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The BCr-KP hierarchy is an important sub hierarchy of the KP hierarchy, which includes the BKP and CKP
hierarchies as the special cases. Some properties of the BCr-KP hierarchy and its constrained case are investi-
gated in this paper, including bilinear identities and squared eigenfunction symmetries. We firstly discuss the
bilinear identities of the BCr-KP hierarchy, and then generalize them into the constrained case. Next, we inves-
tigate the squared eigenfunction symmetries for the BCr-KP hierarchy and its constrained case, and also the
connections with the additional symmetries. It is found that the constrained BCr-KP hierarchy can be defined
by identifying the time flow with the squared eigenfunction symmetries.

Keywords: the BCr-KP hierarchy; the constrained BCr-KP hierarchy; bilinear identities; squared eigenfunction
symmetries.
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1. Introduction

In mathematical physics and integrable systems, the Kadomtsev-Petviashvili (KP) hierarchy [8,11]
is an important research object. For the KP hierarchy, there is a kind of important sub hierarchy
called the BCr-KP hierarchy [9,12,28], including the BKP and CKP hierarchies [3,8,9,19,21,28] as
the special cases. The BCr-KP hierarchy is introduced in [9], then it is rewritten by Zuo et al in [28],
and also is named by the BCr-KP hierarchy for brevity in [28]. Zuo et al. [28] construct additional
symmetries of the BCr-KP hierarchy and its constrained case, which shows that all of them from a
wBCr
∞ -algebra and a Witt algebra respectively. The gauge transformations of the BCr-KP hierarchy

and its constrained cases are constructed, and the relations with the additional symmetries are inves-
tigated in [12]. In this paper, we continue to study the bilinear identities and squared eigenfunction
symmetries of the BCr-KP hierarchy and its constrained case respectively.

Bilinear identity [7–9,11,20] is a bilinear residue identity for wave functions, which is an impor-
tant equivalent form of the KP hierarchy. From the bilinear identity, one can know the whole infor-
mation of the KP hierarchy. And the bilinear identity can provide a crucial role when discussing
the existence of the tau functions [8, 11]. Also the Hirota’s bilinear equations [8] can be derived
easily from the bilinear identity. By now, there are many results on bilinear identity. For example,
the constrained KP hierarchy [7, 20], the constrained BKP hierarchy [25, 26] and the extended KP
and BKP hierarchies [15, 16]. In this paper, we will consider the bilinear identity of the BCr-KP
hierarchy. In fact, the BCr-KP hierarchy is equivalent to the sub hierarchy in [9], where the corre-
sponding bilinear identities are discussed. But there are some differences in the expression forms
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between the BCr-KP hierarchy and the sub hierarchy in [9]. And also the bilinear identities in [9] are
not discussed completely. Therefore, it will be important to find the bilinear identity of the BCr-KP
hierarchy for itself. And what’s more, as far as we know, the bilinear identities for the constrained
BCr-KP hierarchy have not discussed in literature.

The squared eigenfunction symmetry [2, 22–24], sometimes called the “ghost” symmetry [2],
plays an important symmetries in the integrable system. The squared eigenfunction symmetry can
be traced back to [22], where Oevel studied the solutions of the constrained KP hierarchy in the
first time. Then it is widely investigated in [4, 5, 13, 14]. The squared eigenfunction symmetry can
be used to define the new integrable system, such as the extended integrable system [17,18] and the
symmetry constraint [6,7,19–21,24–27] and the additional symmetry [1,2,10,28]. Recently, many
researches have been done in the squared eigenfunction symmetries, for instance, the Toda lattice
hierarchy and its sub hierarchy of B and C type [4, 5], the discrete KP [14] and modified discrete
KP [13] hierarchies are investigated recently. In this paper, we will consider some properties of the
squared eigenfunction symmetries of the BCr-KP hierarchy and its constrained case.

The structure of this paper is as follows. The backgrounds of the BCr-KP hierarchy will be
reviewed in Section 2. In Section 3, we will study the bilinear identities of the BCr-KP and its
constrained case. In Section 4, the squared eigenfunction symmetries associated with the BCr-KP
and constrained BCr-KP hierarchy are constructed. In Section 5, some conclusions and discussions
are given.

2. The BBBCCCrrr-KP Hierarchy

The BCr-KP hierarchy is the sub hierarchy of the KP hierarchy [9, 28], which is defined by the
pseudo-differential operators. The algebra g of the pseudo-differential operators [11] is given by

g =

∑
i�∞

ui∂
i
x

 , (2.1)

where ui = ui(t1 = x, t2, t3, . . . ). The multiplication of ∂i
x with f obeys the Leibnitz rule [11]

∂i
x f =

∑
j≥0

(
i
j

)
f ( j)∂

i− j
x , i ∈ Z. (2.2)

In this paper, for A =
∑

i ai∂
i
x ∈ g, we denote Res∂xA = a−1, A≥k =

∑
i≥k ai∂

i
x and A<k =

∑
i<k ai∂

i
x,

A+ = A≥0, and A− = A<0. For A, B ∈ g and a function f , ∗ is the conjugate operation: (AB)∗ = B∗A∗,
∂∗ = −∂, f ∗ = f , and A f or A · f indicates that the multiplication of A and f , while A( f ) denotes the
action of A on f .

