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1. Introduction

In recent decades, the Camassa-Holm (CH) type equations raised a lot of interest because of their
specific properties, one of which is that they possess peakon solutions (peaked soliton solutions with
discontinuous derivatives at the peaks). The most celebrated member of them is the CH equation [1]

mt +umx +2uxm = 0, m = u−uxx, (1.1)

which was found to be completely integrable with a Lax pair and associated bi-Hamiltonian struc-
ture [1, 2], and related by a reciprocal transformation to the first negative flow in the KdV hier-
archy [18]. It is worthwhile to note that an inverse scattering approach for the CH equation was
developed in the Refs. [5, 11, 14], which showed that after a suitable change of variables, the CH-
flow becomes a linear flow at constant speed, this being the strong version of integrability (the
infinite-dimensional counterpart of the classical Liouville theorem). Moreover, while an initial m
without change of sign leads to solutions of CH that are defined for all times t ≥ 0 [3,8], among the
initial m that change sign one encounters solutions of CH that model breaking waves, in the sense
that the solution itself remains bounded but its slope becomes unbounded [10].

In 1999, Degasperis and Procesi used an asymptotic integrability approach to isolate integrable
third-order equations, and discovered a new CH type equation, i.e., the Degasperis-Procesi (DP)
equation

mt +umx +3uxm = 0, m = u−uxx, (1.2)

which turns out to be integrable with a bi-Hamiltonian structure and a Lax pair [16,17], and is recip-
rocal linked to a negative flow in the Kaup-Kupershmidt hierarchy [22]. Furthermore, the inverse
scattering problem for the DP equation was formulated in Ref. [12]. Especially, for CH and DP
equations one can prove that the peakons are orbitally stable [15, 25, 31], in the sense that their
shape is stable under small perturbations, and therefore these patterns are detectable. This is an
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essential aspect since both equations arise as models for water waves [13, 23, 24]. Note that the
travelling wave solutions of greatest height of the governing equations for water waves have a peak
at their crest [6, 7, 9, 35]. The proof of the orbital stability of the peakons relies on the conservation
laws for CH and DP.

Both the CH and DP equations are the third order CH type equations with quadratic nonlinear-
ity. Recently, by the symmetry classification study of nonlocal partial differential equations with
quadratic or cubic nonlinearity, Novikov discovered a new CH type equation with cubic nonlinear-
ity [32]

mt +u2mx +3uuxm = 0, m = u−uxx. (1.3)

Subsequently, Hone and Wang presented a Lax pair for the Novikov equation (1.3) and proved
it is related to the negative flow in the Sawada-Kotera hierarchy by a reciprocal transformation.
Infinitely many conserved quantities and a bi-Hamiltonian structure of the Novikov equation are
also constructed [21].

Later Geng and Xue [19] presented a two-component generalization for the Novikov equation

mt +3uxvm+uvmx = 0,

nt +3vxun+uvnx = 0, (1.4)

m = u−uxx, n = v− vxx,

which admits a Lax representation

ϕx = Mϕ, ϕt = Nϕ, (1.5)

where

M =

0 mλ 1
0 0 nλ

1 0 0

 ,

N =


1

3λ 2 −uxv ux
λ
−uvmλ uxvx

v
λ

− 2
3λ 2 +uxv−uvx −uvnλ − vx

λ

−uv u
λ

1
3λ 2 +uvx

 .

(1.6)

They also gave an infinite sequence of conserved quantities of the system (1.4) (also called Geng-
Xue equation). Li et al proved it is bi-Hamiltonian [29] and reciprocal linked to a negative flow in
the modified Boussinesq hierarchy [30]. Very recently, we constructed a Liouville transformation
to connect it with another negative modified Boussinesq equation, and Lax pairs as well as bi-
Hamiltonian structures of them are connected [27].

