has all finite products.

Proof. Since Zn2Man has a terminal object (see Corollary 3.10), it suffices to prove that it has
binary products. LetM1,M2 ∈ Z

n
2Man. We will show that the product Zn2 -manifoldM1 ×M2 (see

Definition 4.1) is the categorical binary product ofM1 andM2.

We first define Zn2 -morphisms

Πi = (πi,π
∗
i ) :M1×M2→Mi, i ∈ {1,2} .

The base maps πi : M1 ×M2 → Mi are the canonical smooth projections. In the following, we
consider the case i = 1 and use the notation introduced above.
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The maps

TU : OM1(U) 3 f 7→ f ⊗ 1 ∈ (π1,∗F )(U) ,

U ∈ Open(M1), define a morphism T : OM1 → π1,∗F in PSh(M1,LCTAlg). Indeed, we have
OM1, π1,∗F ∈ PSh(M1,LCTAlg), see [7, Theorem 14] and Proof of Proposition A.19. It is easy to
see that the maps TU commute with restrictions and are algebra morphisms. To show that TU is
continuous, it suffices to check that the linear map

TU : OM1(U) 3 f 7→ f ⊗ 1 ∈ OM1(U) ⊗ OM2(M2) (4.20)

is continuous for the projective tensor topology on the target. We apply Theorem A.10 and Propo-
sition A.11. Let pC ,D ⊗ pK ,∆ be any of the seminorms that induce the projective tensor topology.
Recall that C ⊂ U and K ⊂ M2 are compact subsets, and that D and ∆ are differential operators act-
ing on OM1(U) and OM2(M2), respectively. We must prove that there is a finite number of seminorms
pCk ,Dk

on the source and a constant C > 0, such that

pC ,D( f ) · pK ,∆(1) ≤ C max
k

pCk ,Dk
( f ) ,

for any f ∈ OM1(U). It suffices to use a single source seminorm pCk ,Dk
, namely pC ,D . Indeed, if

C = pK ,∆(1) = 0, the previous condition is satisfied with C = 1, and if C > 0, it is satisfied with
C = C.

It follows from Proposition A.15 that T+ : O+M1
→ (π1,∗F )

+ is a morphism in Sh(M1,LCTAlg).

Moreover, in view of Proposition A.19, there is an Sh(M1,LCTAlg)-morphism ι : (π1,∗F )
+ →

π1,∗F
+

. The composite ι◦T+ : O+M1
→ π1,∗F

+
is a morphism in Sh(M1,LCTAlg). Proposition A.15

and Theorem 4.4 allow us to interpret it as a morphism

π∗1 = ι◦T+ : OM1 → π1,∗OM1×M2 (4.21)

in Sh(M1,Alg). The map π∗1 is actually a morphism of sheaves of Zn2 -commutative associative unital
algebras, so that the map Π1 = (π1,π

∗
1) :M1×M2→M1 is a morphism in Zn2Man (the results of the

appendix we use in this proof extend obviously to the graded unital setting: when speaking in the
rest of the proof about algebras, we actually mean Zn2 -commutative associative unital algebras).

It remains to check the universality of our construction. Let N ∈ Zn2Man and let Φi = (φi,φ
∗
i ) :

N →Mi be morphisms in Zn2Man. We will prove that there exists a unique Zn2Man-morphism Ψ =

(ψ,ψ∗) :N →M1×M2, such that Πi ◦Ψ = Φi, for both i.

We set ψ = (φ1,φ2) : N → M1 ×M2 . As for ψ∗, observe that, for any open Ui ⊂ Mi, the map
φ∗i,Ui

: OMi (Ui) → ON (φ
−1
i (Ui)) is a continuous algebra (Zn2 -graded unital algebra) morphism, see

[7, Theorem 19]. Denote now by V = V1∩V2 the open subset

V = V1∩V2 = φ
−1
1 (U1 )∩φ

−1
2 (U2) = ψ

−1(U1×U2) ⊂ N ,

and denote by mV = − · − the multiplication of ON (V). In view of [7, Theorem 14] and Proposi-
tions A.17 and A.18, the map

pU1×U2 = m̂V ◦ (ρ
V1
V ⊗̂ ρ

V2
V ) ◦ (φ

∗
1,U1
⊗̂ φ∗2,U2

) : OM1(U1)⊗̂ OM2(U2) → ON (V) ,
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where ρV1
V and ρV2

V are restrictions in ON , is a continuous algebra morphism between nuclear Fréchet
algebras. The maps

pU1×U2 : F (U1×U2) 3

∞∑
j=0

fj ⊗ gj 7→
∞∑
j=0

ρV1
V φ
∗
1,U1

fj · ρ
V2
V φ
∗
2,U2

gj ∈ (ψ∗ON )(U1×U2) (4.22)

define a morphism of B-presheaves of locally convex topological algebras. The latter extends to a
morphism p : F → ψ∗ON of presheaves of locally convex topological algebras over M1×M2 .