Lemma 2.1 ([22]). For arbitrary operator A ∈ g

Res∂x A∂−1
x = A0, Res∂x A = −Res∂x A∗, (2.3)

(A≥0∂
−1
x )<0 = A0∂

−1
x , (∂−1

x A≥0)<0 = ∂−1
x (A∗)0. (2.4)

where ( )0 denotes the zeroth-order term.
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The KP hierarchy [9, 28] is defined by

∂tn L = [Bn,L], Bn = (Ln)≥0, n = 1,2,3, . . . . (2.5)

Here the Lax operator L ∈ g is given by

L = ∂x + u1∂
−1
x + u2∂

−2
x + u3∂

−3
x + · · · . (2.6)

The Lax operator L for the KP hierarchy can be expressed by the dressing operator S ,

L = S ∂xS −1, (2.7)

where S is given by

S = 1 + s1∂
−1
x + s2∂

−2
x + s3∂

−3
x + · · · . (2.8)

Then the Lax equation Eq. (2.5) is equivalent to

∂tnS = −(Ln)<0S = −(S ∂n
xS −1)<0S . (2.9)

The eigenfunction φ and the adjoint eigenfunction ψ of the KP hierarchy are defined by

∂tnφ = Bn(φ), ∂tnψ = −B∗n(ψ), (2.10)

respectively. The wave and adjoint wave functions of the KP hierarchy are defined by the following
way:

4(t,λ) = S (eξ(t,λ)) = (1 + s1λ
−1 + s2λ

−2 + · · · )e
∑∞

i=1 tiλi
, (2.11)

4
∗(t,λ) = (S −1)∗(e−ξ(t,λ)) = (1 + s∗1λ

−1 + s∗2λ
−2 + · · · )e−

∑∞
i=1 tiλi

, (2.12)

where λ is the spectral parameter. And 4 and 4∗ satisfy

Ln
4(t,λ) = λn

4(t,λ), ∂tn4(t,λ) = Bn4(t,λ), (2.13)

(Ln)∗4∗(t,λ) = λn
4
∗(t,λ), ∂tn4

∗(t,λ) = −B∗n4
∗(t,λ). (2.14)

Next, we discuss the BCr-KP hierarchy. Define

Q = (S −1)∗∂rS −1, r ∈ Z≥0, (2.15)

where S is the dressing operator of the KP hierarchy. Obviously, Q is a r-order differential operator
and has the properties:

Q∗ = (−1)rQ, QL + L∗Q = 0, (2.16)

Qtn = (1 + (−1)n)(S −1)∗∂r+n
x S −1−QBn−B∗nQ. (2.17)

The BCr-KP hierarchy is defined by the following constraints,

Q = Q+. (2.18)

Therefore for the BCr-KP hierarchy, by taking the negative part of Eq. (2.17), one obtains 1 +

(−1)n = 0, so there are only odd flows in the BCr-KP hierarchy, and the Lax equation of the BCr-KP
hierarchy is given in the following way

∂t2n+1 L = [B2n+1,L], n ∈ Z≥0, (2.19)

In particular,
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• BC0-KP is the CKP hierarchy: when r = 0, Q = 1, then L∗ = −L,
• BC1-KP is the BKP hierarchy: when r = 1, Q = ∂x, then L∗ = −∂xL∂−1

x .

According to Eq. (2.10) and Eq. (2.17), the adjoint eigenfunction of the BCr-KP hierarchy can
be expressed by Q(φ), where φ is eigenfunction. The constrained BCr-KP hierarchy is defined by
imposing the below constraints on the Lax operator of the BCr-KP hierarchy

Lk = (Lk)≥0 +

m∑
j=1

(
q1 j∂

−1
x ·Q(q2 j) + (−1)rq2 j∂

−1
x ·Q(q1 j)

)
, k = 1,3, . . . , (2.20)

where q1 j and q2 j are independent eigenfunctions of the BCr-KP hierarchy.

3. Bilinear Identities of the BBBCCCrrr-KP Hierarchy and its Constrained Case

Bilinear identity formulations of the BCr-KP hierarchy and its constrained case will be studied in
this section. Before discussion, the following lemmas will be needed.

Lemma 3.1 ([11]). For A, B ∈ g,

ResλA(exλ) ·B(e−xλ) = Res∂x AB∗, (3.1)

where B∗ is the adjoint operator of B.

Lemma 3.2. If we let A(x) =
∑

i ai(x)∂i
x and B(x′) =

∑
j b j(x′)∂ j

x′ be two operators, then

A(x)B∗(x)∂x(∆0) = ResλA(x)(exλ) ·B(x′)(e−x′λ), (3.2)

where ∆0 = (x− x′)0 and

∂−a
x (∆0) =

0, a < 0,
(x− x′)a

a!
, a ≥ 0.

(3.3)

Proof. Firstly, by the formal expansion of B(x′) at x′ = x and according to Lemma 3.1

ResλA(x)(exλ) ·B(x′)(e−x′λ)

= ResλA(x)(exλ)
∞∑

n=0

(x′− x)n

n!
∂n

xB(x)(e−xλ)

=

∞∑
n=0

(x′− x)n

n!
Res∂x A(x)B∗(x)(−1)n∂n

x

=

∞∑
n=0

(x− x′)n

n!
Res∂x A(x)B∗(x)∂n

x

=

∞∑
n=0

∂−n
x (∆0)Res∂x A(x)B∗(x)∂n

x. (3.4)

Then if set A(x)B∗(x) =
∑

i∈Z ci∂
i
x and notice that

Res∂x A(x)B∗(x)∂n
x = Res∂x

∑
i∈Z

ci∂
i+n
x = c−n−1, (3.5)
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one can obtain

ResλA(x)(exλ)B(x′)(e−x′λ)

