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In this note we prove that the method of Bı̂lã and Niesen to determine nonclassical determining equations is
equivalent to that of Nucci’s method with heir-equations and thus in general is equivalent to using an appropriate
form of generalised conditional symmetry.
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1. Introduction

The focus here is on showing the equivalence of different approaches to finding the nonclassical
determining equations for the partial differential equation (PDE),

ut = K(x, t,u,ux,uxx). (1.1)

In particular we address the problem posed by Hashemi and Nucci [4] who considered equations of
the form (1.1): “We hope that an independent researcher will take up the task of comparing the two
methods [of Bı̂lã and Niesen and Nucci] since we conjecture that Bı̂lã and Niesen’s method, and its
extension, as given in [2], are equivalent to Nucci’s method.”

We consider the symmetry generator

Γ = X(x, t,u)
∂

∂x
+T (x, t,u)

∂

∂ t
+U(x, t,u)

∂

∂u
(1.2)

and start by considering the case when the infinitesimal T (x, t,u) 6= 0..

2. TTT 6 6 6=== 000

With T 6= 0, the corresponding invariant surface condition (ISC) is given by

Xux +Tut =U. (2.1)

In the traditional approach, nonclassical symmetries of (1.1) are defined by

Γ
(2)[ut −K(x, t,u,ux,uxx)]|ut=K∩{Xux+Tut=U} (2.2)
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where Γ(2) is the second prolongation of Γ, namely,

Γ
(2) = X

∂

∂x
+T

∂

∂ t
+U

∂

∂u
+U[x]

∂

∂ux
+U[t]

∂

∂ut
+U[xx]

∂

∂uxx
, (2.3)

where

U[x] = DxU− (DxX)ux− (DxT )ut , U[t] = DtU− (DtX)ux− (DtT )ut ,

U[xx] = Dx(U[x])−Dx(X)uxx−Dx(T )uxt . (2.4)

Hence for nonclassical symmetries, we seek the invariance of the governing PDE subject
to the PDE itself and the ISC (and its differential consequences). We note however that if
f (x, t,u) is an arbitrary function, then the prolongation formula implies [ f (x, t,u)Γ](n)|{Xux+Tut=U}=

f (x, t,u)Γ(n)|{Xux+Tut=U}. That is, by imposing the ISC we have [ f (x, t,u)Γ](n)|{Xux+Tut=U} =

f (x, t,u)Γ(n). Hence if Γ is a nonclassical symmetry then f (x, t,u)Γ is also a nonclassical symmetry
yielding the same invariant surface condition. This allows us to normalise any one of the nonzero
coefficients of the vector field by setting it equal to one when finding nonclassical symmetries.
Hence in the following, WLOG we set T = 1.

Applying (2.2) with T = 1 we get the condition

U[t]−XKx−Kt −UKu−U[x]Kux−U[xx]Kuxx = 0, (2.5)

subject to ut = K∩{Xux +ut =U}.
We can further expand this as

Ut +Uu(U−Xux)−Xtux−Xu(U−Xux)ux−XKx−Kt −UKu−U[x]Kux−U[xx]Kuxx = 0 (2.6)

subject to U−Xux = K, where we have used ut =U−Xux and the definition of U[t].
Bı̂lã and Niesen [1] use the approach

Γ
(2)[φ(x, t,u)/T ′(x, t,u)−ξ (x, t,u)/T ′(x, t,u)ux−K(x, t,u,ux,uxx)]|φ/T ′−ξ/T ′ux=K (2.7)

where the ISC ut = φ/T ′− ξ/T ′ux has been substituted into the governing equation before tak-
ing the second prolongation. Treating φ and ξ as arbitrary functions of x, t,u means that (2.7) is
equivalent to finding the determining equations for classical symmetries of the ordinary differential
equation φ/T ′−ξ/T ′ux−K(x, t,u,ux,uxx) = 0. Then substituting φ =U,ξ = X ,T ′ = 1 leads to the
determining equations for nonclassical symmetries of (1.1).

