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We are concerned with the probability that all the eigenvalues of a unitary ensemble with the weight function
w(x; t) = xα e−x− t

x , x ∈ [0,∞), α > −1, t ≥ 0, are greater than s. This probability is expressed as the quotient
of Dn(s, t) and its value at s = 0, where Dn(s, t) denotes the determinant of the n dimensional Hankel matrices
generated by the moments of w(x; t) on x∈ [s,∞). In this paper we focus specifically on the Hankel determinant
Dn(s, t) and its properties.

Based on the ladder operators adapted to the monic polynomials orthogonal with respect to w(x; t), and
from the associated supplementary conditions and a sum-rule, we show that the log-derivative of the Hankel
determinant, viewed as a function of s and t, satisfies a second order sixth degree partial differential equation,
where n appears as a parameter. In order to go to the thermodynamic limit, of infinitely large matrices, we
envisage a scenario where n→ ∞, s→ 0, and t→ 0 such that S := 4ns and T := (2n+1+α)t are finite. After
such a double scaling, the large finite n equation reduces to a second order second degree equation, in the
variables S and T , from which we derive the asymptotic expansion of the scaled Hankel determinant in three
cases of S and T : S→∞ with T fixed, S→ 0 with T > 0 fixed, and T →∞ with S > 0 fixed. The constant term in
the asymptotic expansion is shown to satisfy a difference equation and one of its solutions is the Tracy-Widom
constant.

Keywords: Hankel Determinant; Smallest eigenvalue; Double scaling.
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1. Introduction

A unitary ensemble of Hermitian matrices M = (Mi j)n×n has probability density

p(M)dM ∝e−tr v(M)vol(dM),

vol(dM) =
n

∏
i=1

dMii ∏
1≤ j<k≤n

d(ReM jk)d(ImM jk).
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Here v(M) is a matrix function [21] defined via Jordan canonical form and vol(dM) is called the
volume element [22]. In this paper, we consider

v(x) = v(x; t) =−α logx+ x+
t
x
, x ∈ [0,∞), α >−1, t ≥ 0.

Under an eigenvalue-eigenvector decomposition, the joint probability density function of the eigen-
values {xk}n

k=1 of this ensemble is given by [29]

1
Dn[w]

1
n! ∏

1≤i< j≤n
(x j− xi)

2
n

∏
k=1

w(xk; t), (1.1)

where Dn[w] is the normalization constant and w(x; t) is a positive weight function supported on
[0,∞) and defined by

w(x; t) := e−v(x;t) = xαe−x− t
x ,

which has finite moments

µk :=
∫

∞

0
xkw(x; t)dx, k = 0, 1, 2, . . . .

Denote by P(s, t,n) the probability that all the eigenvalues of this ensemble are greater than s, then

P(s, t,n) =

1
n!

∫
(s,∞)n

∏
1≤i< j≤n

(x j− xi)
2

n

∏
k=1

w(xk; t)dxk

1
n!

∫
(0,∞)n

∏
1≤i< j≤n

(x j− xi)
2

n

∏
k=1

w(xk; t)dxk

=

det
(∫

∞

s
xi+ jw(x; t)dx

)n−1

i, j=0

det
(∫

∞

0
xi+ jw(x; t)dx

)n−1

i, j=0

=:
Dn(s, t)
Dn(0, t)

.

Here note that the multiple integral is represented as the determinant of the Hankel (or moment)
matrix. See [32].

The Hankel determinant is a fundamental object in random matrix theory [29]. It can be used
to describe the eigenvalue distribution of the Gaussian, Laguerre and Jacobi unitary ensembles
[4, 27, 30] and also be applied to study the outage capacity and the error probability of multiple-
input multiple-output antenna wireless communication systems [9, 15].

An elementary approach to dealing with the Hankel determinant is to write it as the product of
the square of the L2 norms of the non-standard orthogonal polynomials. From the supplementary
conditions associated with the ladder operators for the orthogonal polynomials, we derive a series
of difference and differential equations to characterize the Hankel determinant, usually involving
a Painlevé equation or the associated σ form. Such a formalism has been applied to the Hankel
determinant generated by the deformation of the classical Gaussian weight [8, 16], the classical
Laguerre weight [1, 2], and the (shifted) classical Jacobi weight [3, 7, 17, 18].
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When the order of the Hankel matrix, n, becomes large, one chooses a suitable combination
of n and a parameter present in the weight function such that the combination remains finite in
the limit. Under such a double scaling, from the finite n equations, one can derive a differential
equation satisfied by the log-derivative of the scaled Hankel determinant in the scaled variable.
From this equation and by integration, the asymptotic expansion of the scaled Hankel determinant
is established. The constant term in the expansion is determined by using the linear statistics results
[14] based on logarithmic potential theory with an external field, sometimes referred to in this
context as Dyson’s Coulomb fluid approximation [19]. See for example [5,6,27] for the formulation.

In this paper we shall apply the approach described above for finite n and large n to study the
Hankel determinant

Dn(s, t) = det
(∫

∞

s
xi+ jw(x; t)dx

)n−1

i, j=0
,

with s≥ 0, and with the weight function

w(x; t) = xαe−x− t
x , α >−1, t ≥ 0.

As mentioned above, Dn(s, t) is connected with the smallest eigenvalue distribution of the singu-
larly deformed Laguerre unitary ensemble. The singular deformation here means that the Laguerre
weight or the Gamma density supported on [0,∞) is multiplied by a factor which vanishes infinitely
fast at x = 0, that is, e−

t
x , t > 0. The case s = 0 and the case t = 0 in Dn(s, t) have been investigated

for finite n in [13] and [1] respectively through the ladder operator framework, and are discussed for
large n in [5] and [27] respectively by means of the double scaling and logarithmic potential theory
with an external field. This two variable problem was suggested to the third author who spoke in
a Seminar at the National Taiwan University on the s = 0 problem. A person in the audience, sug-
gested that the same weight supported on the interval [s,∞) maybe an interesting problem to study,
since this would naturally lead to a PDE in the variables s and t which opens up a venue for the
investigation of varying scaling limits between the ‘gap’ and the ‘time’ variables.

Let h j(s, t) be the square of the L2 norm of monic polynomial Pj(x;s, t) orthogonal with respect
to w(x; t) over [s,∞):

h j(s, t)δ jk :=
∫

∞

s
Pj(x;s, t)Pk(x;s, t)w(x; t)dx, j, k = 0, 1, 2, . . . , (1.2)

and define p( j,s, t) by

Pj(x;s, t) = x j + p( j,s, t)x j−1 + · · ·+Pj(0;s, t).

Then Dn(s, t) admits a representation [32]

Dn(s, t) =
n−1

∏
j=0

h j(s, t).

From the orthogonality relation, there follows the three-term recurrence relation

zPn(z;s, t) = Pn+1(z;s, t)+αn(s, t)Pn(z;s, t)+βn(s, t)Pn−1(z;s, t), n≥ 0,

subject to the initial conditions

P0(z;s, t) := 1, β0(s, t)P−1(z;s, t) := 0,
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and the recurrence coefficients are given by

αn(s, t) = p(n,s, t)− p(n+1,s, t), βn(s, t) =
hn(s, t)

hn−1(s, t)
.