=

∞∑
n=0

c−n−1∂
−n
x ∆0 −n−1=i

========
∑
k∈Z

ci∂
i+1
x ∆0

= A(x)B∗(x)∂x(∆0) (3.6)

�

Proposition 3.1. The wave and adjoint wave functions of the BCr-KP hierarchy satisfy the bilinear
identities

Resλλr
4
∗(t,−λ)4∗(t′,λ) = 0. (3.7)

Proof. The wave and adjoint wave functions of the BCr-KP hierarchy satisfy the following bilinear
identities

∂t2n+14(x, t̄,λ) = (S ∂2n+1
x S −1)≥0

(
4(x, t̄,λ)

)
, ∂t2n+14

∗(x, t̄,λ) = −(S ∂2n+1
x S −1)∗≥0

(
4
∗(x, t̄,λ)

)
, (3.8)

where t̄ = (t3, t5, . . . ). Therefore ∂αt 4
∗(x′, t̄,α) can be written in the following way

∂αt 4
∗(x′, t̄,λ) = Pα(x′, t̄)

(
4
∗(x′, t̄,λ)

)
, (3.9)

where ∂αt =
∏∞

n=1 ∂
α2n+1
t2n+1

and Pα(x′, t̄) =
∑

i≥0 aα,i(x′, t̄)∂i
x′ is a differential operator. Next by consider-

ing the formal expansion of 4∗ with respect to t̄′ at t̄

4
∗(x′, t̄′,λ) =

∑
α=(α3,α5,... )≥0

(t̄′− t̄)α

α!
∂αt 4

∗(x′, t̄,λ), (3.10)

with

(t̄′− t̄)α =

∞∏
n=1

(t′2n+1− t2n+1)α2n+1 , α! =

∞∏
n=1

α2n+1!, α ≥ 0 ⇔ α2n+1 ≥ 0, n = 1,2, . . . , (3.11)

one can obtain

4
∗(x′, t̄′,λ) =

∑
α≥0

(t̄′− t̄)α

α!
Pα(x′, t̄)S −1(x′, t̄)∗e−

∑∞
n=1(−1)2n+1 t̄2n+1∂

2n+1
x′ (e−x′λ). (3.12)

Thus according to Lemma 3.2

Resλλr
4
∗(x, t̄,−λ)4∗(x′, t̄′,λ)

= Resλ
(
S −1(x, t̄)

)∗∂r
x(exλ)

∑
α≥0

(t̄′− t̄)α

α!
Pα(x′, t̄)

(
S −1(x′, t̄)

)∗(e−x′λ)

=
∑
α≥0

(t̄′− t̄)α

α!
(S −1(x, t̄)

)∗∂r
xS −1(x, t̄)P∗α(x, t̄)∂x(∆0)

=
∑
α≥0

(t̄′− t̄)α

α!
Q(t)P∗α(x, t̄)∂x(∆0) = 0, (3.13)

where we have used the fact Q = Q+ and Pα are differential operators. �
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Proposition 3.2. Let 4(t,λ) and 4∗(t,λ) be expressed by 4 = S (eξ(t,λ)) and 4∗ = (S −1)∗(e−ξ(t,λ))
respectively, where S = 1 +

∑∞
n=1 sn∂

−n and ξ(t,λ) =
∑∞

n=0 t2n+1λ
2n+1. And define Q = (S −1)∗∂rS −1.

Then if 4 and 4∗ satisfy Eq. (3.7), one can obtain Q = Q+ and ∂t2n+1S =−(S ∂2n+1
x S −1)<0S , which

means that 4(t,λ) and 4∗(t,λ) are the wave and adjoint wave functions of the BCr-KP hierarchy.

Proof. Starting from the bilinear identity Eq. (3.7) and using Lemma 3.2

0 = Resλλr
4
∗(x, t̄,−λ)4∗(x′, t̄′,λ)

= Resλ
(
S −1(x, t̄)∗e

∑
n≥1 t2n+1∂

2n+1
x ∂r

x

)
(exλ) ·

(
S −1(x′, t̄′)∗e−

∑
n≥1 t′2n+1(−∂x′ )2n+1)

(e−x′λ)

= S −1(x, t̄)∗∂r
xe

∑
n≥1(t2n+1−t′2n+1)∂2n+1

x S −1(x, t̄′)∂x(∆0). (3.14)

Let t̄ = t̄′, then

(S −1)∗∂r
xS −1∂x(∆0) = Q(t)∂x(∆0) = 0, (3.15)

which implies Q is a differential operator.
On the other hand

4
∗(t,λ) = (S −1)∗(e−ξ(t,λ)) = Q(t)S ∂−r

x (e−ξ(t,λ)) = (−1)rλ−rQ(t)(4(t,−λ)). (3.16)

So

0 = Resλλr
4
∗(x, t̄,−λ)4∗(x′, t̄′,λ) = ResλQ(t)

(
4(x, t̄,λ)

)
4
∗(x′, t̄′,λ). (3.17)

Apply Q−1(t) on both sides of Eq. (3.17) and let Q−1(t)(0) = α(x, t̄),

α(x, t̄) = Resλ4(x, t̄,λ)4∗(x′, t̄′,λ)

= Resλ
(
S (x, t̄)e

∑
n≥1 t2n+1∂

2n+1
x

)
(exλ)

((
S −1(x′, t̄′)

)∗e−∑
n≥1 t′2n+1(−∂x′ )2n+1)

(e−x′λ)

= S (x, t̄)e
∑

n≥1(t2n+1−t′2n+1)∂2n+1
x S −1(x, t̄′)∂x(∆0). (3.18)