Recently, we make the vector prolongation of the Lax pair (1.5) as follows [28]

Φx = M̃Φ, Φt = ÑΦ, (1.7)
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with

M̃ =

 0 λQT 1
0T 0N λR
1 0 0

 ,

Ñ =


−UT

x V UT
x

λ
−λUTV Q UT

x Vx
V
λ

− IN
λ 2 +VUT

x −VxUT −Vx
λ
−λUTV R

−UTV UT

λ
UTVx

 ,

(1.8)

where 0 and 0N are respectively N dimension row vector and N ×N zero matrix and T is the
transpose of a vector. IN denotes the N×N identity matrix and Q, R, U, V are the N-component
column vector potentials, and UT

x = ∂UT

∂x .
Then the zero-curvature equation for (1.7) yields the multi-component Novikov equation

Qt = −2UT
x V Q−UTVxQ−UTV Qx−QTVUx +QTVxU,

Rt = −2UTVxR−UT
x V R−UTV Rx−RTUVx +RTUxV, (1.9)

Q = U−Uxx, R =V −Vxx,

which is bi-Hamiltonian [28] proved by the multi-vector method [34]. This multi-component equa-
tion can be reduced to Geng-Xue equation (1.4), DP equation (1.2) and Novikov equation (1.3)
under the constraints N = 1, Q = m, R = n, U = u, V = v; N = 1, Q = m, U = u, R = V = 1 and
N = 1, Q = R = m, V =U = u respectively. The aim of this paper is to consider some reductions of
the Lax pair (1.7) and the corresponding evolution equations.

This paper is organized as follows. In Section 2, we consider two interesting reductions of the
multi-component Novikov equation (1.9) and construct the bi-Hamiltonian structures for them. In
Section 3, we compute two infinite sequences of conserved quantities for the Geng-Xue equation,
and discuss the homogeneous and local properties of the Hamiltonians of the Geng-Xue equation.

2. Two-component generalizations of the Novikov equation

In this section, we will study two reductions of the multi-component Novikov equation (1.9) and
obtain two reduced systems, as well as their bi-Hamiltonian structures using Dirac reduction [33].

2.1. The first two-component generalization of the Novikov equation

Setting U =V , Q = R, the multi-component Novikov equation (1.9) is reduced to

Qt =−3UT
x UQ−UTUQx−QTUUx +QTUxU, Q =U−Uxx, (2.1)

which can be transformed to a two-component Novikov equation

qt = −(u2 + v2)qx−3(uux + vvx)q+ r(uvx−uxv),

rt = −(u2 + v2)rx−3(uux + vvx)r+q(uxv−uvx), (2.2)

q = u−uxx, r = v− vxx.

as Q = R = (q,r)T , U = V = (u,v)T . Especially when u = v, the equation (2.2) is reduced to the
Novikov equation (1.3).
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As pointed in [28], the equation (1.9) can be written in the bi-Hamiltonian form

(
Q
R

)
t
= K

(
δH2
δQ
δH2
δR

)
= J

(
δH1
δQ
δH1
δR

)
, (2.3)

using the two compatible Hamiltonian operators

K =

(
0N (∂ 2−1)IN

(1−∂ 2)IN 0N

)
, (2.4)

J = J1 +J2, (2.5)

with

J1 =

( 3
2 Q∂ +Qx
3
2 R∂ +Rx

)
(∂ 3−4∂ )−1 (3QT ∂ +QT

x 3RT ∂ +RT
x
)
,

J2 =

(
1
2 Q∂−1QT +(Q∂−1QT )T −1

2 Q∂−1RT −QT ∂−1RIN

−1
2 R∂−1QT −RT ∂−1QIN

1
2 R∂−1RT +(R∂−1RT )T

)
,

and the two Hamiltonian functionals

H1 =
1
2

∫
QTV +RTUdx,

H2 =
1
2

∫
QTVUT

x V −RTUV T
x U +(RTUx−QTVx)UTV dx.

(2.6)

In what follows we will construct the bi-Hamiltonian structure for the multi-component Novikov
equation (2.1) from (2.3). Introducing P = Q+R

2 , S = Q−R
2 , the new system with the variables P, S

has a Hamiltonian operator:

Π(P,S) =
1
4

(
IN IN

IN −IN

)
J

(
IN IN

IN −IN

)
,

then after using the Dirac reduction [33] under the constraint Q = R or S = 0, we have

Π(P,0) =
1
2

(
Π11(P,0) Π12(P,0)

Π21(P,0) Π22(P,0)

)
,

where Π11(P,0) = (3Q∂ +2Qx)(∂
3−4∂ )−1(3QT ∂ +QT

x )+(Q∂−1QT )T −QT ∂−1QIN , Π12(P,0) =
Π21(P,0) = 0, Π22(P,0) = Q∂−1QT +(Q∂−1QT )T +QT ∂−1QIN .
So one may obtain the reduced Hamiltonian operator for the multi-component equation (2.1) as
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follows:

Π
red(Q) =

1
2
(Π11(P,0)−Π12(P,0)[Π22(P,0)]−1

Π21(P,0)) =
1
2

Π11(P,0). (2.7)

To obtain the second Hamiltonian operator for the multi-component equation (2.1), we consider the
Hamiltonian operator K J −1K and its Dirac reduction, then the following equality holds:

Λ(P,S) =
1
4

(
IN IN

IN −IN

)
K J −1K

(
IN IN

IN −IN

)
.