As an immediate consequence, we have

n−1

∑
j=0

α j(s, t) =−p(n,s, t).

This paper is built up as follows. By using (S1) and (S′2) (given later), we express in the next
section the recurrence coefficients αn(s, t) and βn(s, t) in terms of four auxiliary variables R?

n(s, t),
Rn(s, t), r?n(s, t) and rn(s, t), that satisfy a system of difference equations. Combining these expres-
sions with the equalities obtained from the differentiation of (1.2) over s and t, we establish a pair of
second order partial differential equations satisfied by R?

n(s, t) and Rn(s, t), and a large second order
sixth degree partial differential equation satisfied by Hn(s, t) :=

(
s ∂

∂ s + t ∂

∂ t

)
logDn(s, t). Based on

these results for finite n, we devote Section 3 to the large n analysis of Dn(s, t) by assuming n→ ∞,
s→ 0 and t → 0 such that S := 4ns and T := (2n+ 1+α)t are fixed. We derive the asymptotic
expansions of the scaled Hankel determinant in three cases of the new variables: S is large or small
with T fixed, and T is large with S > 0 fixed. The constant term in the expansion for each case is
shown to satisfy a difference equation in the last section, by using logarithmic potential theory with
an external field to evaluate Pn(z;s, t) at z = 0.

2. Difference Equations and Differential Equations

With the potential v(x) = v(x; t) given by

v(x) =−α logx+ x+
t
x
,

the monic polynomials {Pn(x;s, t)} orthogonal with respect to w(x; t) over [s,∞) satisfy a pair of
ladder operators which lower or raise the index n of Pn(x;s, t):(

∂

∂ z
+Bn(z)

)
Pn(z;s, t) = βn(s, t)An(z)Pn−1(z;s, t),(

∂

∂ z
−Bn(z)− v′(z)

)
Pn−1(z;s, t) =−An−1(z)Pn(z;s, t),

where An(z) = An(z;s, t) and Bn(z) = Bn(z;s, t) are defined by

An(z) :=
P2

n (y;s, t)w(y; t)
hn(s, t)(y− z)

∣∣∣∣y=∞

y=s

+
1

hn(s, t)

∫
∞

s

v′(z)− v′(y)
z− y

P2
n (y;s, t)w(y; t)dy,

Bn(z) :=
Pn(y;s, t)Pn−1(y;s, t)w(y; t)

hn−1(s, t)(y− z)

∣∣∣∣y=∞

y=s

+
1

hn−1(s, t)

∫
∞

s

v′(z)− v′(y)
z− y

Pn(y;s, t)Pn−1(y;s, t)w(y; t)dy.
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From the above ladder operators and the recurrence relation for Pn(z;s, t), one can derive two com-
patibility conditions satisfied by An(z) and Bn(z):

Bn+1(z)+Bn(z) = (z−αn(s, t))An(z)− v′(z), (S1)

1+(z−αn(s, t))(Bn+1(z)−Bn(z)) = βn+1(s, t)An+1(z)−βn(s, t)An−1(z). (S2)

(S1) and (S2) can be combined to give the ‘sum rule’:

B2
n(z)+ v′(z)Bn(z)+

n−1

∑
j=0

A j(z) = βn(s, t)An(z)An−1(z). (S′2)

Instrumental for the deductions that follow. See [11, 12, 28] for a detailed derivation. See also [23,
§ 3.2] for the form adapted to orthonormal polynomials.

For our problem, we have

v′(z)− v′(y)
z− y

=
α

zy
+

t
zy2 +

t
z2y

.

Hence, from the definitions of An(z) and Bn(z), and through integration by parts, we obtain

An(z) =
R?

n(s, t)
z− s

+
1−R?

n(s, t)
z

+
t Rn(s, t)

z2 ,

Bn(z) =
r?n(s, t)
z− s

− r?n(s, t)+n
z

+
t rn(s, t)

z2 .

(2.1)

Here the auxiliary quantities R?
n(s, t), Rn(s, t), r?n(s, t) and rn(s, t) are defined by

R?
n(s, t) :=

w(s; t)
hn(s, t)

P2
n (s;s, t),

Rn(s, t) :=
1

hn(s, t)

∫
∞

s

dy
y

P2
n (y;s, t)w(y; t),

r?n(s, t) :=
w(s; t)

hn−1(s, t)
Pn(s;s, t)Pn−1(s;s, t),

rn(s, t) :=
1

hn−1(s, t)

∫
∞

s

dy
y

Pn(y;s, t)Pn−1(y;s, t)w(y; t).

Note that Pn(s;s, t) is the evaluation of Pn(z;s, t) at z = s and w(s; t) = sαe−s− t
s .

2.1. The recurrence coefficients in terms of the auxiliary quantities

Substituting (2.1) into (S1) and (S′2), and by equating the residues, we can establish a set of equations
that will give insight into the recurrence coefficients αn(s, t), βn(s, t) and the auxiliary quantities.

From (S1), we arrive at three difference equations relating αn(s, t) to the auxiliary quantities:

r?n+1 + r?n = (s−αn)R?
n, (2.2)

rn+1 + rn = 1−αnRn, (2.3)

r?n+1 + r?n +2n+1 = αn(1−R?
n)− tRn−α. (2.4)
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From (S′2), we obtain the following difference equations involving βn, ∑
n−1
j=0 R j, ∑

n−1
j=0 R?

j , and the
auxiliary quantities:

(r?n)
2 = βnR?

nR?
n−1, (2.5)

r2
n− rn = βnRnRn−1, (2.6)

n− (2n+α)rn−2rnr?n + r?n = βn(Rn(1−R?
n−1)+Rn−1(1−R?

n)), (2.7)

(r?n +n)2− 2trnr?n
s

+ trn +
tr?n
s

+α(r?n +n)+ t
n−1

∑
j=0

R j

= βn(1−R?
n)(1−R?

n−1)−
βntRnR?

n−1

s
− βntR?

nRn−1

s
, (2.8)

−2r?n(r
?
n +n)+

2trnr?n
s

+ sr?n−
tr?n
s
−αr?n + s

n−1

∑
j=0

R?
j

= βnR?
n(1−R?

n−1)+βnR?
n−1(1−R?

n)+
βntRnR?

n−1

s
+

βntR?
nRn−1

s
. (2.9)

To continue, we make use of (2.2)-(2.7) to show that αn(s, t) and βn(s, t) are expressible in terms
of the auxiliary quantities and in turn satisfy a system of difference equations.