If t̄ = t̄′, we have

α(x, t̄) = S (t)S −1(t)∂x(∆0) = 0, (3.19)

Thus Resλ4(t,λ)4∗(t′,λ) = 0, which satisfies the bilinear identity of KP hierarchy, it is obvious that

∂t2n+1S = −(S ∂2n+1
x S −1)<0S . (3.20)

�
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Corollary 3.1. If Q−1(t) =
∑∞

i=0 ai(t)∂−r−i
x , where a0 = 1, a1 = 0, the bilinear identity Eq. (3.7) can

be rewritten as

Resλλ−r
4(x, t̄,λ)4(x′, t̄′,−λ) =


0, r = 0, (CKP),

1, r = 1, (BKP),

(x− x′)r−1

(r−1)!
+

∞∑
i>1

ai(t′)
(x− x′)r+i−1

(r + i−1)!
, r > 1.

(3.21)

Proof. From the above proof in Proposition 3.2 and Eq. (3.16),

Resλλ−r
4(x, t̄,λ)Q(t′)4(x′, t̄,−λ) = 0. (3.22)

By applying Q−1(t′), and letting β(x′, t̄′) = Q−1(t′)(0) and t̄′ = t̄,

β(x′, t̄) = S (x, t̄)∂−r
x S ∗(x, t̄)∂x(∆0)

= Q−1(t)∂x(∆0)

=


0, r = 0,

1, r = 1,

(x− x′)r−1

(r−1)!
+

∞∑
i>1

ai(x′, t̄)
(x− x′)r+i−1

(r + i−1)!
, r > 1.

(3.23)

�

Next, we discuss the bilinear identity formulation of the constrained BCr-KP hierarchy. For con-
venience, we will introduce squared eigenfunction potential Ω(ψ,φ) [22, 23], which is determined
by the following conditions

Ω(ψ,φ)x = ψφ, Ω(ψ,φ)t2n+1 = Res∂−1
x ψ(L2n+1)≥0φ∂

−1
x . (3.24)

Proposition 3.3. For the constrained BCr-KP hierarchy Eq. (2.20),

m∑
j=1

(
Q(q1 j)(t) ·Q(q2 j)(t′) + (−1)rQ(q2 j)(t) ·Q(q1 j)(t′)

)
= Resλλk+r

4
∗(t,−λ)4∗(t′,λ), (3.25)

Q(ql j)(t) = −Resλ
(
λr
4
∗(t,λ)Ω

(
ql j(t′),4∗(t′,λ)

))
. (3.26)

where l = 1, 2.

Proof. Firstly, consider the residue of Lk∂
p
x for an arbitrary integer p ≥ 0, and notice that

Res∂x(L
k)−∂

p
x = Res∂x Lk∂

p
x . Then according to Lemma 3.1 and S = Q−1(S −1)∗∂r

x,

m∑
j=1

(
q1 j(t)(−1)p∂

p
x

(
Q(q2 j)(t)

)
+ (−1)rq2 j(t)(−1)p∂

p
x

(
Q(q1 j)(t)

))
= Res∂x Lk∂

p
x = Res∂xS ∂

k
xS −1∂

p
x

= (−1)pResλS ∂k
x(eξ(t,λ))∂p

x (S −1)∗(e−ξ(t,λ))

= (−1)pResλQ−1(S −1)∗∂k+r
x (eξ(t,λ))∂p

x (S −1)∗(e−ξ(t,λ))

= (−1)pResλλk+rQ−1(t)4∗(t,−λ)∂p
x4
∗(t,λ). (3.27)
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Further by using Eq. (2.10) and the formal expansion at t′ = t,
m∑

j=1

(
q1 j(t)Q(q2 j)(t′) + (−1)rq2 j(t)Q(q1 j)(t′)

)
= Resλλk+rQ−1(t)4∗(t,−λ)4∗(t′,λ). (3.28)

Lastly, by applying Q(t) on both sides of Eq. (3.28), one can obtain Eq. (3.25).
According to Eq. (2.14) and Eq. (3.7),

m∑
j=1

(
Q(q1 j)(t)Q(q2 j)(t′) + (−1)rQ(q2 j)(t)Q(q1 j)(t′)

)
= Resλλr

4
∗(t,−λ)(Lk)∗(t′)4∗(t′,λ)

= Resλλr
4
∗(t,−λ)

(
B∗k(t′)−

m∑
j=1

(
Q(q2 j)(t′)∂−1

x′ ·q1 j(t′)

+(−1)rQ(q1 j)(t′)∂−1
x′ ·q2 j(t′)

))
4
∗(t′,λ)

= −

m∑
j=1

Resλλr
4
∗(t,−λ)

(
Q(q2 j)(t′)Ω

(
q1 j(t′),4∗(t′,λ)

)
+(−1)rQ(q1 j)(t′)Ω

(
q2 j(t′),4∗(t′,λ)

))
. (3.29)

According to Q(q1 j)(t′) and Q(q2 j)(t′) are independent, and from the comparison of both sides

Q(ql j)(t) = −Resλλr
4
∗(t,−λ)Ω

(
ql j(t′),4∗(t′,λ)

)
, l = 1, 2. (3.30)

�

Proposition 3.4. Let 4(t,λ) and 4∗(t,λ) be expressed by 4 = S (eξ(t,λ)) and 4∗ = (S −1)∗(e−ξ(t,λ))
respectively, where 4 = 1 +

∑∞
n=1 sn∂

−n and ξ(t,λ) =
∑∞

n=0 t2n+1λ
2n+1. And define Q = (S −1)∗∂rS −1.