In view of Propositions A.15 and A.19, there are morphisms

p
+ : F

+
→ (ψ∗ON )

+ and ι : (ψ∗ON )
+→ ψ∗O

+
N

in Sh(M1×M2,LCTAlg). As above, we can view their composite as a morphism

ψ∗ = ι◦p+ : OM1×M2 → ψ∗ON (4.23)

of sheaves of algebras, so that Ψ = (ψ,ψ∗) :N →M1×M2 is a morphism in Zn2Man.

To prove that Πi ◦Ψ = Φi, it suffices to show that

ψ∗M1×M2
◦ π∗i,Mi

= β(Πi ◦Ψ) = β(Φi) = φ
∗
i,Mi

,

see Theorem 3.7. The latter is a straightforward consequence of Equations (4.20), (4.21), (4.22),
(4.23), (A.3), and (A.5).

Let now X = (χ, χ∗) :N →M1×M2 be another Zn2Man-morphism that satisfies Πi ◦X = Φi. As
the category of smooth manifolds has finite products, we get χ =ψ. We will check that β(X)= β(Ψ),
i.e., that, for all σ ∈ F

+
(M1×M2), we have

χ∗M1×M2
σ = ψ∗M1×M2

σ ∈ ON (N) .

It suffices to show that these sections coincide in a neighborhood of an arbitrary point n0 ∈ N . We
use the compact notation m ∈ M instead of (m1,m2) ∈ M1×M2. Recall that

σ = ([s]m)m∈M ,

where s ∈ F (U) (U =U1×U2 3 m) reads s =
∑∞

j=0 fj ⊗ gj ( fj ∈ OM1(U1), gj ∈ OM2(U2)).

In view of (4.22), (4.23), (A.3), and (A.5),

ψ∗M1×M2
σ = ([

∞∑
j=0

ρV1
V φ
∗
1,U1

fj · ρ
V2
V φ
∗
2,U2

gj]n)n∈N , (4.24)

where we take the germ at n of the section induced by the representative s of the germ at ψ(n) ∈ M .
Let m0 = ψ(n0) ∈ M . Since s is constant in a neighborhood U0 =U1,0×U2,0 of m0, the representative
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in the RHS of the preceding equation is constant in the neighborhood

V0 = V1,0∩V2,0 = φ
−1
1 (U1,0)∩φ

−1
2 (U2,0) = ψ

−1(U0)

of n0 . Hence,

ρNV0
ψ∗M1×M2

σ =

∞∑
j=0

ρ
V1,0
V0

φ∗1,U1,0
fj · ρ

V2,0
V0

φ∗2,U2,0
gj ∈ ON (V0) .

On the other hand, since Πi ◦ X = Φi, we have, for any open U1 ⊂ M1 and any f ∈ OM1(U1),

χ∗U1×M2
([ f ⊗ 1]m)m∈U1×M2 = φ

∗
1,U1

f ,

due to (4.20), (4.21), (A.3), and (A.5). For any open U2 ⊂ M2, we get

χ∗U ([ f ⊗ 1]m)m∈U = ρψ
−1(U1×M2)

ψ−1(U)
χ∗U1×M2

([ f ⊗ 1]m)m∈U1×M2 = ρ
V1
V φ
∗
1,U1

f . (4.25)

An analogous result holds for i = 2. Observe now that

σ =
©­«
[ ∞∑
j=0

fj ⊗ gj

]
m

ª®¬m∈M = ©­«πmU lim
N

N∑
j=0

fj ⊗ gj
ª®¬m∈M

=
©­«lim

N

N∑
j=0
[ fj ⊗ gj]m

ª®¬m∈M =
∞∑
j=0

(
[ fj ⊗ gj]m

)
m∈M , (4.26)

see Proof of Proposition A.15. As the pullbacks χ∗ and the restriction ρNV0
are continuous algebra

morphisms, we get

ρNV0
χ∗M1×M2

σ =

∞∑
j=0

ρ
ψ−1(M)

ψ−1(U0)
χ∗M ([ fj ⊗ gj]m)m∈M =

∞∑
j=0

χ∗U0
([ fj ⊗ 1]m)m∈U0 · χ

∗
U0
([1⊗ gj]m)m∈U0 =

∞∑
j=0

ρ
V1,0
V0

φ∗1,U1,0
fj · ρ

V2,0
V0

φ∗2,U2,0
gj ,

due to (4.25). �

4.4. Products of Zn2 -morphisms

We use again abbreviations of the type n = (n1,n2) ∈ N = N1 ×N2 (which we introduced in the
proof of Theorem 4.8).