Lemma 2.1. The recurrence coefficients αn(s, t) and βn(s, t) are expressed in terms of
R?

n(s, t), Rn(s, t), r?n(s, t), and rn(s, t) by

αn(s, t) = 2n+1+α + sR?
n + tRn, (2.10)

βn(s, t) =
1

Rn
(n− (2n+α)rn−2rnr?n + r?n)−

r2
n− rn

R2
n

(1−R?
n)+

(r?n)
2

R?
n

. (2.11)

Proof. Subtracting (2.2) from (2.4) leads to (2.10). Eliminating R?
n−1 and Rn−1 from (2.7) by using

(2.5) and (2.6) results in (2.11). �

Proposition 2.1. The auxiliary quantities R?
n(s, t), Rn(s, t), r?n(s, t) and rn(s, t) satisfy the following

difference equations

r?n+1 + r?n = (s− (2n+1+α + sR?
n + tRn))R?

n, (2.12)

rn+1 + rn = 1− (2n+1+α + sR?
n + tRn)Rn, (2.13)

(r2
n− rn)R?

nR?
n−1 = (r?n)

2RnRn−1, (2.14)

(r?n)
2 (Rn(1−R?

n−1)+Rn−1(1−R?
n)
)
= (n− (2n+α)rn−2rnr?n + r?n)R

?
nR?

n−1, (2.15)

which can be solved with the initial conditions

R?
0(s, t) =

sαe−s− t
s∫

∞

s yαe−y− t
y dy

, R0(s, t) =
∫

∞

s yα−1e−y− t
y dy∫

∞

s yαe−y− t
y dy

, r?0(s, t) =0, r0(s, t) =0.
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Proof. Substituting (2.10) into (2.2) and (2.3) gives rise to (2.12) and (2.13) respectively. Getting
rid of βn from (2.5) and (2.6), we get (2.14). Eliminating βn from (2.7) by using (2.5) yields (2.15).

�

Finally, we present two expressions involving ∑
n−1
j=0

(
sR?

j(s, t)+t R j(s, t)
)
, which we will see are

crucial for the forthcoming derivations.

Lemma 2.2. We have

−
n−1

∑
j=0

(
sR?

j(s, t)+ t R j(s, t)
)
=p(n,s, t)+n(n+α) (2.16)

=sr?n(s, t)+ t rn(s, t)−βn(s, t)+n(n+α), (2.17)

and a combination of (2.16) and (2.17) gives rise to

βn(s, t) = sr?n(s, t)+ t rn(s, t)− p(n,s, t). (2.18)

Proof. Replacing n by j in (2.10), we have

α j(s, t) = 2 j+1+α + sR?
j(s, t)+ t R j(s, t).

Summing it from j = 0 to n−1, in view of ∑
n−1
j=0 α j(s, t) =−p(n,s, t), we come to (2.16). Equation

(2.17) results from the summation of (2.8) and (2.9). �

2.2. s evolution and t evolution

We shall consider the differentiation of

h j(s, t)δ jk :=
∫

∞

s
Pj(x;s, t)Pk(x;s, t)w(x; t)dx,

with s and t, with j = k = n and j = k+1 = n. We see that R?
n(s, t) and Rn(s, t) are closely related to

the log-derivative of hn(s, t), while r?n(s, t) and rn(s, t) are connected with the derivative of p(n,s, t).
With the aid of the identities in the previous subsection, we derive a system of first order partial
differential equations satisfied by R?

n(s, t), Rn(s, t), r?n(s, t) and rn(s, t).
Taking the derivative of

hn(s, t) =
∫

∞

s
P2

n (x;s, t)w(x; t)dx,

with respect to s and t, we get

∂s loghn(s, t) =−R?
n(s, t),

∂t loghn(s, t) =−Rn(s, t).
(2.19)

From the fact βn(s, t) = hn(s, t)/hn−1(s, t) and (2.19), it follows that

∂s logβn(s, t) = R?
n−1(s, t)−R?

n(s, t),

∂t logβn(s, t) = Rn−1(s, t)−Rn(s, t).
(2.20)
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We proceed with the differentiation with s and t on

0 =
∫

∞

s
Pn(x;s, t)Pn−1(x;s, t)w(x; t)dx,

to find,

∂s p(n,s, t) = r?n(s, t),

∂t p(n,s, t) = rn(s, t).
(2.21)

Hence, in view of αn(s, t) = p(n,s, t)− p(n+1,s, t), we find

∂s αn(s, t) = r?n(s, t)− r?n+1(s, t),

∂t αn(s, t) = rn(s, t)− rn+1(s, t).
(2.22)

Moreover, on combining (2.18) with (2.21), we come to a representation of βn(s, t) in terms of
p(n,s, t) and its first order partial derivatives:

βn(s, t) = (s∂s + t∂t) p(n,s, t)− p(n,s, t). (2.23)

Now, we are in a position to derive analogs of coupled Riccati equations: There are four equa-
tions instead of two.

Lemma 2.3. The auxiliary quantities R?
n(s, t), Rn(s, t), r?n(s, t) and rn(s, t) satisfy four first order

partial differential equations

s∂s R?
n + t∂s Rn = 2r?n +(2n+α + sR?

n + tRn)R?
n− sR?

n, (2.24)

s∂t R?
n + t∂t Rn = 2rn +(2n+α + sR?

n + tRn)Rn−1, (2.25)

s(∂s r?n)+ t (∂s rn) =(1−R?
n)

(
(r?n)

2

R?
n

+
R?

n

R2
n

(
r2

n− rn
))

+
R?

n

Rn
(2rnr?n− r?n +(2n+α)rn−n) ,

(2.26)

s∂t r?n +∂t rn =−
Rn

R?
n
(r?n)

2 +
2−R?

n

Rn
(r2

n− rn)

+2rnr?n− r?n +(2n+α)rn−n.
(2.27)

Proof. We differentiate (2.10), i.e.

αn(s, t) = 2n+1+α + sR?
n(s, t)+ tRn(s, t),

over s and t and in view of (2.22), to find,

r?n− r?n+1 = R?
n + s∂sR?

n + t∂sRn,

rn− rn+1 = Rn + s∂tR?
n + t∂tRn.

Getting rid of r?n+1 and rn+1 by using (2.12) and (2.13) respectively, we are led to (2.24) and (2.25).
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Taking the derivative of (2.18), i.e.

βn(s, t) = sr?n(s, t)+ t rn(s, t)− p(n,s, t),

with respect to s and t, and remembering that ∂s p(n,s, t) = r?n(s, t) and ∂t p(n,s, t) = rn(s, t), we find

βnR?
n−1−βnR?

n = s∂sr?n + t∂srn,

βnRn−1−βnRn = s∂tr?n + t∂trn.

According to (2.5) and (2.6), we replace βnR?
n−1 by (r?n)

2

R?
n

and βnRn−1 by r2
n−rn
Rn

in the above two
equations, then on removing βn by using (2.11) in the resulting equations, we arrive at (2.26) and
(2.27). �

We now look at the Hankel determinant in question, namely,

Dn(s, t) =det
(∫

∞

s
xi+ jw(x; t)dx

)n−1

i, j=0

=
n−1

∏
j=0

h j(s, t).