Similarly, after the Dirac reduction, one may get

Λ(P,0) =−1
2
(∂ 2−1)

(
Λ11(P,0) Λ12(P,0)
Λ21(P,0) Λ22(P,0)

)−1

(∂ 2−1),

with Λ11(P,0) = Π22(P,0), Λ12(P,0) = Λ21(P,0) = 0 and Λ22(P,0) = Π11(P,0). So we have

Λ(P,0) =−1
2
(∂ 2−1)

(
[Π22(P,0)]−1 0

0 [Π11(P,0)]−1

)
(∂ 2−1),

which means the second Hamiltonian operator for the equation (2.1) is

Λ
red(Q) =−1

2
(∂ 2−1)[Π22(P,0)]−1(∂ 2−1). (2.8)

Specially, from the constraint Q = R = (q,r)T , U =V = (u,v)T and the Hamiltonian pair (2.7-2.8),
the two-component system (2.2) possesses the bi-Hamiltonian operators

Π
red(q,r) =

(
3q∂ +2qx

3r∂ +2rx

)
(∂ 3−4∂ )−1(3q∂ +qx,3r∂ + rx)

+

(
r
−q

)
∂
−1(−r,q), (2.9)

Λ
red(q,r) =−1

2
(∂ 2−1)

(
3q∂−1q+ r∂−1r q∂−1r+ r∂−1q
q∂−1r+ r∂−1q q∂−1q+3r∂−1r

)−1

(∂ 2−1).

Remark 2.1. The two-component system (2.2) appears in the bi-Hamiltonian form

(
q
r

)
t
= Π

red(q,r)

(
δH
δq
δH
δ r

)
= Λ

red(q,r)

(
δW
δq
δW
δ r

)
, (2.10)

with Hamiltonian pair Πred(q,r), Λred(q,r) given by (2.9). The associated Hamiltonian functional
is H = 1

2
∫

qu+ rvdx, and W is nonlocal and looks very complicated, so we omit it.
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2.2. The second two-component generalization of the Novikov equation

Assuming N is an even number, we consider the constraint

Q =

(
Q1

Q2

)
, R =

(
R1

R2

)
, U =

(
U1

U2

)
, V =

(
V1

V2

)
, (2.11)

where R1 = Q2, R2 = Q1, V1 =U2, V2 =U1 and all of them are N
2 dimension column vectors, then

the multi-component Novikov equation (1.9) reduces to

Q1t =−3(UT
1 U2)xQ1−2UT

1 U2Q1x +QT
1 (U2xU1−U2U1x)

+QT
2 (U1xU1−U1U1x),

Q2t =−3(UT
1 U2)xQ2−2UT

1 U2Q2x +QT
1 (U2xU2−U2U2x) (2.12)

+QT
2 (U1xU2−U1U2x),

Q1 =U1−U1xx,Q2 =U2−U2xx.

In particular, setting Q=(q,r)T , R=(r,q)T , U =(u,v)T , V =(v,u)T , the multi-component equation
(2.12) leads to another two-component Novikov equation

qt =−2uvqx−2uvxq−4uxvq,

rt =−2uvrx−2uxvr−4uvxr, (2.13)

q = u−uxx, r = v− vxx,

which may be reduced to the Novikov equation (1.3) under the constraint u = v.
To construct the bi-Hamiltonian structure of the multi-component system (2.12), we apply the

same procedure in subsection 2.1 and introduce these symbols P1 =
Q1+R2

2 , P2 =
Q2+R1

2 , S1 =
Q1−R2

2 ,
S2 =

Q2−R1
2 , then the Hamiltonian operator Π(P1,P2,S1,S2) for the new system with the variables

P1, P2, S1, S2 can be written as:

Π(P1,P2,S1,S2) =
1
4
FJ F ∗,

where F =


I 0 0 I
0 I I 0
I 0 0 −I
0 I −I 0

, 0 and I are respectively N
2 ×

N
2 zero matrix and N

2 ×
N
2 identity matrix.