If 4 and 4∗ satisfy Eq. (3.25) and Eq. (3.26), then Q = Q+, ∂t2n+1S = −(S ∂2n+1
x S −1)<0S and

(Lk)<0 =
∑m

j=1

(
q1 j∂

−1
x ·Q(q2 j) + (−1)rq2 j∂

−1
x ·Q(q1 j)

)
. Therefore, Eq. (3.25) and Eq. (3.26) satisfy

the characteristics of the constrained BCr-KP hierarchy.

Proof. Firstly, we prove Eq. (3.26) implies the bilinear identity Eq. (3.7). By differentiating both
sides of Eq. (3.26) with respect to x′,

∂x′(Q(ql j)(t)) = 0 = −Resλλr
4
∗(t,−λ)ql j(t′)4∗(t′,λ), l = 1,2. (3.31)

It is obvious that

Resλλr
4
∗(t,−λ)4∗(t′,λ) = 0. (3.32)

On the other hand, by differentiating both sides of Eq. (3.25) with respect to t2n+1,
m∑

j=1

(
∂t2n+1 Q(q1 j)(t)Q(q2 j)(t′) + (−1)r∂t2n+1 Q(q2 j)(t)Q(q1 j)(t′)

)
= −Resλλk+rB∗2n+1(t)4∗(t,−λ)4∗(t′,λ)

= −

m∑
j=1

(
B∗2n+1

(
Q(q1 j)(t)

)
Q(q2 j)(t′) + (−1)rB∗2n+1

(
Q(q2 j)(t)

)
Q(q1 j)(t′)

)
, (3.33)
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which means that Q(ql j)(t) is the adjoint eigenfunction, since Q(q1 j)(t) and Q(q2 j)(t) are indepen-
dent. By differentiating both sides of ql j(t) = Q−1

(
Q(ql j)(t)

)
with respect to t2n+1, according to Eq.

(2.10) and Q(ql j)(t) is the adjoint eigenfunction

∂t2n+1ql j(t) = −Q−1∂t2n+1 Q ·Q−1
(
Q(ql j)(t)

)
+ Q−1 ·∂t2n+1

(
Q(ql j)(t)

)
= B2n+1(ql j(t)). (3.34)

So ql j(t) is the eigenfunction.
Finally, by applying Q−1(t) on Eq. (3.25), formally expanding at t′ = t and according to Eq.

(2.13) and Lemma 3.1

m∑
j=1

(
q1 j(t)∂

p
x Q(q2 j)(t) + (−1)rq2 j(t)∂

p
x Q(q1 j)(t)

)
= Resλλk+rQ−1(t)4∗(t,−λ)∂p

x4
∗(t,λ)

= ResλLkS exλ∂
p
x (S −1)∗e−xλ

= (−1)pRes∂x Lk∂
p
x . (3.35)

This implies that the negative part of the Lax operator Lk has the form Eq. (2.20). It is proved that
Eq. (3.25) and Eq. (3.26) satisfy the characteristics of the constrained BCr-KP hierarchy. �

4. Squared Eigenfunction Symmetries of the BCr-KP Hierarchy and its Constrained
Case

We construct the squared eigenfunction symmetries associated with the BCr-KP hierarchy and its
constrained case in this section.

Denoting the corresponding group parameter as α, we define the squared eigenfunction flow by

∂αS =

m∑
i=1

(
φ1i∂

−1
x ·Q(φ2i) + (−1)rφ2i∂

−1
x ·Q(φ1i)

)
S , (4.1)

or

∂αL =
[ m∑

i=1

(
φ1i∂

−1
x ·Q(φ2i) + (−1)rφ2i∂

−1
x ·Q(φ1i)

)
,L

]
, (4.2)

It is essential that the definition of ∂α must keep the BCr-constraint. The next proposition will
explain the definition of ∂α is reasonable.

Proposition 4.1. For the BCr-KP hierarchy,

∂αQ = (∂αQ)+. (4.3)

Proof. According to Eq. (2.15)

∂αQ = −(S −1)∗∂αS ∗ · (S −1)∗∂r
xS −1− (S −1)∗∂r

xS −1∂αS ·S −1

= −(∂αS ·S −1)∗Q−Q∂αS ·S −1. (4.4)
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According to Eq. (2.4), Eq. (4.1) and Q∗ = (−1)rQ, we can obtain that

(∂αQ)− = −
(
(∂αS ·S −1)∗Q + Q∂αS ·S −1

)
−

= −

m∑
i=1

((
φ1i∂

−1
x ·Q(φ2i) + (−1)rφ2i∂

−1
x ·Q(φ1i)

)∗Q
+Q

(
φ1i∂

−1
x ·Q(φ2i) + (−1)rφ2i∂

−1
x ·Q(φ1i)

))
−

=

m∑
i=1

(
Q(φ2i)∂−1

x ·Q
∗(φ1i) + (−1)rQ(φ1i)∂−1

x ·Q
∗(φ2i)

−Q(φ1i)∂−1
x ·Q(φ2i)− (−1)rQ(φ2i)∂−1

x ·Q(φ1i)
)

= 0. (4.5)

�

Next, we need to check [∂α,∂t2n+1] = 0, which means that ∂α is the symmetry of the BCr-KP
hierarchy.