Applying s∂s + t∂t to

logDn(s, t) =
n−1

∑
j=0

logh j(s, t),

we get, because of (2.19),

(s∂s + t∂t) logDn(s, t) =−
n−1

∑
j=0

(
sR?

j(s, t)+ tR j(s, t)
)

(2.28)

=p(n,s, t)+n(n+α), (2.29)

where the second equality comes from (2.16). Applying s∂s + t∂t again to (2.29), in view of (2.21),
we find (

s2
∂ss +2st∂st + t2

∂tt
)

logDn(s, t)+(s∂s + t∂t) logDn(s, t) = sr?n(s, t)+ trn(s, t),

which combined with (2.29) yields(
s2

∂ss +2st∂st + t2
∂tt
)

logDn(s, t) =sr?n(s, t)+ trn(s, t)− p(n,s, t)−n(n+α)

=βn(s, t)−n(n+α), (2.30)

where the second equality is due to (2.18). Noting that

βn(s, t) =
Dn+1(s, t)Dn−1(s, t)

(Dn(s, t))
2 ,

which is a consequence of βn(s, t) = hn(s, t)/hn−1(s, t) and hn(s, t) = Dn+1(s, t)/Dn(s, t), we finally
establish the following statement from (2.30) which can be viewed as a two variable version of the
Toda-molecule equations.
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Proposition 2.2. The following second order partial differential-difference equation holds:(
s2

∂ss +2st∂st + t2
∂tt
)

logDn(s, t) =
Dn+1(s, t)Dn−1(s, t)

(Dn(s, t))
2 −n(n+α). (2.31)

By making the substitution

Dn(s, t) = (s+ t)n(n+α)D̂n(s, t),

this is transformed into(
s2

∂ss +2st∂st + t2
∂tt
)

log D̂n(s, t) = (s+ t)2 D̂n+1(s, t)D̂n−1(s, t)(
D̂n(s, t)

)2 .

To close this subsection, we apply (2.10), (2.20) and (2.22), namely the expressions involving
the recurrence coefficients and their first order partial derivatives, to derive the results below.

Proposition 2.3. The following partial differential relations hold for the recurrence coefficients
αn(s, t) and βn(s, t):

(s∂s + t∂t −1)αn(s, t) = βn(s, t)−βn+1(s, t), (2.32)

(s∂s + t∂t) logβn(s, t) = αn−1(s, t)−αn(s, t)+2, (2.33)

and, as a consequence, we have(
s2

∂ss +2st∂st + t2
∂tt
)

logβn(s, t) = βn−1(s, t)−2βn(s, t)+βn+1(s, t)−2. (2.34)

Proof. To prove (2.32), we apply s∂s + t∂t to

αn(s, t) = p(n,s, t)− p(n+1,s, t).

According to (2.21), we get

(s∂s + t∂t)αn(s, t) =sr?n(s, t)+ trn(s, t)−
(
sr?n+1(s, t)+ trn+1(s, t)

)
=βn(s, t)+ p(n,s, t)− (βn+1(s, t)+ p(n+1,s, t))

=βn(s, t)−βn+1(s, t)+αn(s, t),

where the second equality results from (2.18).
From (2.20), it follows that

(s∂s + t∂t) logβn(s, t) =sR?
n−1(s, t)+ tRn−1(s, t)− (sR?

n(s, t)+ tRn(s, t)) ,

which, in view of (2.10), leads to (2.33).
We differentiate (2.33) over s and t to obtain

(∂s + s∂ss + t∂st) logβn(s, t) = ∂sαn−1(s, t)−∂sαn(s, t),

(s∂ts +∂t + t∂tt) logβn(s, t) = ∂tαn−1(s, t)−∂tαn(s, t).

Multiplying the first equality by s and the second by t, and adding them, we find(
s2

∂ss +2st∂st + t2
∂tt
)

logβn(s, t)+(s∂s + t∂t) logβn(s, t)

= (s∂s + t∂t)αn−1(s, t)− (s∂s + t∂t)αn(s, t),

which, combined with equations (2.32) and (2.33), establishes (2.34). �
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2.3. Partial differential equations satisfied by RRR?
nnn(((sss,,, ttt))),,, RRRnnn(((sss,,, ttt)))

and (sss∂∂∂ sss +++ ttt∂∂∂ ttt) logDDDnnn(((sss,,, ttt)))

Bear in mind that the auxiliary quantities R?
n(s, t), Rn(s, t), r?n(s, t) and rn(s, t) satisfy four analogs of

Riccati equations given by (2.24)-(2.27). We solve for r?n(s, t) from (2.24) and rn(s, t) from (2.25),
and substitute them into (2.26) and (2.27), to establish two second order partial differential equations
for R?

n(s, t) and Rn(s, t).

Theorem 2.1. The auxiliary quantities R?
n(s, t) and Rn(s, t) satisfy a pair of second order nonlinear

partial differential equations:

0 =s(s∂ss + t∂st)R?
n + t (s∂ss + t∂st)Rn +

R?
n−1
2R?

n

(
R(s)

n

)2
+

(R?
n−1)R?

n

2R2
n

(
R(t)

n

)2

− R?
n

Rn
R(s)

n R(t)
n − tRnR(s)

n + tR?
nR(t)

n +(s∂s + t∂t)R?
n− st (∂sRn)

−R?
n (sR?

n + tRn)
2 + sR?

n (sR?
n + tRn)− (2n+1+α)R?

n (sR?
n + tRn− s)

+
s2

2
R?

n (R
?
n−1)+

R?
n (1−R?

n)

2R2
n

−α
R?

n

Rn
,

(2.35a)

and

0 =s(t∂tt + s∂st)R?
n + t (t∂tt + s∂st)Rn +

Rn

2R?
n

(
R(s)

n

)2
+

(R?
n−2)
2Rn

(
R(t)

n

)2

−R(s)
n R(t)

n + sRnR(s)
n − sR?

nR(t)
n +(s∂s + t∂t)Rn + s2 (∂tR?

n)

−Rn (sR?
n + tRn)

2− (2n+1+α)Rn (sR?
n + tRn)+

s2

2
R?

nRn +
2−R?

n

2Rn
−α.

(2.35b)

Here,

R(s)
n (s, t) :=s∂sR?

n(s, t)+ t∂sRn(s, t),

R(t)
n (s, t) :=s∂tR?

n(s, t)+ t∂tRn(s, t).
(2.36)

Define

Hn(s, t) := (s∂s + t∂t) logDn(s, t),

then it follows from (2.28) and (2.29) that

Hn(s, t) =−
n−1

∑
j=0

(
sR?

j(s, t)+ tR j(s, t)
)

=p(n,s, t)+n(n+α). (2.37)

Since ∂s p(n,s, t) = r?n(s, t) and ∂t p(n,s, t) = rn(s, t) due to (2.21), we find from (2.37)

∂sHn(s, t) = r?n(s, t),

∂tHn(s, t) = rn(s, t).
(2.38)

In order to characterize the Hankel determinant, we first establish the connection between
Hn(s, t) and the quantities R?

n(s, t) and Rn(s, t), and then make use of (2.35) to derive the partial
differential equation satisfied by Hn(s, t).
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Theorem 2.2. The quantity Hn(s, t) is expressible in terms of R?
n(s, t) and Rn(s, t) as

Hn(s, t) =−
1

4R?
n

(
R(s)

n

)2
+

1−R?
n

4R2
n

(
R(t)

n

)2
+

R(s)
n R(t)

n

2Rn

− 1
4
(sR?

n + tRn)
2−
(

n+
α

2

)
(sR?

n + tRn)+
s2

4
R?

n

− α2

4
+

t
2
+

α

2Rn
+

R?
n−1
4R2

n
,

(2.39)

where R(s)
n (s, t) and R(t)

n (s, t) have the same meaning as in (2.36). Moreover, Hn(s, t) satisfies the
following second order sixth degree partial differential equation:

[(
(t∂tt + s∂st)Hn

)2
+4((∂tHn)−1)(∂tHn)

(
(s∂s + t∂t)Hn−Hn +n(n+α)

)]2

·
[(

(s∂ss + t∂st)Hn
)2

+4(∂sHn)
2 ((s∂s + t∂t)Hn−Hn +n(n+α)

)]
=
[(

(t∂tt + s∂st)Hn
)2 (

(∂sHn)
2 +(s∂s + t∂t)Hn−Hn +n(n+α)

)
+
(
(s∂ss + t∂st)Hn

)2
((∂tHn)−1) (∂tHn)

−
(
(t∂tt + s∂st)Hn

)(
(s∂ss + t∂st)Hn

)(
(2n+α)(∂tHn)+(∂sHn)(2(∂tHn)−1)−n

)
+
(
(s∂s + t∂t)Hn−Hn +n(n+α)

)
·
(
−2
(
2(∂tHn)−1

)(
(2n+α)(∂tHn)−n

)
(∂sHn)−

(
n− (2n+α)(∂tHn)

)2

− (∂sHn)
2 +4

(
(∂tHn)−1

)
(∂tHn)

(
(s∂s + t∂t)Hn−Hn +n(n+α)

))]2
.