After using the Dirac reduction under the constraint Q1 = R2, Q2 = R1 or S1 = S2 = 0, the
operator Π(P1,P2,S1,S2) reduces to

Π(P1,P2,0,0) =
Π11(P1,P2,0,0) Π12(P1,P2,0,0) 0 0
Π21(P1,P2,0,0) Π22(P1,P2,0,0) 0 0

0 0 Π33(P1,P2,0,0) Π34(P1,P2,0,0)
0 0 Π43(P1,P2,0,0) Π44(P1,P2,0,0)


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with

Π11(P1,P2,0,0) =
1
2
(3Q1∂ +2Q1x)(∂

3−4∂ )−1(3QT
1 ∂ +QT

1x)+
1
2
(Q1∂

−1QT
1 )

T ,

Π12(P1,P2,0,0) =
1
2
(3Q1∂ +2Q1x)(∂

3−4∂ )−1(3QT
2 ∂ +QT

2x)+
1
2
(Q2∂

−1QT
1 )

T

−1
2
(QT

1 ∂
−1Q2 +QT

2 ∂
−1Q1)I,

Π21(P1,P2,0,0) =
1
2
(3Q2∂ +2Q2x)(∂

3−4∂ )−1(3QT
1 ∂ +QT

1x)+
1
2
(Q1∂

−1QT
2 )

T

−1
2
(QT

1 ∂
−1Q2 +QT

2 ∂
−1Q1)I,

Π22(P1,P2,0,0) =
1
2
(3Q2∂ +2Q2x)(∂

3−4∂ )−1(3QT
2 ∂ +QT

2x)+
1
2
(Q2∂

−1QT
2 )

T ,

Π33(P1,P2,0,0) =
1
2
(Q1∂

−1QT
1 +(Q1∂

−1QT
1 )

T ),

Π34(P1,P2,0,0) =
1
2
(Q1∂

−1QT
2 +(Q2∂

−1QT
1 )

T )+
1
2
(QT

1 ∂
−1Q2 +QT

2 ∂
−1Q1)I,

Π43(P1,P2,0,0) =
1
2
(Q2∂

−1QT
1 +(Q1∂

−1QT
2 )

T )+
1
2
(QT

2 ∂
−1Q1 +QT

1 ∂
−1Q2)I,

Π44(P1,P2,0,0) =
1
2
(Q2∂

−1QT
2 +(Q2∂

−1QT
2 )

T ).

And then the reduced Hamiltonian operator for the multi-component Novikov equation (2.12) is

Π
red(Q1,Q2) =

(
Π11(P1,P2,0,0) Π12(P1,P2,0,0)
Π21(P1,P2,0,0) Π22(P1,P2,0,0)

)
.

Moreover, by studying the Hamiltonian operator K J −1K and its Dirac reduction, the second
Hamiltonian operator for the multi-component system (2.12) may be obtained as

Λ
red(Q1,Q2) =−

1
4
(∂ 2−1)

(
Π44(P1,P2,0,0) Π43(P1,P2,0,0)
Π34(P1,P2,0,0) Π33(P1,P2,0,0)

)−1

(∂ 2−1).

Especially under the constraint Q = (q,r)T , R = (r,q)T , U = (u,v)T , V = (v,u)T , the two-
component system (2.13) has a Hamiltonian pair

Π
red(q,r) =

1
2

(
3q∂ +2qx

3r∂ +2rx

)
(∂ 3−4∂ )−1 (3q∂ +qx 3r∂ + rx

)
+

1
2

(
q∂−1q −q∂−1r
−r∂−1q r∂−1r

)
, (2.14)

Λ
red(q,r) =−1

4
(∂ 2−1)

(
r∂−1r q∂−1r+ r∂−1q

q∂−1r+ r∂−1q q∂−1q

)−1

(∂ 2−1)

=− 1
12

(∂ 2−1)

(
−1

q ∂
q
r ∂−1 q

r ∂
1
q

1
q(2− (q

r )x∂−1 r
q)∂

1
r

1
r (2− ( r

q)x∂−1 q
r )∂

1
q −1

r ∂
r
q ∂−1 r

q ∂
1
r

)
(∂ 2−1).