Proposition 4.9. Let Ψi :Mi →Ni, i ∈ {1,2}, be a Zn2 -morphism with base map ψi and pullback
sheaf morphism ψ∗i . Due to the universality of the product of Zn2 -manifolds, there is a canonical
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Zn2 -morphism

Ψ = Ψ1×Ψ2 :M1×M2→N1×N2 .

Its base map is ψ = ψ1×ψ2 and its pullback sheaf morphism ψ∗ = (ψ1×ψ2)
∗ is given, for each open

subset Ω ⊂ N1×N2, by

ψ∗Ω =
©­«

∏
m∈ψ−1(Ω)

(ψ∗1 ⊗̂ψ
∗
2)ψ(m)

ª®¬◦ (pψ(m))m∈ψ−1(Ω) .

The first map in the RHS is the product of the morphisms between stalks induced by the morphism

ψ∗1 ⊗̂ψ
∗
2 : F N → ψ∗F M

(of presheaves of locally convex topological algebras), where F N is the presheaf defined by
ON1 ⊗̂ ON2 , and similarly for F M . The second map in the RHS is the tuple of morphisms

pψ(m) :
∏
n∈Ω
F N ,n→F N ,ψ(m) .

To understand this claim, recall that

ψ∗Ω : ON (Ω) ' F
+

N (Ω) ⊂
∏
n∈Ω
F N ,n→OM (ψ

−1(Ω)) ' F
+

M (ψ
−1(Ω)) ⊂

∏
m∈ψ−1(Ω)

F M ,m .

Note now that

(pψ(m))m∈ψ−1(Ω) : ON (Ω) →
∏

m∈ψ−1(Ω)

F N ,ψ(m)

and that ∏
m∈ψ−1(Ω)

(ψ∗1 ⊗̂ψ
∗
2)ψ(m) :

∏
m∈ψ−1(Ω)

F N ,ψ(m)→
∏

m∈ψ−1(Ω)

F M ,m ,

so that the composite of these maps may coincide with ψ∗Ω.

Proof. For i ∈ {1, 2}, we denote by ΠS
i (resp., ΠT

i ) the Zn2 -morphism ΠS
i :M1×M2→Mi (resp.,

ΠT
i :N1 ×N2→Ni). The composite Φi = Ψi ◦ΠS

i is a Zn2 -morphism Φi :M1 ×M2→Ni. In view
of the universality of the productN1×N2, there is a unique Zn2 -morphism Ψ :M1×M2→N1×N2,
such that ΠT

i ◦Ψ = Φi. We denote this morphism Ψ by Ψ1×Ψ2 and refer to it as the product of the
Zn2 -morphisms Ψi. We showed in the proof of Theorem 4.8 that the base map of Ψ is

ψ = (ψ1 ◦ π
S
1 ,ψ2 ◦ π

S
2 ) = ψ1×ψ2 .

We investigate now the pullback morphisms ψ∗. Let Ω ⊂ N be open, so that ψ∗Ω : ON (Ω) →
OM (ψ

−1(Ω)), and let σ ∈ ON (Ω) ' F
+

N (Ω). Recall once again that σ = ([s]n)n∈Ω, where s ∈ FN (U)
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(U =U1×U2 3 n) reads

s =
∞∑
j=0

fj ⊗ gj ( fj ∈ ON1(U1),gj ∈ ON2(U2)) .

It follows from Equation (4.24) that

ψ∗Ωσ =
©­«
[ ∞∑
j=0

ρV1
V (π

S
1 )
∗
W1
ψ∗1,U1

fj · ρ
V2
V (π

S
2 )
∗
W2
ψ∗2,U2

gj

]
m

ª®¬m∈ψ−1(Ω)

, (4.27)

where

V = V1∩V2, Vi = (π
S
i )
−1(Wi), and Wi = ψ

−1
i (Ui) (obviously V =W1×W2) .