Hence Bı̂lã and Niesen essentially use the approach

Γ
(2)[U−Xux−K(x, t,u,ux,uxx)]|U−Xux=K . (2.8)

This gives

X [Ux−Xxux−Kx]+ [Ut −Xtux−Kt ]+U [Uu−Xuux−Ku]−XU[x]−KuxU[x]−KuxxU[xx] = 0, (2.9)

subject to U−Xux = K, or

X [Ux−Xxux−Kx]+ [Ut −Xtux−Kt ]+U [Uu−Xuux−Ku]−X [Ux +Uuux−Xxux−Xuu2
x ]

−KuxU[x]−KuxxU[xx] = 0, (2.10)
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subject to U−Xux = K. The condition simplifies to

−XKx +[Ut −Xtux−Kt ]+U [Uu−Xuux−Ku]−X [Uuux−Xuu2
x ]−KuxU[x]−KuxxU[xx] = 0, (2.11)

subject to U−Xux = K. As (2.6) and (2.11) are the same conditions they lead to the same nonclas-
sical determining equations.

Comparison with Nucci’s method

It has been shown in [3] that Nucci’s method of heir-equations is essentially the same as the gener-
alised conditional symmetries (GCS) method. Hence the method of finding the determining equa-
tions for nonclassical symmetries as described in [4] and [5] can be written as

Γ(σ)[ut −K(x, t,u,ux,uxx)]|σ=0∩ut=K (2.12)

where σ = K(x, t,u,ux,uxx)−U(x, t,u)+X(x, t,u)ux and

Γ(σ) = σ
∂

∂u
+(Dtσ)

∂

∂ut
+(Dxσ)

∂

∂ux
+ · · · (2.13)

This condition is equivalent to

σt +σuK +σux(DxK)+σuxx(DxxK) = 0, (2.14)

subject to σ = 0 (i.e. U−Xux = K) and its differential consequences with respect to x.
From (2.14) we get that the condition can be expressed as

0 = Kt −Ut +Xtux +(Ku−Uu +Xuux)K +(Kux +X)DxK +KuxxDxxK

= Kt −Ut +Xtux +(Ku−Uu +Xuux)(U−Xux)

+(Kux +X)[Ux +Uuux− (Xx +Xuux)ux−Xuxx]+KuxxDxxK

= Kt −Ut +Xtux +(Ku−Uu +Xuux)(U−Xux)+(Kux +X)[U[x]−Xuxx]

+Kuxx [Dx(U[x]−Xuxx)]

= Kt −Ut +Xtux +(Ku−Uu +Xuux)(U−Xux)+(Kux +X)[U[x]−Xuxx]

+Kuxx [U[xx]−Xuxxx]

subject to U−Xux = K as Dx(U[x]−Xuxx) =U[xx]+Dx(X)uxx−Dx(X)uxx−Xuxxx.

This can be further rewritten as

Kt −Ut +Xtux +(Ku−Uu +Xuux)U +(Kux +X)U[x]+KuxxU[xx]

−Xux(Ku−Uu +Xuux)−Xuxx(Kux +X)−XuxxxKuxx = 0, (2.15)

subject to U−Xux = K.
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Now consider

−Xux(Ku−Uu +Xuux)−Xuxx(Kux +X)−XuxxxKuxx

=−X{[Kx +uxKu +uxxKux +uxxxKuxx ]− [(Ux−Xxux)+(Uuux−Xuu2
x)−Xuxx]}

+X(Kx−Ux +Xxux)

= X(Kx−Ux +Xxux)

Hence from (2.15), the condition is

Kt −Ut +Xtux +(Ku−Uu +Xuux)U +(Kux +X)U[x]+KuxxU[xx]+X(Kx−Ux +Xxux) = 0, (2.16)

subject to U−Xux = K. Comparing (2.16) with (2.9) we see they are equivalent.