Remark 2.2. The two-component system (2.13) can be written in bi-Hamiltonian form (2.10) with
bi-Hamiltonian operators given by (2.14). The associated Hamiltonian functional for Πred(q,r) is
H =

∫
qv+rudx. The omission of W here is caused by the nonlocal property and complication of it.
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3. Conserved quantities and locality of the Hamiltonians of the Geng-Xue equation (1.4)

In this section, we give two sequences of conserved quantities for the Geng-Xue equation (1.4),
some of them seem to be new. Furthermore, we find all of them are homogeneous and all the
Hamiltonians H j, j ≤−1 are local.

3.1. Conserved quantities

Defining

ϕ = (ϕ1,ϕ2,ϕ3)
T , a =

ϕ1

ϕ2
, b =

ϕ3

ϕ2
, (3.1)

based on the Lax pair (1.5), we have

ρ = (lnϕ2)x = λnb. (3.2)

The infinitely many conserved quantities for the Geng-Xue equation (1.4) can be constructed using
the standard algorithm. Next we will utilize the procedure in Ref. [30] to obtain the required Hamil-
tonians.
Substituting these equalities (3.1) to the spectral problem (1.5) yields

ax = λm+b−aρ, bx = a−bρ, (3.3)

after expanding a, b into a series of the spectral parameter λ and equating the coefficients of dif-
ferent powers of λ in these equations (3.3), one can find a series of conserved densities from coef-
ficients of ρ in power of λ .

Case 1: Expanding a, b as a = ∑i≥1 aiλ
i, b = ∑ j≥1 b jλ

j and substituting them into the system
(3.3), we establish that

a1 =−ux, b1 =−u, a2 = 0, b2 = 0,

(1−∂
2)b3 = (nu2)x +nuux, a3 = b3x +nb2

1,

. . . ,

(1−∂
2)ak =

i+ j=k−1

∑
i, j≥1

[nbib j +(naib j)x],

(1−∂
2)bk =

i+ j=k−1

∑
i, j≥1

[naib j +(nbib j)x].

Hence an infinite sequence of conserved quantities are obtained, and the first two are

H1 =
∫

undx,
H2 =

∫
(uxv−uvx)undx.

(3.4)

Remark 3.1. The above two conserved quantities can be obtained from the Hamiltonian functionals
(2.6) H1, H2 under the constraint N = 1, Q = m, R = n, U = u, V = v respectively.
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Case 2: The second expansion is a = ∑i≥0 aiλ
1−2i

3 , b = ∑ j≥0 b jλ
− 2 j+1

3 . Substituting it into the sys-
tem (3.3) yields:

a0 = m
2
3 n−

1
3 , b0 = m

1
3 n−

2
3 ,

a1 = −1
3
(mn)−

2
3 mx, b1 =

1
3

m−1n−2(mnx−mxn),

...,

ak+1 =
1
3

[
2(mn)−

1
3 (bk−1−akx)+bkx +

i+ j=k+1

∑
i, j≥1

(nbib j−2b−1
0 aib j)

]
,

bk+1 =
1
3
(mn)−

2
3 (bk−1−akx)−

1
3
(mn)−

1
3

[
bkx +

i+ j=k+1

∑
i, j≥1

(b−1
0 ai +nbi)b j

]
.

In particular, we only consider the conserved quantities associated with b3k, k ∈ Z, and obtain the
first two conserved quantities as

H−1 = 3
∫
(mn)

1
3 dx,

H−2 =
1
27

∫ [
5m2

xnxn−
5
3 m−

8
3 −3(mn)−

5
3 mxxnx−18nxm−

2
3 n−

5
3
]
dx.