(2.40)

Proof. Keeping (2.11) in mind, we get from (2.18) and (2.37)

Hn = sr?n + trn−βn +n(n+α)

= sr?n + trn−
1

Rn
(n− (2n+α)rn−2rnr?n + r?n)

+
r2

n− rn

R2
n

(1−R?
n)−

(r?n)
2

R?
n

+n(n+α).

Eliminating r?n and rn from the second equality above by using (2.24) and (2.25) respectively, after
simplification, we come to (2.39).

Now that we have the expression for Hn in terms of R?
n and Rn, in order to establish the differen-

tial equation for Hn, it suffices to derive the representations of R?
n and Rn in terms of Hn. To achieve

the desired results, we first remove R?
n−1 and Rn−1 from (2.20) by using (2.5) and (2.6), and get

∂s (logβn) =
(r?n)

2

βnR?
n
−R?

n,

∂t (logβn) =
r2

n− rn

βnRn
−Rn.
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Solving for R?
n and Rn from these two quadratic equations in R?

n and Rn respectively, we obtain

R?
n =−

1
2

∂s logβn +
1
2

√
(∂s logβn)

2 +
4(r?n)2

βn
,

Rn =−
1
2

∂t logβn +
1
2

√
(∂t logβn)

2 +
4(r2

n− rn)

βn
.

(2.41)

Here take note that there should be two solutions for both R?
n and Rn, however, the solutions with

minus sign before the square roots in (2.41) are rejected, since from (2.20) we see that

R?
n +

1
2

∂s logβn =
1
2
(R?

n−1 +R?
n)≥ 0,

Rn +
1
2

∂t logβn =
1
2
(Rn−1 +Rn)≥ 0,

where we have used the fact that R?
n≥ 0 and Rn≥ 0 which is a direct consequence of their definitions.

From (2.23) and (2.37), we see that

βn = (s∂s + t∂t)Hn−Hn +n(n+α).

Substituting this equation and (2.38) into (2.41), we obtain two equations expressing R?
n and Rn in

terms of Hn and its derivatives. Plugging these expressions into (2.39), we establish (2.40). �

Remark 2.1. Suppose Hn is independent of s, equation (2.40) reduces to

(
tH ′′n

)2
=
(
n− (2n+α)H ′n

)2−4
(
H ′n−1

)
H ′n
(
tH ′n−Hn +n(n+α)

)
,

which is consistent with (3.24) in [13]. With a change of variable t = t̃2 and a linear shift

Hn(t) =
σ(t̃)

2
+

t̃2

2
+

n(n+α)

2
,

we see that σ(t̃) satisfies the Jimbo-Miwa-Okamoto σ -form of Painlevé III [24] with θ0 = α and
θ∞ = 2n+α .

Remark 2.2. In case t = 0, our Hankel determinant Dn(s, t) reads

Dn(s,0) = det
(∫

∞

s
xi+ jxαe−xdx

)n−1

i, j=0
,

which is the special case where A = 0 and B = 1 in the Hankel determinant studied in [1]. Our
results for t = 0 are in agreement with the ones produced in [1] where Rn(t) and rn(t) correspond to
R?

n(s,0) and r?n(s,0) in our paper respectively.
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In fact, when t = 0, according to the definitions of the auxiliary quantities and through integra-
tion by parts, we find

αRn(s,0) = 1−R?
n(s,0), (2.42)

αrn(s,0) =−n− r?n(s,0). (2.43)

With the aid of these two identities, we set t = 0 in (2.24) and (2.26) to obtain

s
(

d
ds

R?
n(s,0)

)
= 2r?n(s,0)+(2n+α− s+ sR?

n(s,0))R
?
n(s,0),

s
(

d
ds

r?n(s,0)
)
=

(1−2R?
n(s,0))(r

?
n(s,0))

2

R?
n(s,0)(1−R?

n(s,0))
− (2n+α)

R?
n(s,0)r

?
n(s,0)

1−R?
n(s,0)

−n(n+α)
R?

n(s,0)
1−R?

n(s,0)
,

which is in accord with the Riccati equations (4.5) and (4.6) in [1]. Further, setting t = 0 in (2.25)
and (2.27), in view of (2.42) and (2.43), and taking account of the above two Riccati equations, we
find

α (∂tR?
n(s, t)) |t=0 =−

d
ds

R?
n(s,0), (2.44)

α (∂tr?n(s, t)) |t=0 =−
d
ds

r?n(s,0). (2.45)

We differentiate (2.44) with respect to s and get

α (∂stR?
n(s, t)) |t=0 =−

d2

ds2 R?
n(s,0). (2.46)

Substituting (2.42), (2.44) and (2.46) into (2.35a) with t = 0, we establish an ordinary differential
equation satisfied by R?

n(s,0), which is consistent with the result given by Theorem 5 in [1].

According to (2.38), i.e. ∂sHn(s, t) = r?n(s, t), ∂tHn(s, t) = rn(s, t), and by using (2.43) and (2.45),
we come to

α (∂tHn(s, t)) |t=0 =−n− d
ds

Hn(s,0),

α (∂tsHn(s, t)) |t=0 =−
d2

ds2 Hn(s,0).
(2.47)

Setting t = 0 in (2.40) and plugging the above two equalities into it, we produce an ordinary differ-
ential equation satisfied by Hn(s,0) = s d

ds logDn(s,0), which agrees with equation (4.11) in [1].

3. Double Scaling for Large nnn and Asymptotic Expansions for the Scaled Hankel
Determinant

Based on the large partial differential equations satisfied by R?
n(s, t), Rn(s, t) and Hn(s, t), we proceed

with the study of the Hankel determinant as n gets large, under the assumption that n→ ∞, s→ 0
and t→ 0 such that S and T defined by

S := 4ns, T := (2n+1+α)t,

are fixed. This scaling is motivated as follows: for t = 0 and under the scaling S = 4ns, the limiting
behavior of the smallest eigenvalue distribution of Laguerre unitary ensemble is characterized by
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the Bessel kernel [33]; for s = 0 and under the scaling T = (2n+1+α)t, the eigenvalue correlation
kernel of the singularly perturbed Laguerre unitary ensemble is given by the Ψ-kernel [34, Corollary
1].