We interpret ψ∗1,U1
fj ∈ OM1(W1) as(

[ψ∗1,U1
fj]m1

)
m1∈W1

∈ O+M1
(W1) ,

so that

ρV1
V (π

S
1 )
∗
W1
ψ∗1,U1

fj =
(
[ψ∗1,U1

fj ⊗ 1]µ
)
µ∈V ,

due to Equations (4.20) and (4.21), as well as to the observation that m1 ∈ W1 is equivalent to
m1 = π

S
1 (m) (m ∈ V1). A similar result holds for the second factor in the RHS of (4.27), so that, in

view of (4.26), we obtain

ψ∗Ωσ =
©­«
[ ∞∑
j=0
([ψ∗1,U1

fj ⊗ψ∗2,U2
gj]µ)µ∈V

]
m

ª®¬m∈ψ−1(Ω)

=
©­«
[
([ψ∗1,U1

⊗̂ψ∗2,U2

∞∑
j=0

fj ⊗ gj]µ)µ∈V

]
m

ª®¬m∈ψ−1(Ω)

. (4.28)

This image is a family (indexed by m) of elements of F
+

M ,m ' F M ,m. The isomorphism between
a stalk of a presheaf and the corresponding stalk of its sheafification is described in the proof of
Lemma 6.17.2 of the Stacks Project. The description shows that

ψ∗Ωσ =
©­«
[
ψ∗1,U1

⊗̂ψ∗2,U2

∞∑
j=0

fj ⊗ gj

]
m

ª®¬m∈ψ−1(Ω)

=
©­«

∏
m∈ψ−1(Ω)

(ψ∗1 ⊗̂ψ
∗
2)ψ(m)

ª®¬
(
(pψ(m))m∈ψ−1(Ω) σ

)
.

�

A. Appendices

We prove and recall results on topological vector spaces and on topological algebras.
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A.1. Topological vector subspaces

Definition A.1. A topological vector subspace S of a TVS V (TVSS for short) is a subset S ⊂ V
which is a TVS for the linear operations and the topology of V .

Proposition A.2. A subset S ⊂ V of a TVS V is a TVSS of V if and only if S is a linear subspace of
V and is endowed with the topology induced by the topology of V.

Proof. The restrictions to S of the continuous addition and scalar multiplication in V are continuous
in the topology induced on S by V . �

Note also that, if V is a TVS, and if S ⊂ V is a TVSS, then S is a TVS and the inclusion ı : S 3
s 7→ s ∈ V is an injective continuous linear map. Conversely, if S ⊂ V is a TVS and the inclusion ı is
an injective continuous linear map, then the linear structure on S ⊂ V is the same as in V , but S can
have a topology that is finer than the induced one, so that S is not necessarily a TVSS.

Proposition A.3. Let ı : V→W be an injective linear map between TVS-s. When equipped with the
induced topology, the linear subspace ı(V) is a TVSS of W. The bijective linear map ı̃ : V → ı(V)
is a TVS-isomorphism, i.e., a linear homeomorphism, if and only if the topology of V is the initial
topology of ı : V →W. In this case, the space V can be viewed as a TVSS V ' ı(V) of W.

Proof. It suffices to prove the second claim. If ı̃ is an isomorphism, then the topology T(V) of V is
given by

T(V) = {ı̃−1(ı(V)∩UW ) = ı
−1(ı(V)∩UW ) = ı

−1(ı(V))∩ ı−1(UW ) = ı
−1(UW ) : UW ∈ T (W)} ,

hence, it is the initial topology of ı : V →W . Conversely, if T(V) is the initial topology of ı, the
maps ı̃ and ı̃−1 are continuous. Indeed, as just explained, we have ı̃−1(ı(V)∩UW ) = ı

−1(UW ) ∈ T (V),
so that ı̃ is continuous (but it would still be continuous for a finer topology on V). For ı̃−1 we have
ı̃(ı−1(UW )) = ı(V)∩UW ∈ T (ı(V)). �

Proposition A.4. Let ı : V→W be an injective linear map from a vector space V to a TVS W. When
equipped with the initial topology of ı, the linear space V is a TVS and can be viewed as a TVSS of
W.