Proposition 4.2. For the BCr-KP hierarchy,

[∂α,∂t2n+1] = 0. (4.6)

Proof. For convenience, assume M′ =
∑m

i=1

(
φ1i∂

−1
x ·Q(φ2i) + (−1)rφ2i∂

−1
x ·Q(φ1i)

)
. Then

∂αL = [M′,L] =⇒ ∂αL2n+1 = [M′,L2n+1], (4.7)

whence the projection to differential orders ≥ 0 yields to ∂αB2n+1 = [M′,L2n+1]≥0. Because M′ ∈ g<0

and [g<0,g<0] ⊂ g<0

∂αB2n+1 = [M′, (L2n+1)≥0 + (L2n+1)<0]≥0 = [M′,B2n+1]≥0. (4.8)

On the other hand, according to Eq. (2.4)

[B2n+1,M′]<0 =

m∑
i=1

(
B2n+1

(
φ1i∂

−1
x ·Q(φ2i) + (−1)rφ2i∂

−1
x ·Q(φ1i)

))
<0

−

m∑
i=1

((
φ1i∂

−1
x ·Q(φ2i) + (−1)rφ2i∂

−1
x ·Q(φ1i)

)
B2n+1

)
<0

=

m∑
i=1

(
B2n+1(φ1i)∂−1

x ·Q(φ2i) + (−1)rB2n+1(φ2i)∂−1
x ·Q(φ1i)

)
−

m∑
i=1

(
φ1i∂

−1
x ·B

∗
2n+1

(
Q(φ2i)

)
+ (−1)rφ2i∂

−1
x ·B

∗
2n+1

(
Q(φ1i)Bn

))
, (4.9)

one concludes

[B2n+1,M′]<0 = ∂t2n+1 M′. (4.10)

The pseudo-differential zero curvature equation will be obtained by Eq. (4.8) and Eq. (4.10),

∂αB2n+1−∂t2n+1 M′ = [M′,B2n+1]. (4.11)
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This establishes the commutativity of the squared eigenfunction flow and the Lax hierarchy:

∂t2n+1 Lα−∂αLt2n+1 = [M′,L]t2n+1 − [B2n+1,L]α
= [M′t2n+1

−∂αB2n+1,L] + [M′,Lt2n+1]− [B2n+1,Lα]

=
[
∂t2n+1 M′−∂αB2n+1 + [M′,B2n+1],L

]
= 0. (4.12)

�

Remark 4.1. If identifying the squared eigefunction symmetry flow ∂α with the time flow −∂t2k−1

in the BCr-KP hierarchy, one can obtain the following constraint on the Lax operator

(Lk)<0 =

m∑
i=1

(
φ1i ·∂

−1
x ·Q(φ2i) + (−1)rφ2i ·∂

−1
x ·Q(φ1i)

)
, (4.13)

which is just the definition of the constrained BCr-KP hierarchy and k is odd.

Then we will consider the actions of ∂α on eigenfunctions.

Proposition 4.3. The squared eigenfunction symmetry of Proposition 4.2 is the compatibility con-
dition of the linear problems:

φt2n+1 = (L2n+1)≥0(φ), φα =

m∑
i=1

(
φ1iΩ

(
Q(φ2i),φ

)
+ (−1)rφ2iΩ

(
Q(φ1i),φ

))
. (4.14)

Proof. The aim is to prove (φt2n+1)α = (φα)t2n+1 with the help of Eq. (4.1) or Eq. (4.2). At first,

∂t2n+1φα =

m∑
i=1

(
B2n+1(φ1i)Ω(Q(φ2i),φ) + (−1)rB2n+1(φ2i)Ω(Q(φ1i),φ)

)
+

m∑
i=1

Res∂
(
φ1i∂

−1
x ·Q(φ2i)B2n+1φ ·∂

−1
x + (−1)rφ2i∂

−1
x ·Q(φ1i)B2n+1φ ·∂

−1
x

)
=

m∑
i=1

(
B2n+1(φ1i)Ω(Q(φ2i),φ) + (−1)rB2n+1(φ2i)Ω(Q(φ1i),φ)

)
+Res∂(M′B2n+1φ∂

−1
x ). (4.15)

According to Eq. (4.11), we obtain that

∂αB2n+1−∂t2n+1 M′ = M′B2n+1−B2n+1M′. (4.16)

Therefore

∂t2n+1φα =

m∑
i=1

(
B2n+1(φ1i)Ω(Q(φ2i),φ) + (−1)rB2n+1(φ2i)Ω(Q(φ1i),φ)

)
+Res∂x(∂αB2n+1 ·φ∂

−1
x )−Res∂(M′t2n+1

φ∂−1
x ) + Res∂(B2n+1M′φ∂−1

x ). (4.17)

According to Eq. (2.3), the second term yields

Res∂x(∂αB2n+1 ·φ∂
−1
x ) = ∂αB2n+1(φ). (4.18)
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Because M′t2n+1
∂−1

x ∈ g<0, the third term yields

Res∂x(M′t2n+1
φ∂−1

x ) = 0. (4.19)

According to fx = ∂x f − f∂x, the fourth term yields

Res∂x(B2n+1M′φ∂−1
x ) =

m∑
i=1

Res∂x

(
B2n+1φ1i∂

−1
x ·Q(φ2i)φ∂−1

x + (−1)rB2n+1φ2i∂
−1
x ·Q(φ1i)φ∂−1

x

)
=

m∑
i=1

Res∂x

(
B2n+1φ1i∂

−1
x ·

(
∂xΩ(Q(φ2i),φ)−Ω(Q(φ2i),φ)∂x

)
·∂−1

x

)
+

m∑
i=1

Res∂x

(
(−1)rB2n+1φ2i∂

−1
x ·

(
∂xΩ(Q(φ1i),φ)−Ω(Q(φ1i),φ)∂x

)
·∂−1

x

)
= B2n+1

( m∑
i=1

(
φ1iΩ(Q(φ2i),φ) + (−1)rφ2iΩ(Q(φ1i),φ)