To proceed further, we make the Ansatz that R?
n(s, t),Rn(s, t), and their first and second order

partial derivatives over s or t, have limits as n→ ∞. Define

2R?(S,T ) := lim
n→∞

R?
n(s, t),

R(S,T ) := lim
n→∞

Rn(s, t).
(3.1)

Then, on replacing s by S
4n and t by T

2n+1+α
in (2.24) and (2.25), and by sending n to ∞, we find

lim
n→∞

r?n(s, t)
n

=−2R?(S,T ),

lim
n→∞

rn(s, t)
n

=−R(S,T ).
(3.2)

Moreover, we derive the following limiting equations from (2.35).

Theorem 3.1. The quantities R?(S,T ) and R(S,T ) satisfy a couple of second order first degree
partial differential equations

0 = S
(
S∂SS +T ∂ST

)
R?+T

(
S∂SS +T ∂ST

)
R

+
2R?−1

2R?

(
S (∂SR?)+T (∂SR)

)2
+

(2R?−1)R?

2R2

(
S (∂T R?)+T (∂T R)

)2

− 2R?

R

(
S (∂SR?)+T (∂SR)

)(
S (∂T R?)+T (∂T R)

)
+(S∂S +T ∂T )R?

−R?(SR?+T R)+
S
2

R?+
R? (1−2R?)

2R2 −α
R?

R
, (3.3a)

and

0 = S
(
T ∂T T +S∂T S

)
R?+T

(
T ∂T T +S∂T S

)
R

+
R
R?

(
S (∂SR?)+T (∂SR)

)2
+

(R?−1)
R

(
S (∂T R?)+T (∂T R)

)2

−2
(
S (∂SR?)+T (∂SR)

)(
S (∂T R?)+T (∂T R)

)
+(S∂S +T ∂T )R

−R(SR?+T R)+
1−R?

R
−α. (3.3b)

Proof. Adopting ideas in [30], we proceed as follows.
From (3.1), i.e. R?

n(s, t)∼ 2R?(s, t), Rn(s, t)∼ R(S,T ) as n→ ∞, it follows that

∂sR?
n ∼ 2∂SR? ·4n, ∂sRn ∼ ∂SR ·4n,

∂tR?
n ∼ 2∂T R? · (2n+1+α), ∂tRn ∼ ∂T R · (2n+1+α),

∂stR?
n ∼ 2∂ST R? ·4n · (2n+1+α), ∂stRn ∼ ∂ST R ·4n · (2n+1+α),

∂ssR?
n ∼ 2∂SSR? · (4n)2, ∂ssRn ∼ ∂SSR · (4n)2,

∂ttR?
n ∼ 2∂T T R? · (2n+1+α)2, ∂ttRn ∼ ∂T T R · (2n+1+α)2.
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Replacing the first and second order partial derivatives of R?
n(s, t) and Rn(s, t) in (2.35) by using the

above relations, and substituting 2R?, R, S
4n , T

2n+1+α
for R?

n, Rn, s, t respectively, by taking the series
expansion in n of the resulting equation and with the aid of the software Mathematica, we obtain
(3.3) by retaining leading order terms when n→ ∞. �

The next proposition gives us the lower and upper bounds for R?(S,T ) and R(S,T ), which result
from the definitions of R?

n(s, t) and Rn(s, t).

Proposition 3.1. For α > 0, the auxiliary quantities R?
n(s, t) and Rn(s, t) are bounded by

0≤ R?
n(s, t)< 1,

0 < Rn(s, t)≤
1
α
,

with the lower bound for R?
n(s, t) and the upper bound for Rn(s, t) attained only for s = 0 and

s = t = 0 respectively. As a consequence, we have for α > 0,

0≤ R?(S,T )≤ 1
2
,

0≤ R(S,T ) ≤ 1
α
.

Proof. Recall that

R?
n(s, t) =

w(s; t)
hn(s, t)

P2
n (s;s, t)≥ 0,

Rn(s, t) =
1

hn(s, t)

∫
∞

s

dy
y

P2
n (y;s, t)w(y; t)> 0.

Through integration by parts, we find

0 < αRn(s, t) =
1

hn(s, t)

∫
∞

s
P2

n (x;s, t)e−x− t
x dxα

= 1−R?
n(s, t)−

t
hn(s, t)

∫
∞

s

dy
y2 P2

n (y;s, t)w(y; t)

≤ 1−R?
n(s, t)≤ 1.

Hence, we have

0 < α Rn(s, t)≤ 1−R?
n(s, t)≤ 1,

where the first and second equality sign hold if and only if t = 0 and s = 0 respectively. Therefore,
we see that

0≤ R?
n(s, t)< 1 and 0 < Rn(s, t)≤

1
α
,

where the equality signs are valid only for s = 0 and s = t = 0 respectively. Finally, by using the
property of the limit of a function, we obtain

0≤ R?(S,T ) =
1
2

lim
n→∞

R?
n(s, t)≤

1
2
,

0≤ R(S,T ) = lim
n→∞

Rn(s, t)≤
1
α
. �
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To continue, for s = S/(4n) and t = T/(2n+1+α), we let

H(S,T ) : = lim
n→∞

Hn(s, t)

= (S∂S +T ∂T ) log∆(S,T ).

Here recall that Hn(s, t) := (s∂s + t∂t)Dn(s, t) and ∆(S,T ) is defined by

∆(S,T ) := lim
n→∞

Dn
( S

4n ,
T

2n+1+α

)
Dn(0,0)

.

It follows from (2.38) and (3.2) that

∂SH(S,T ) = lim
n→∞

r?n(s, t)
4n

=−1
2

R?(S,T ),

∂T H(S,T ) = lim
n→∞

rn(s, t)
2n+1+α

=−1
2

R(S,T ).
(3.4)

Furthermore, by an argument similar to the one used in the proof of Theorem 3.1, we establish the
following statement from (2.39) and (2.40).

Theorem 3.2. The quantity H(S,T ) is expressed in terms of R?(S,T ) and R(S,T ) by

H(S,T ) =− 1
2R?

(
S (∂SR?)+T (∂SR)

)2
+

1−2R?

4R2

(
S (∂T R?)+T (∂T R)

)2

+
1
R

(
S (∂SR?)+T (∂SR)

)(
S (∂T R?)+T (∂T R)

)
− 1

2
(SR?+T R)− α2

4
+

α

2R
+

2R?−1
4R2 , (3.5)

and the following second order second degree partial differential equation holds:

0 = 4
(∂T H)2

∂SH

(
(S∂SS +T ∂ST )H

)2
+
(
4(∂SH)+1

)(
(T ∂T T +S∂T S)H

)2

−8(∂T H)
(
(S∂SS +T ∂ST )H

)(
(T ∂T T +S∂T S)H

)
−
(

α (∂T H)+
1
2

)2

+4
(
(S∂S +T ∂T −1)H

)
(∂T H)2−∂SH. (3.6)

Remark 3.1. In case S = 0, equations (3.3)-(3.6) coincide with the corresponding ones produced
in [5] where s, C(s) and H (s) correspond to T , R(0,T ) and H(0,T ) in our paper respectively.