Proof. The linear operations on V are continuous when V has the initial topology. Indeed, denote
by +V (resp., +W ) the addition in V (resp., W), and let ı−1(UW ), UW ∈ T (W), be an arbitrary open
subset in T(V). Then,

(+V )
−1(ı−1(UW )) = {(v,v

′) ∈ V ×V : ı(v)+W ı(v′) ∈ UW } =

{(v,v′) ∈ V ×V : (ı(v),ı(v′)) ∈ (+W )−1(UW )} = (ı× ı)
−1((+W )

−1(UW ))

is open in V ×V , since ı and +W are continuous. The case of the scalar multiplication is similar. The
second claim follows now from Proposition A.3. �

Remark A.5. When passing above from topological vector subspace structures on included subsets
to topological vector subspace structures on injected subsets, we replaced the induced topology by
the initial topology. Of course, if the injection is the inclusion, the initial topology with respect to it
coincides with the induced topology.
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A.2. Completions of topological vector spaces

We recall now well-known properties of the completion of a TVS [29].

For any TVS V , there is a complete TVS V̂ , and an injective linear map ı : V → V̂ , such that the
linear subspace ı(V) ⊂ V̂ is dense in V̂ . Moreover, when endowed with the induced topology, the
image ı(V) ⊂ V̂ becomes a TVSS of V̂ , and the map ı̃ : V → ı(V) is promoted to a linear homeomor-
phism, or, equivalently, to a TVS-isomorphism. It follows from Proposition A.3 that the topology of
V is the initial topology of ı : V → V̂ , and that V ' ı(V) is a TVSS of V̂ . In short, the complete TVS
V̂ , which we refer to as the completion of the TVS V , contains V as a dense TVSS:

Proposition A.6. The completion V̂ of V contains V as a dense subset, and it induces on V the
original topology and original linear structure.

Remark A.7. If V is already a complete TVS, then ı : V → V̂ is a TVS-isomorphism.

Further, let S ⊂ V be a TVSS of V and let ı : S→ V be the injective continuous linear inclusion.
The continuous extension of ı, which we denote by ı̂ : Ŝ → V̂ , is an injective continuous linear
map. If ı̂(Ŝ) carries the induced topology, the map ˜̂ı : Ŝ→ ı̂(Ŝ) is a TVS-isomorphism. In view of
Proposition A.3 this means that the topology of Ŝ is the initial topology of ı̂ : Ŝ→ V̂ , and that Ŝ ' ı̂(Ŝ)
is a TVSS of V̂ . In short:

Proposition A.8. The completion of a TVSS S ⊂ V is a TVSS Ŝ ⊂ V̂ of the completion.

A.3. Locally convex spaces

Proposition A.9. The initial topology of a linear map ` : V→W from a vector space V to a LCTVS
W endows V with a LCTVS structure. In particular, the induced topology on a vector subspace S ⊂W
of a LCTVS endows S with a LCTVS structure.

Proof. The topology of W has a convex basis B. As the preimage of a convex set by a linear
map is convex, the family `−1(B) is a convex basis of the initial topology. In view of the proof
of Proposition A.4, the initial topology endows V with a LCTVS structure. The second claim is a
special case of the first one. �

We close this subsection recalling two results.

Theorem A.10. Let V and W be two LCTVS-s and let (pi)i∈I and (qj)j∈J be two families of semi-
norms that induce the topologies of V and W, respectively. The projective tensor topology π on
V ⊗W is induced by (pi ⊗ qj)i j . Moreover, for any t ∈ V ⊗W, we have

(pi ⊗ qj)(t) = inf

{
N∑
k=1

pi(vk)qj(wk) : t =
N∑
k=1

vk ⊗wk, vk ∈ V, wk ∈W, N ∈ N

}
,

and, for any v ∈ V and w ∈W, we have

(pi ⊗ qj)(v ⊗w) = pi(v)qj(w) .

Proposition A.11. Let V and W be two LCTVS-s and let (pi)i∈I and (qj)j∈J be two families of semi-
norms that induce the topologies of V and W, respectively. A linear map ` : V →W is continuous if
and only if, for any j ∈ J, there exist i1, . . . ,iN ∈ I and C > 0, such that, for all v ∈ V, one has

qj(`(v)) ≤ C max
k

pik (v) .
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A.4. Presheaves of topological algebras and sheafification

In the following, we need two lemmas.

Unless otherwise stated, all cartesian products
∏
αTα of topological spaces Tα are endowed

with the product topology, i.e., the weakest topology for which all projections pβ :
∏
αTα→ Tβ are

continuous.

Lemma A.12. Let (T i
α)α (i ∈ {1,2,3}) be families of topological spaces, and let (mα)α be a family

mα : T1
α ×T2

α→ T3
α of continuous maps. Then the map

m :
∏
α

T1
α ×

∏
α

T2
α 3 ((τα)α,(tα)α) 7→ (mα(τα,tα))α ∈

∏
α

T3
α

is continuous.