(3.5)

The negative powers of m and n that are involved in the above expressions for the conserved quanti-
ties raise an important structural property, whose solution established their analytic validity. Namely,
we expect that if m > 0 and n > 0 hold initially (at time t = 0), then this property is preserved by
the Geng-Xue flow. That this might be so is suggested by the granting, in the context of the CH
equation, of such a property by means of a pointwise conservation law that has in that context very
strong consequences for the long-time behavior of solutions [4, 20]. For the Geng-Xue flow we
can proceed as follows. Define the smooth diffeomorphisms ψ(x, t) by ψ(x,0) = x and ψt(x, t) =
u(ψ(x, t), t)v(ψ(x, t), t) for t > 0 and consider the expressions Q(x, t) = m(ψ(x, t), t)ψ3

x (x, t) and
R(x, t) = n(ψ(x, t), t)ψ3

x (x, t). Since

ψxt = [ux(ψ, t)v(ψ, t)+u(ψ, t)vx(ψ, t)]ψx, t > 0,

and ψx(x,0) = 1 yield

ψx(x, t) = exp
(∫ t

0
[ux(ψ,s)v(ψ,s)+u(ψ,s)vx(ψ,s)]ds

)
> 0, t ≥ 0,

using (1.4) we can verify that the relations

∂tQ(x, t) = 3u(ψ(x, t), t)vx(ψ(x, t), t)ψ3
x (x, t)Q(x, t),

∂tR(x, t) = 3ux(ψ(x, t), t)v(ψ(x, t), t)ψ3
x (x, t)R(x, t),

(3.6)

hold for any fixed x. Therefore

Q(x, t) = Q(x,0)exp
(

3
∫ t

0
[u(ψ(x,s),s)vx(ψ(x,s),s)ψ3

x (x,s)ds
)
, t ≥ 0,

R(x, t) = R(x,0)exp
(

3
∫ t

0
[ux(ψ(x,s),s)v(ψ(x,s),s)ψ3

x (x,s)ds
)
, t ≥ 0.

(3.7)
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These considerations prove that m(x, t) > 0 and n(x, t) > 0 at any t ≥ 0, provided that m(x,0) > 0
and n(x,0)> 0.

3.2. Homogeneous and local properties of the Hamiltonians

The first nontrivial negative flow in the Geng-Xue hierarchy is the Geng-Xue equation (1.4) [19]. It
admits a bi-Hamiltonian structure [29], viz:

θt = K
δH2

δθ
= J

δH1

δθ
, θ =

(
m
n

)
, (3.8)

where H1, H2 are given by (3.4), and K, J are respectively the reductions of the Hamiltonian opera-
tors K , J (2.4), (2.5) under the constraint N = 1, Q = m, R = n, U = u, V = v, namely

K =

(
0 ∂ 2−1

1−∂ 2 0

)
,

J =

(
J11 J12

J21 J22

)
,

with

J11 =
3
2

m∂
−1m+

(
mx +

3
2

m∂

)
(∂ 3−4∂ )−1(mx +3m∂ ),

J12 =−
3
2

m∂
−1n+

(
mx +

3
2

m∂

)
(∂ 3−4∂ )−1(nx +3n∂ ),

J21 =−
3
2

n∂
−1m+

(
nx +

3
2

n∂

)
(∂ 3−4∂ )−1(mx +3m∂ ),

J22 =
3
2

n∂
−1n+

(
nx +

3
2

n∂

)
(∂ 3−4∂ )−1(nx +3n∂ ).

Furthermore, the first nontrivial positive flow in the hierarchy reads

mt = (m
1
3 n−

2
3 )xx−m

1
3 n−

2
3 ,

nt = n
1
3 m−

2
3 − (n

1
3 m−

2
3 )xx,

which can also be reformulated as a bi-Hamiltonian form

θt = J
δH−2

δθ
= K

δH−1

δθ
, (3.9)

herein H−1, H−2 are given by (3.5).
Hence, the Geng-Xue hierarchy may be constructed as

θt j = J
δH j

δθ
= K

δH j+1

δθ
, j ∈ Z, j 6= 0,−1, (3.10)

with infinitely many Hamiltonian functionals H j generated by the recursive definition. It is imme-
diately clear that all H js are homogeneous and H js, j ≥ 3 are nonlocal. Hence we will discuss the
local property of H j, j ≤−1.
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Lemma 3.1 ([26, 34]). If a differential function M̂[θ ] satisfies∫
M̂[θ ]dx = 0

for all θ , then there exists a unique differential function N̂[θ ] up to addition of a constant such that
M̂[θ ] is the total x-derivative M̂[θ ] = (N̂[θ ])x.

Theorem 3.1. Let X j[θ ] =
δH j[θ ]

δθ
, then for each j ≤−1, X j[θ ] and H j[θ ] are local.