))
−

m∑
i=1

(
B2n+1(φ1i)Ω(Q(φ2i),φ) + (−1)rB2n+1(φ2i)Ω(Q(φ1i),φ)

)
, (4.20)

whence

∂t2n+1φα =

m∑
i=1

(
B2n+1(φ1i)Ω(Q(φ2i),φ) + (−1)rB2n+1(φ2i)Ω(Q(φ1i),φ)

)
+∂αB2n+1(φ) + B2n+1

( m∑
i=1

(
φ1iΩ(Q(φ2i),φ) + (−1)rφ2iΩ(Q(φ1i),φ)

))
−

m∑
i=1

(
B2n+1(φ1i)Ω(Q(φ2i),φ) + (−1)rB2n+1(φ2i)Ω(Q(φ1i),φ)

)
= ∂αB2n+1(φ) + B2n+1(φα) = ∂αφt2n+1 . (4.21)

�

Now we study the commutativity of two squared eigenfunction symmetries generated by eigen-
functions φli and ql j (l = 1, 2, i = 1, , . . . ,m, j = 1, 2, . . . ,m), separately.

Proposition 4.4. Let φli and ql j (l = 1, 2, i = 1, 2, . . . ,m, j = 1, 2, . . . ,m) satisfy

∂t2n+1(φli) = (L2n+1)≥0(φli), ∂t2n+1(ql j) = (L2n+1)≥0(ql j), (4.22)

and

∂α2(φli) =

m∑
j=1

(
q1 jΩ(Q(q2 j),φli) + (−1)rq2 jΩ(Q(q1 j),φli)

)
, (4.23)

∂α1(ql j) =

m∑
i=1

(
φ1iΩ(Q(φ2i),ql j) + (−1)rφ2iΩ(Q(φ1i),ql j)

)
. (4.24)
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Then

M′ =

m∑
i=1

(
φ1i∂

−1
x ·Q(φ2i) + (−1)rφ2i∂

−1
x ·Q(φ1i)

)
, (4.25)

M′′ =

m∑
j=1

(
q1 j∂

−1
x ·Q(q2 j) + (−1)rq2 j∂

−1
x ·Q(q1 j)

)
, (4.26)

satisfy the zero curvature equation M′α2
−M′′α1

= [M′′,M′], further [∂α1 ,∂α2] = 0.

Proof. At first, we consider M′α2
and M′′α1

M′α2
=

m∑
i=1

(
(φ1i)α2∂

−1
x ·Q(φ2i) + (−1)r(φ2i)α2∂

−1
x ·Q(φ1i)

)
+

m∑
i=1

(
φ1i∂

−1
x ·

(
Q(φ2i)

)
α2

+ (−1)rφ2i∂
−1
x ·

(
Q(φ1i)

)
α2

)
, (4.27)

M′′α1
=

m∑
j=1

(
(q1 j)α1∂

−1
x ·Q(q2 j) + (−1)r(q2 j)α1∂

−1
x ·Q(q1 j)

)
+

m∑
j=1

(
q1 j∂

−1
x ·

(
Q(q2 j)

)
α1

+ (−1)rq2 j∂
−1
x ·

(
Q(q1 j)

)
α1

)
. (4.28)

According to Eq. (4.25), Eq. (4.26) and ∂−1
x fx∂

−1
x = f∂−1

x −∂
−1
x f , we calculate [M′′,M′] = M′′M′−

M′M′′

M′′M′ =

m∑
j=1

m∑
i=1

(
q1 j∂

−1
x ·Q(q2 j)φ1i∂

−1
x Q(φ2i) + (−1)rq1 j∂

−1
x ·Q(q2 j)φ2i∂

−1
x Q(φ1i)

+(−1)rq2 j∂
−1
x ·Q(q1 j)φ1i∂

−1
x Q(φ2i) + q2 j∂

−1
x ·Q(q1 j)φ2i∂

−1
x Q(φ1i)

)
=

m∑
j=1

m∑
i=1

(
q1 jΩ

(
Q(q2 j),φ1i

)
∂−1

x ·Q(φ2i)−q1 j∂
−1
x ·Ω

(
Q(q2 j),φ1i

)
Q(φ2i)

+(−1)rq1 jΩ
(
Q(q2 j),φ2i

)
∂−1

x ·Q(φ1i)− (−1)rq1 j∂
−1
x ·Ω

(
Q(q2 j),φ2i

)
Q(φ1i)

+(−1)rq2 jΩ
(
Q(q1 j),φ1i

)
∂−1

x ·Q(φ2i)− (−1)rq2 j∂
−1
x ·Ω

(
Q(q1 j),φ1i

)
Q(φ2i)

+q2 jΩ
(
Q(q1 j),φ2i

)
∂−1

x ·Q(φ1i)−q2 j∂
−1
x ·Ω

(
Q(q1 j),φ2i

)
Q(φ1i)

)
(4.29)

We can get M′M′′ by exchanging φl j with ql j in Eq. (4.29), where l = 1,2. So

M′α2
−M′′α1

− [M′′,M′] = M′α2
−M′′α1

−M′′M′+ M′M′′ = 0. (4.30)

Hence

[∂α1 ,∂α2]L = ∂α1[M′′,L]−∂α2[M′,L]

= [∂α1 M′′−∂α2 M′,L] +
[
M′′, [M′,L]

]
−

[
M′, [M′′,L]

]
=

[
M′α2
−M′′α1

− [M′′,M′],L
]

= 0. (4.31)

�
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At last, we consider the squared eigenfunction symmetries associated with the constrained BCr-
KP hierarchy.