Proof. Since the cartesian product
∏
αTα of topological spaces Tα equipped with the product

topology, is the product in the category of topological spaces, it follows from the universal property
that a map f : T →

∏
αTα from a topological space to a product space is continuous if and only if

all the pβ ◦ f : T → Tβ are continuous. However, the map p3
β ◦m : ((τα)α,(tα)α) 7→ mβ(τβ,tβ) is the

composite mβ ◦ (p1
β × p2

β), which is of course continuous. �

Lemma A.13. Let V be a vector space, let (Vα)α be a family of LCTVS, let `α : Vα→ V be a family
of linear maps, and let V be equipped with the finest locally convex vector space topology, for which
all the `α are continuous (V is then a LCTVS). If W is a LCTVS, a linear map ` : V→W is continuous
if and only if all the maps ` ◦ `α : Vα→W are continuous.

Proof. See [4, Proposition 2.3.5] �

In the present text:

Definition A.14. A topological algebra (TA for short) (resp., a locally convex topological algebra
(LCTA for short)) is a (real) topological vector space (resp., a locally convex (real) topological vector
space), with an associative, bilinear, and (jointly) continuous multiplication. A morphism of topo-
logical algebras (resp., a morphism of locally convex topological algebras) is a continuous algebra
morphism. We denote the category of topological algebras (resp., of locally convex topological
algebras) and morphisms between them by TAlg (resp., by LCTAlg).

The category of Fréchet algebras is a full subcategory of the category of locally convex topo-
logical algebras, itself a full subcategory of the category of topological algebras.

We denote by PSh(T,TAlg) (resp., Sh(T,TAlg)) the category of presheaves (resp., sheaves) of
TA-s over a topological space T . Similarly, the category PSh(T,LCTAlg) (resp., Sh(T, LCTAlg)) is
the category of presheaves (resp., sheaves) of LCTA-s over T , and the category PSh(T,Alg) (resp.,
Sh(T,Alg)) is the category of presheaves (resp., sheaves) of algebras over T .

Proposition A.15. Denote by + the sheafification functor

+ : PSh(T,Alg) → Sh(T,Alg) : For ,

i.e., the left adjoint of the forgetful functor For. If F ∈ PSh(T,TAlg), we have F + ∈ Sh(T,TAlg), and
the morphism i : F →F + of presheaves of algebras is a morphism of presheaves of TA-s. Moreover,
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if ϕ : F → F ′ is a morphism in PSh(T,TAlg), then ϕ+ : F + → F ′+ is a morphism in Sh(T,TAlg).
The same results hold, if we replace TA-s by LCTA-s.

Proof. We study the case F ∈ PSh(T,LCTAlg) (in particular F ∈ PSh(T,Alg)).

Since sheafification is based on stalks Fx (x ∈T), i.e., on inductive limits, and since the inductive
limit of a directed system of sets endowed with a same algebraic structure has as underlying set the
inductive limit of the directed system of underlying sets, it is natural that the same result holds for
sheafification functors. Let + be the sheafification functor

+ : PSh(T,Alg) 3 F 7→ F + ∈ Sh(T,Alg) : For .

Recall that F +(U) (U ∈ Open(T)) is defined as the subset of (ΠF )(U) :=
∏

x∈U Fx , which is made
of those elements σ = (σx)x∈U = ([s]x)x∈U , for whom the section s is constant in a neighborhood
of any point of U. The algebra operations on F +(U) are naturally induced by those of the stalks.
Restrictions are the obvious algebra morphisms. The morphism i : F → F + of presheaves of alge-
bras is defined by

iU : F (U) 3 s 7→ ([s]x)x∈U ∈ F +(U) , (A.1)

and iU is injective, if F is separated. If G ∈ Sh(T,Alg), the morphism i : G→G+ is an isomorphism
of sheaves of algebras. Further, if j : F → G is a morphism of presheaves of algebras, the unique
morphism j : F +→ G of sheaves of algebras, such that j ◦ i = j, is given by jU =

∏
x∈U jx , where

jx : Fx→Gx is the morphism of algebras induced by j :

jU : F +(U) 3 ([s]x)x∈U 7→ ( jx[s]x)x∈U ∈ G+(U) ' G(U) . (A.2)

Similarly, if F ,F ′ ∈ PSh(T,Alg) and ϕ : F → F ′ is a presheaf morphism, the components of the
sheaf morphism ϕ+ : F +→F ′+ are

ϕ+U : F +(U) 3 ([s]x)x∈U 7→ (ϕx[s]x)x∈U ∈ F ′+(U) .