3. TTT === 000

When the infinitesimal symmetry T = 0 in (1.2), then as explained in the previous section, WLOG
we can set X = 1. In the traditional approach we find the nonclassical determining equations using

Γ
(2)
0 [ut −K(x, t,u,ux,uxx)]|ut=K∩ux=U (3.1)

where Γ
(2)
0 is the second prolongation of Γ0 =

∂

∂x +U(x, t,u) ∂

∂u , namely,

Γ
(2)
0 =

∂

∂x
+U

∂

∂u
+U[x]

∂

∂ux
+U[t]

∂

∂ut
+U[xx]

∂

∂uxx
. (3.2)

With T = 0,X = 1 we have U[x] = DxU , U[t] = DtU , U[xx] = Dx(U[x]).
Hence applying (3.1) we get the condition U[t]−Kx−UKu−U[x]Kux −U[xx]Kuxx = 0, subject to

ut = K∩ux =U.

We can further expand this as

U[t]−Kx−UKu−Kux [Ux +UuU ]−Kuxx [Uxx +2UxuU +UuuU2 +Uu(Ux +UuU)] = 0, (3.3)

subject to ut = K, where we have used ux =U and the definition of U[x] and U[xx].
In [2], Bruzón and Gandarias extend the method of Bı̂lã and Niesen to the case T = 0. They use

the approach

Γ
(2)
0 [ut −K(x, t,u,U ′/X ′,Dx(U ′/X ′)]|ut=K(x,t,u,U ′/X ′,Dx(U ′/X ′)) (3.4)

where the ISC ux = U ′(x, t,u)/X ′(x, t,u) has been substituted into the governing equation before
taking the second prolongation. Treating U ′ and X ′ as arbitrary functions of x, t,u means
that (3.4) is equivalent to finding the determining equations for classical symmetries of ut =

K(x, t,u,U ′/X ′,Dx(U ′/X ′)). Then substituting U ′ = U,X ′ = 1, leads to the determining equations
for nonclassical symmetries of (1.1).

Hence Bruzón and Gandarias essentially use the approach
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Γ
(2)
0 [ut −K(x, t,u,U,Ux +UuU ]|ut=K(x,t,u,U,Ux+UuU). (3.5)

Letting z =Ux +Uuux(= uxx), this gives

U[t]− [Kx +KUUx +Kz(Uxx +UuxU)]−U [Ku +KUUu +Kz(Uxu +UuuU)]−U[x]KzUu = 0 (3.6)

subject to ut = K, or

U[t]− [Kx +KUUx +Kz(Uxx +UuxU)]−U [Ku +KUUu +Kz(Uxu +UuuU)]

−KzUu(Ux +UuU) = 0, (3.7)

subject to ut = K. As (3.3) and (3.7) are the same conditions they lead to the same nonclassical
determining equations.

Comparison with Nucci’s method

With the infinitesimals T = 0, X = 1, Nucci’s method can be expressed as

Γ(σ)[ut −K(x, t,u,ux,uxx)]|σ=0∩ut=K (3.8)

where σ = ux−U(x, t,u) and

Γ(σ) = σ
∂

∂u
+(Dtσ)

∂

∂ut
+(Dxσ)

∂

∂ux
+ · · · (3.9)

This is equivalent to

σt +σuK +σux(DxK)+σuxx(DxxK) = 0, (3.10)

subject to ut = K, σ = 0 and its differential consequences with respect to x.
This leads to −Ut −UuK +DxK = 0, or with z = uxx,

0 = −Ut −UuK +Kx +KuU +KU(Ux +UuU)+Kz[Uxx +2UxuU +UuuU2 +Uu(Ux +UuU)]

= −U[t]+Kx +KuU +KU(Ux +UuU)+Kz[Uxx +2UxuU +UuuU2 +Uu(Ux +UuU)] (3.11)

subject to ut =K. Comparing (3.11) with (3.3) and (3.7) we see they all lead to the same determining
equations for nonclassical symmetries.

In conclusion, we find that the method of Bı̂lã and Niesen when the infinitesimal T 6= 0 and the
method of Bruzón and Gandarias when T = 0 are equivalent to that of Nucci’s method for finding
nonclassical symmetries of the diffusion equation (1.1) in that they lead to the same determining
equations.
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