For T = 0 or t = 0, we reproduce (3.7), (3.9) and (3.10) of [27] by making use of (3.3a), (3.5) and
(3.6). Note that our S, R?(S,0) and H(S,0) corresponds to s, 1

2 R(s) and σ(s) of [27] respectively.

Before proceeding with the derivation the asymptotic expansions of R?(S,T ), R(S,T ) and
H(S,T ) by using (3.3)-(3.6), we first make an important observation. On dropping the terms with
derivatives in (3.3) and (3.5), and by using R̃?(S,T ), R̃(S,T ) and H̃(S,T ) in place of R?(S,T ),
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R(S,T ) and H(S,T ) respectively, we get

−R̃?(SR̃?+T R̃)+
S
2

R̃?+
R̃?
(

1−2R̃?
)

2
(

R̃
)2 −α

R̃?

R̃
= 0,

−R̃(SR̃?+T R̃)+
1− R̃?

R̃
−α = 0,

(3.7)

and

H̃(S,T ) =−1
2

(
SR̃?+T R̃

)
− α2

4
+

α

2R̃
+

2R̃?−1

4
(

R̃
)2 . (3.8)

Solving for R̃?(S,T ) and R̃(S,T ) from (3.7) yields

R̃?(S,T ) =
1
2
− α

2
√

S
− T

2S
3
2
, R̃(S,T ) =

1√
S
,

where we have used the assumption that R̃ > 0. Hence, from (3.8), it follows that

H̃(S,T ) =−S
4
+

α

2

√
S− α2

4
− T

2
√

S
. (3.9)

From (3.9), we are able to guess a “reasonable” form and the leading terms of the asymptotic
expansion of

H(S,T ) = (S∂S +T ∂T ) log∆(S,T,α).

Using the complete expansion of H(S,T ) derived from (3.6), after integration and exponentiating,
we establish the asymptotic expansion of the scaled Hankel determinant

∆(S,T,α) = lim
n→∞

Dn
( S

4n ,
T

2n+1+α
,α
)

Dn(0,0,α)
.

Note that here and in the rest of this paper, we will not display α−dependence of the double-scaled
objects, to ease notations.

In addition to this, by making use of the following relations given by (3.4):

R?(S,T ) =−2∂SH(S,T ), R(S,T ) =−2∂T H(S,T ),

we can easily deduce the asymptotic expansions of R?(S,T ) and R(S,T ) from the one of H(S,T ).
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3.1. Asymptotic expansions for large SSS and fixed TTT

We assume H(S,T ) with T fixed has an expansion for large S of the following form

H(S,T ) =
∞

∑
j=0

a j(T )S1− j
2 , S→ ∞. (3.10)

As is pointed out in Remark 3.1, the special case H(S,0) is investigated in [27] where the symbol
σ(s) was used instead. According to (3.13) in [27], H(S,0) has the following expansion

H(S,0) =− S
4
+

α

2

√
S− α2

4
− α

16
√

S
− α2

16S
−
(

α3

16
+

9α

256

)
S−

3
2

−
(

α4

16
+

9α2

64

)
S−2−

(
α5

16
+

45α3

128
+

225α

2048

)
S−

5
2

−
(

α6

16
+

45α4

64
+

27α2

32

)
S−3 +O

(
S−

7
2

)
=

∞

∑
j=0

a j(0)S1− j
2 , S→ ∞,

which provides initial conditions satisfied by a j(T ) at T = 0. For example, we have a0(0) =
−1

4 , a1(0) = α

2 and a2(0) =−α2

4 .
Substituting (3.10) into (3.6), on comparing the coefficients of the highest order term in S on

both sides, we get a0(T )a′0(T ) = 0 which indicates that a0(T ) must be a constant. Hence we have
a0(T ) = a0(0) = −1

4 . Successive coefficients a j(T ), j = 1,2, · · · , are computed similarly, and we
finally arrive at

H(S,T ) =− S
4
+

α

2

√
S− α2

4
−
(

T
2
+

α

16

)
1√
S
− α2

16S

−
(

T
16

+
α3

16
+

9α

256

)
S−

3
2 −
(

α

8
T +

α4

16
+

9α2

64

)
S−2

−
((

3α2

16
+

27
256

)
T +

α5

16
+

45α3

128
+

225α

2048

)
S−

5
2

−
(

T 2

16
+

(
α3

4
+

9α

16

)
T +

α6

16
+

45α4

64
+

27α2

32

)
S−3

+O
(

S−
7
2

)
, S→ ∞.

(3.11)
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Hence, we find

R?(S,T ) =−2∂SH(S,T )

=
1
2
− α

2
√

S
−
(

T
2
+

α

16

)
S−

3
2 − α2

8S2

−
(

3T
16

+
3α3

16
+

27α

256

)
S−

5
2 −
(

α

2
T +

α4

4
+

9α2

16

)
S−3

−
((

15α2

16
+

135
256

)
T +

5α5

16
+

225α3

128
+

1125α

2048

)
S−

7
2

−
(

3T 2

8
+

(
3α3

2
+

27α

8

)
T +

3α6

8
+

135α4

32
+

81α2

16

)
S−4

+O
(

S−
9
2

)
, S→ ∞,

and

R(S,T ) =−2∂T H(S,T )

=
1√
S
+

1

8S
3
2
+

α

4S2 +

(
3α2

8
+

27
128

)
S−

5
2

+

(
T
4
+

α3

2
+

9α

8

)
S−3 +O

(
S−

7
2

)
, S→ ∞.

Since R?(S,0) corresponds to 1
2 R(s) in [27], we remark that our expansion formula for R?(S,0)

agrees with the one for R(s) (equation (3.12), [27]). a

Noting that H(S,T ) = (S∂S +T ∂T ) log∆(S,T,α), by integration of (3.11), we obtain the following
asymptotic expansion of ∆(S,T,α).

Theorem 3.3. We have, for large S and fixed T ,

log∆(S,T,α) =C1

(
T
S
,α

)
− S

4
+α
√

S− α2

4
logS

+
(

α

8
−T

) 1√
S
+

α2

16S
+

(
α3

24
+

3α

128
+

T
8

)
S−

3
2

+

(
α4

32
+

9α2

128
+

α

8
T
)

S−2 +O
(

S−
5
2

)
,

(3.12)

where C1
(T

S ,α
)

is an arbitrary function of T
S and α .

3.2. Asymptotic expansions for small SSS and fixed TTT >>> 000

Motivated by (3.9), we write for fixed T > 0,

H(S,T ) =− T
2
√

S
+

∞

∑
j=0

b j(T )S
j
2 , S→ 0.

aThe authors note that it would be of interest to perform some numerical analysis to verify the validity of the expansion
and the size of the error terms for the expansion (3.11) and those that follow in this section.
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Substituting it into (3.6), by comparing the coefficients on both sides, we come to

H(S,T ) =− T
2
√

S
+

1
16
− α2

4
+

α

2

√
S− S

4
+

S
3
2

16T

− αS
5
2

16T 2 +
S3

16T 2 +

(
α2

16
− 27

256

)
S

7
2

T 3 −
αS4

8T 3

+

(
−α3

16
+

99α

256
+

T
16

)
S

9
2

T 4 +

(
α2

16
− 9

64

)
3S5

T 4

+O
(

S
11
2

)
, S→ 0.