The stalk Fx (x ∈ T) is the inductive limit algebra Fx = lim
−−→U3x

F (U) of the directed system
of algebras (F (U), ρUV ), where U is an open neighborhood of x and ρUV the restriction from U to
V ⊂ U. This system is actually a directed system of LCTA-s, in the sense that the F (U) are LCTA-s
and the ρUV are continuous algebra morphisms. If we endow the inductive limit algebra Fx with
the final locally convex vector space topology with respect to the canonical algebra morphisms
πxU : F (U) → Fx (i.e., with the finest locally convex vector space topology, for which the πxU are
all continuous), the limit Fx is a LCTVS, whose multiplication is (jointly) continuous [26, Lemma
2.2], i.e., the stalk Fx is a LCTA.

In the following, the algebra F +(U) ⊂ (ΠF )(U) carries the induced topology of the product
topology. Since any product of LCTVS-s and any subspace of a LCTVS are LCTVS-s, the algebra
F +(U) is a LCTVS. The multiplication on F +(U) is continuous in view of Lemma A.12, so that
F +(U) is a LCTA.
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To show that F + ∈ Sh(T,LCTAlg), it suffices to prove that any restriction

rUV : (ΠF )(U) 3 (σx)x∈U 7→ (σx)x∈V ∈ (ΠF )(V)

is continuous, i.e., that, for all y ∈ V , the map

pVy ◦ rUV = pUy : (ΠF )(U) 3 (σx)x∈U 7→ σy ∈ Fy

is continuous – which is a consequence of the definition of the product topology.

The next step consists in proving that the morphism i : F → F + of presheaves of algebras
defined by (A.1), is a morphism of presheaves of LCTA-s, i.e., in proving that, for any y ∈ U, the
map

pUy ◦ iU = π
y
U : F (U) 3 s 7→ [s]y ∈ Fy

is continuous. This holds true by definition of the final topology on Fy .

Let ϕ : F → F ′ be a morphism in PSh(T,LCTAlg). To show that ϕ+ : F +→F ′+ is a morphism
in Sh(T,LCTAlg), it suffices to show that∏

x∈U

ϕx : (ΠF )(U) 3 ([s]x)x∈U 7→ (ϕx[s]x)x∈U ∈ (ΠF ′)(U) (A.3)

is continuous. This is the case if and only if ϕx : Fx → F ′x , x ∈ U, is continuous. In view of
Lemma A.13, the algebra morphism ϕx is continuous if and only if

ϕx ◦ π
x
V = π

′x
V ◦ϕV : F (V) 3 s 7→ ϕx [s]x = [ϕV s]x ∈ F ′x ,

V 3 x, is continuous. This condition is obviously fulfilled. �

Corollary A.16. When equipped with the final locally convex vector space topology with respect
to the canonical algebra morphisms πxU : F (U) → Fx , a stalk Fx , x ∈ T, of a presheaf F ∈ PSh
(T,TAlg) is the inductive limit in TAlg of the directed system (F (U), ρUV ). The same statement holds
in LCTAlg.

Proof. Clearly, the πxU : F (U) → Fx are morphisms in (LC)TAlg. Let (F,pU ) be made of F ∈
(LC)TAlg and (LC)TAlg-morphisms pU : F (U) → F, such that pV ◦ ρUV = pU . Due to Lemma A.13,
the unique Alg-morphism u : Fx → F, such that u ◦ πxU = pU , is continuous, since the u ◦ πxU = pU
are all continuous. Hence, the claim. �

Proposition A.17. Let α : A→ C and β : B→ D be two continuous algebra morphisms between
nuclear Fréchet algebras. Then α⊗̂β : A⊗̂B→ C⊗̂D is a continuous algebra morphism between
nuclear Fréchet algebras.

Proof. Since α and β are continuous linear maps between locally convex spaces, the map α ⊗ β :
A⊗B→C⊗D is continuous linear, and its continuous extension α⊗̂β : A⊗̂B→C⊗̂D is continuous
linear as well.
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The source and the target of α⊗̂β are nuclear Fréchet algebras [15, Lemma 1.2.13]. It remains to
show that α⊗̂β respects their (continuous) multiplications. Let a =

∑∞
i=0 ai ⊗ bi and b =

∑∞
j=0 a′j ⊗ b′j

be two elements of A⊗̂B. Using continuity, we get

(α⊗̂β)(a · b) = lim
n

lim
m

n∑
i=0

m∑
j=0
(α(ai)α(a′j)) ⊗ (β(bi)β(b

′
j)) .