Proposition 4.5. The constrained BCr-KP hierarchy

Lk = (Lk)≥0 +

m∑
j=1

(
q1 j∂

−1
x ·Q(q2 j) + (−1)rq2 j∂

−1
x ·Q(q1 j)

)
is invariant under the squared eigenfunction flow

∂αL =
[ m∑

i=1

(
φ1i∂

−1
x ·Q(φ2i) + (−1)rφ2i∂

−1
x ·Q(φ1i)

)
,L

]
, (4.32)

∂αql j =

m∑
i=1

(
φ1iΩ

(
Q(φ2i),ql j

)
+ (−1)rφ2iΩ

(
Q(φ1i),ql j

))
, (4.33)

if φl1, . . . ,φlm and Q(φl1), . . . ,Q(φlm) satisfy

Bk(φ1i) +

m∑
j=1

(
q1 jΩ

(
Q(q2 j),φ1i

)
+ (−1)rq2 jΩ

(
Q(q1 j),φ1i

))
= λiφ1i, (4.34)

Bk(φ2i) +

m∑
j=1

(
q1 jΩ

(
Q(q2 j),φ2i

)
+ (−1)rq2 jΩ

(
Q(q1 j),φ2i

))
= (−1)rλiφ2i. (4.35)

with arbitrary spectral parameters, l = 1,2, λi ∈C and k is odd.

Proof. M′ and M′′ are defined by Eq. (4.25) and Eq. (4.26) respectively,(
(Lk)<0−

m∑
j=1

(
q1 j∂

−1
x ·Q(q2 j) + (−1)rq2 j∂

−1
x ·Q(q1 j)

) )
α

= ∂α(Lk)<0−M′α = [M′,Bk + M′′]<0−M′α
= [M′,Bk]<0︸      ︷︷      ︸

(a)

+ [M′,M′′]<0−M′α︸               ︷︷               ︸
(b)

. (4.36)

According to Eq. (4.9),

(a) = −

m∑
i=1

(
Bk(φ1i)∂−1

x ·Q(φ2i) + (−1)rBk(φ2i)∂−1
x ·Q(φ1i)

)
+

m∑
i=1

(
φ1i∂

−1
x ·B

∗
k
(
Q(φ2i)

)
+ (−1)rφ2i∂

−1
x ·B

∗
k
(
Q(φ1i)

))
. (4.37)

So according to Eq. (2.4), Eq. (4.29) and Eq. (4.33),

(b) = −

m∑
j=1

m∑
i=1

(
q1 jΩ

(
Q(q2 j),φ1i

)
∂−1

x ·Q(φ2i)−q1 j∂
−1
x ·Ω

(
Q(q2 j),φ1i

)
Q(φ2i)

+(−1)rq1 jΩ
(
Q(q2 j),φ2i

)
∂−1

x ·Q(φ1i)− (−1)rq1 j∂
−1
x ·Ω

(
Q(q2 j),φ2i

)
Q(φ1i)

+(−1)rq2 jΩ
(
Q(q1 j),φ1i

)
∂−1

x ·Q(φ2i)− (−1)rq2 j∂
−1
x ·Ω

(
Q(q1 j),φ1i

)
Q(φ2i)

+q2 jΩ
(
Q(q1 j),φ2i

)
∂−1

x ·Q(φ1i)−q2 j∂
−1
x ·Ω

(
Q(q1 j),φ2i

)
Q(φ1i)

)
. (4.38)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

417



L.M. Geng et al. / Bilinear Identities and Squared Eigenfunction Symmetries of the BCr-KP Hierarchy

By Eq. (4.34) and Eq. (4.35), one can notice that (a) + (b) = 0. �

5. Conclusions and Discussions

Firstly, the bilinear identities of the BCr-KP hierarchy are investigated in Proposition 3.1 and Propo-
sition 3.2, and the bilinear identities of the constraint case are studied in Proposition 3.3 and Propo-
sition 3.4. Next, the squared eigenfunction symmetries are constructed in Eq. (4.1) and Eq. (4.2).
And the corresponding definition is showed to be reasonable in Proposition 4.1 and Proposition 4.2.
What’s more, the actions of the squared eigenfunctions symmetry on the eigenfunction are given
in Proposition 4.3. Also the commutativity of two different squared eigenfunction symmetries are
discussed in Proposition 4.4. Lastly the squared eigenfunction symmetries associated with the con-
strained BCr-KP hierarchy are studied in Proposition 4.5.

The bilinear identities of the BCr-KP hierarchy can help us to discuss the existence of the tau
functions. Though the tau functions of the BKP and CKP hierarchies are investigated in [3, 8], it
is still worth studying the tau functions of the BCr-KP hierarchies for r ≥ 2. Just as we have said
in Section 1, the squared eigenfunction symmetry can used to define the new integrable systems
and study the additional symmetry. In fact, the constrained BCr-KP hierarchy can be obtained by
identify ∂α with −∂t2n+1 . The generating operator YBCr (λ,µ) [28] of the additional symmetries of the
BCr-KP hierarchy can be used to define the squared symmetry ∂α, and therefore,

∂α = −

∞∑
m=0

(µ−λ)m

m!

∞∑
l=−∞

λ−l−m−1∂∗m,m+l. (5.1)

So the squared eigenfunction symmetry defined by the (adjoint) wave functions 4(t,µ) and 4∗(t,λ)
can be viewed as the generator of the additional symmetries.
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