Proof. We only need to demonstrate the local property of X js because of H j[θ ] =
∫ 1

0 X j[εθ ] ·θdε .
As j =−1, X−1[θ ] is local since

X−1[θ ] =
(

m−
2
3 n

1
3 , m

1
3 n−

2
3

)T
.

Now suppose that X j[θ ] is local for j =−k. When j =−(k+1), we have

X−(k+1)[θ ] = J−1KX−k[θ ] = (J−1K)kX−1[θ ]. (3.11)

To find an explicit expression for X−k[θ ], a direct choice is to calculate the inverse operator of J.
However, it seems to be difficult. Hence, we find an indirect way. Suppose h = (mn)

1
3 and define

X−k[θ ] = (Ak,Bk)
T ,

Ek = (∂ 3−4∂ )−1(3m∂ +mx,3n∂ +nx)X−k[θ ],

it follows from the recursive relation (3.11) that

3
2

m∂
−1(mAk+1−nBk+1)+

(3
2

m∂ +mx

)
Ek+1 = (∂ 2−1)Bk,

−3
2

n∂
−1(mAk+1−nBk+1)+

(3
2

n∂ +nx

)
Ek+1 = (1−∂

2)Ak.

Eliminating Ek+1 from the above system and combating the definition of Ek+1 yield(
3m∂ +mx 3n∂ +nx

m −n

)(
Ak+1

Bk+1

)
=

1
3

Θ

(
Ak

Bk

)
, (3.12)

where

Θ =

(
0 0
0 ∂

2
m(∂

2−1)

)
+

(
4∂ −∂ 3

∂ 2 +∂
2mx
3m

)
1
h

∂
−1

(
−m

1
3 n−

2
3

m−
2
3 n

1
3

)
(1−∂

2).

Then it is not difficult to solve Ak+1 and Bk+1 from the above system, and we find that Ak+1 and
Bk+1 are local if there exist two differential functions Mk, Nk such that

Γ1 =
1
h2

[
m(1−∂

2)Ak +n(∂ 2−1)Bk
]
= Mkx, (3.13)

Γ2 =
1
h

([
∂

3−4∂ +3
(

∂ − 2mx

3m

)
∂

(
∂ +

2mx

3m

)]
Mk

h
−
(

∂ − 2mx

3m

)
∂

6
m
(∂ 2−1)Bk

)
= Nkx. (3.14)
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Using the Lemma 3.1, the equality (3.13) follows immediately from∫
Γ1dx =

∫ 1
h2 [m(1−∂

2)Ak +n(∂ 2−1)Bk]dx

=
∫

XT
−1KX−kdx

=
∫

XT
−1K(J−1K)k−1X−1dx

=−
∫

XT
−1(KJ−1)k−1KX−1dx

=−
∫

XT
−1K(J−1K)k−1X−1dx

=−
∫

XT
−1KX−kdx,

where we have used the skew-symmetric property of K, J. So
∫

Γ1dx = 0. Similarly, the equality
(3.14) may be demonstrated from∫

Γ2dx =
∫ 1

h
[∂ 3−4∂ +(3∂ −2

mx

m
)(∂ 2 +∂

2mx

3m
)]

Mk

h

− 1
h
(3∂ −2

mx

m
)∂

2
m
(∂ 2−1)Bkdx

=
∫

f (1−∂
2)Ak +g(∂ 2−1)Bkdx

=
∫
(g, f )K(Ak,Bk)

T dx

=−
∫
(Ak,Bk)K(g, f )T dx

=−
∫

J−1K(Ak,Bk)
T J(g, f )T dx = 0,

where

f =
1
h4

(
2
3

mxx−
4
3

mnxx

n
− 10

9
m2

x

m
+

14
9

mn2
x

n2 +
4
9

mxnx

n
−2m

)
,

g =
1
h4

(
2
3

nxx−
4
3

nmxx

m
− 10

9
n2

x

n
+

14
9

nm2
x

m2 +
4
9

mxnx

m
−2n

)
.

In the above we have eliminated the derivatives of Mk in the integration by the equality (3.13) and
used the skew-symmetric property of K, J, as well as the fact that (g, f )T is a kernel of J.
So all the Hamiltonians H j, j ≤−1 for the Geng-Xue equation (1.4) are local. �
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