It is straightforwardly seen that (α⊗̂β)a · (α⊗̂β)b is given by the same limit of sums of tensor prod-
ucts. �

Proposition A.18. The multiplication m : A× A→ A of a nuclear Fréchet algebra A extends to a
continuous algebra morphism m̂ : A⊗̂A→ A between nuclear Fréchet algebras.

Proof. We equip A⊗ A with the projective tensor topology. The continuous bilinear maps from A×
A to A correspond exactly to the continuous linear maps from A⊗ A to A. Hence, the multiplication
m can be viewed as a continuous linear map m : A⊗ A→ A. The latter extends to a continuous linear
map m̂ : A⊗̂A→ A. This extension respects the (continuous) multiplications. The proof is similar
to the one of Proposition A.17. �

A.5. Direct image and sheafification

Proposition A.19. Let F ∈ PSh(T,LCTAlg) and let f ∈ C0(T,T ′). There is a morphism

ι : ( f∗F )+→ f∗F +

in Sh(T ′,LCTAlg).

Proof. The assignment

f∗F : Open(T ′) 3 V 7→ F ( f −1(V)) ∈ LCTAlg

together with the restrictions

ρ
f −1(V )

f −1(V ′)
: ( f∗F )(V) → ( f∗F )(V ′),

where ρ are the restrictions of F in LCTAlg, is a presheaf f∗F ∈ PSh(T ′,LCTAlg). In view of Propo-
sition A.15, we get ( f∗F )+ ∈ Sh(T ′,LCTAlg). Similarly, we have f∗F + ∈ Sh(T ′,LCTAlg).

Further, for x ∈ T and U ⊃U ′ 3 x, the LCTAlg-morphisms πxU : F (U) → Fx and πxU′ : F (U ′) →
Fx satisfy πxU′ ◦ ρ

U
U′ = π

x
U . As, due to Corollary A.16, the stalk ( f∗F ) f (x) ∈ LCTAlg is the inductive

limit in LCTAlg of the directed system

(F ( f −1(V)), ρ f
−1(V )

f −1(V ′)
) (V ⊃ V ′ 3 f (x)) ,

there exists a unique LCTAlg-morphism

ux : ( f∗F ) f (x)→Fx , (A.4)

such that ux ◦π
f (x)
V = πx

f −1(V )
, i.e., such that ux [s] f (x) = [s]x , for all s ∈ F ( f −1(V)) and all V 3 f (x).
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For any V ∈ Open(T ′), the map

ιV : (Π( f∗F ))(V) 3 ([s]y)y∈V 7→ (ux [s] f (x))x∈ f −1(V ) = ([s]x)x∈ f −1(V ) ∈ (ΠF )( f −1(V)) (A.5)

is a continuous algebra morphism. Indeed, the algebraic operations are defined component-wise.
For instance, the image of a product ([s]y · [s′]y)y∈V is the product (ux[s] f (x) ·ux [s′] f (x))x∈ f −1(V ) of
the images. Moreover, the map ιV is continuous if and only if the maps

p f −1(V )
x ◦ ιV : (Π( f∗F ))(V) 3 ([s]y)y∈V 7→ ux [s] f (x) ∈ Fx (x ∈ f −1(V))

are. The preimage by p f −1(V )
x ◦ ιV of any open ω ⊂ Fx is the product over y ∈ V , whose factors

indexed by y , f (x) are ( f∗F )y and whose factor indexed by f (x) is the open subset u−1
x (ω) of

( f∗F ) f (x). The preimage by p f −1(V )
x ◦ ιV is thus open in (Π( f∗F ))(V).

The restriction of ιV to ( f∗F )+(V), still denoted by ιV , arrives in ( f∗F +)(V). Assume that
([s]y)y∈V is implemented in a neighborhood Vy0 of an arbitrary point y0 ∈ V by a same section
t ∈ ( f∗F )(Vy0), let x0 ∈ f −1(V), and set Ux0 = f −1(Vf (x0)). For any x ∈ Ux0 , we have

ux [s] f (x) = ux [t] f (x) = [t]x ,

with t ∈ F (Ux0).

The restriction ιV : ( f∗F )+(V)→ ( f∗F +)(V) is obviously a morphism in LCTAlg. Since these ιV
commute with restrictions, they define the sheaf morphism ι announced in Proposition A.19. �
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