(3.13)

It follows that

R?(S,T ) =−2∂SH(S,T )

=− T

2S
3
2
− α

2
√

S
+

1
2
− 3
√

S
16T

+
5αS

3
2

16T 2 −
3S2

8T 2

−
(

α2

16
− 27

256

)
7S

5
2

T 3 +
αS3

T 3 −
(
−α3

16
+

99α

256
+

T
16

)
9S

7
2

T 4

−
(

α2

8
− 9

32

)
15S4

T 4 +O
(

S
9
2

)
, S→ 0,

and

R(S,T ) =−2∂T H(S,T )

=
1√
S
+

S
3
2

8T 2 −
αS

5
2

4T 3 +
S3

4T 3 +

(
α2

8
− 27

128

)
3S

7
2

T 4

− 3αS4

4T 4 +

(
−α3

2
+

99α

32
+

3T
8

)
S

9
2

T 5

+

(
α2

2
− 9

8

)
3S5

T 5 +O
(

S
11
2

)
, S→ 0.

Since H(S,T ) = (S∂S +T ∂T )(log∆(S,T,α)), we establish the asymptotic expansion of
∆(S,T,α) by integrating of (3.13).

Theorem 3.4. For small S and fixed T > 0, we have

log∆(S,T,α) =C2

(
T
S
,α

)
− T√

S
+

(
1
16
− α2

4

)
logS

+α
√

S− S
4
+

S
3
2

8T
− αS

5
2

8T 2 +
S3

16T 2

+

(
α2

8
− 27

128

)
S

7
2

T 3 −
αS4

8T 3 +O
(

S
9
2

)
,

(3.14)

where C2
(T

S ,α
)

is an arbitrary function of T
S and α .
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3.3. Asymptotic expansions for fixed SSS >>> 000 and large TTT

According to (3.9), we suppose H(S,T ) with S > 0 fixed has the expansion for large T of the
following form

H(S,T ) =− T
2
√

S
+

∞

∑
j=0

c j(S)T− j, T → ∞.

Substituting it into (3.6) and comparing the coefficients on both sides, we obtain

H(S,T ) =− T
2
√

S
− 1

4

(√
S−α

)2
+

1
16

+
S

3
2

16T

+
S

5
2

16T 2

(√
S−α

)
+

S
7
2

16T 3

((√
S−α

)2
− 27

16

)
+

S
9
2

16T 4

((√
S−α

)3
− 27

4

√
S+

99α

16

)
+

S
11
2

16T 5

((√
S−α

)4
− 9

8

(√
S−α

)(
15
√

S−13α

)
+

2277
128

)
+O

(
T−6) , T → ∞.

(3.15)

Therefore, we have

R?(S,T ) =−2∂SH(S,T )

=− T

2S
3
2
+

1
2
− α

2
√

S
− 3
√

S
16T

− S
3
2

16T 2

(
6
√

S−5α

)
− S

5
2

16T 3

((√
S−α

)(
9
√

S−7α

)
− 189

16

)
− S

7
2

16T 4

(
3
(√

S−α

)2(
4
√

S−3α

)
− 135

2

√
S+

891
16

α

)
+O

(
T−5) , T → ∞,

and

R(S,T ) =−2∂T H(S,T )

=
1√
S
+

S
3
2

8T 2 +
S

5
2

4T 3

(√
S−α

)
+

3S
7
2

8T 4

((√
S−α

)2
− 27

16

)
+

S
9
2

2T 5

((√
S−α

)3
− 27

4

√
S+

99
16

α

)
+

5S
11
2

8T 6

((√
S−α

)4
− 9

8

(√
S−α

)(
15
√

S−13α

)
+

2277
128

)
+O

(
T−7) , T → ∞.

Using the fact that H(S,T ) = (S∂S +T ∂T ) log∆(S,T,α) again, after integration of (3.15), we
obtain the asymptotic expansion of ∆(S,T,α).
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Theorem 3.5. We have, for large T and fixed S > 0,

log∆(S,T,α) =C3

(
T
S
,α

)
− T√

S
− S

4
+α
√

S+
(

1
16
− α2

4

)
logS

+
S

3
2

8T
+

S3−2αS
5
2

16T 2 +
S

7
2

24T 3

(
S−3α

√
S+3α

2− 81
16

)
+

S
9
2

32T 4

(
S

3
2 −4αS+

(
6α

2− 27
2

)√
S−4α

3 +
99
4

α

)
+O

(
T−5) .

(3.16)

Here C3
(T

S ,α
)

is an arbitrary function of T
S and α .

To summarize, we have established the asymptotic expansions of the scaled Hankel determinant
Dn
( S

4n ,
T

2n+1+α
,α
)
, n→∞, for large S with T ≥ 0 fixed, for small S with T > 0 fixed, and for large

T with S > 0 fixed. In each case, there is a function term C j(
T
S ,α) to be determined. In order to

compute them, we turn our attention back to the monic polynomials Pn(x;s, t,α) orthogonal with
respect to w(x; t,α) = xαe−x− t

x over [s,∞) with α >−1, t ≥ 0, s≥ 0.
We have the following determinant representation for Pn(z;s, t,α) in terms of the moments (see

Szegö [32], Chapter II)

Pn(z;s, t,α) =
1

Dn(s, t,α)
det
(∫

∞

s
xi+ j(z− x)xαe−x− t

x dx
)n−1

i, j=0
. (3.17)

Keeping in mind that Dn(s, t,α) is the Hankel determinant generated by the moments of w(x; t,α),
i.e.

Dn(s, t,α) = det
(∫

∞

s
xi+ jxαe−x− t

x dx
)n−1

i, j=0
,

we readily see from (3.17) that

Pn(0;s, t,α) = (−1)n Dn(s, t,α +1)
Dn(s, t,α)

.

Hence, by recalling that

∆(S,T,α) = lim
n→∞

Dn
( S

4n ,
T

2n+1+α
,α
)

Dn(0,0,α)
,

we find, as n→ ∞,

Pn
(
0; S

4n ,
T

2n+1+α
,α
)

Pn(0;0,0,α)
∼ ∆(S,T,α +1)

∆(S,T,α)

∼ exp
[
C j

(
T
S
,α +1

)
−C j

(
T
S
,α

)]
+ · · · . (3.18)

Note that (3.18) results from (3.12), (3.14) and (3.16) for j = 1,2,3, and obviously the subsequent
terms of it can be written out explicitly.
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We shall apply logarithmic potential theory with an external field in the next section to deduce
an approximation of Pn

(
0; S

4n ,
T

2n+1+α
,α
)

for large n and hence get the asymptotic formula for
Pn
(
0; S

4n ,
T

2n+1+α
,α
)
/Pn(0;0,0,α). By comparing the result with (3.18), we find

C j

(
T
S
,α +1

)
−C j

(
T
S
,α

)
= log

(
Γ(1+α)√

2π

)
+

T
2S

, j = 1,2,3.

4. The Evaluation of PPPnnn(((zzz;;;sss,,, ttt,,,ααα))) at zzz === 000 via Logarithmic Potential Theory with an
External Field

Denote by {xk}n
k=1 the eigenvalues of the unitary ensembles of n× n Hermitian matrices with the

weight function

w(x; t,α) = xαe−x− t
x , x ∈ [0,∞), α >−1, t ≥ 0,

and with the potential

v(x) =− logw(x; t,α) =−α logx+ x+
t
x
,

and we suppose xk ≥ s for k = 1,2, . . . ,n. If we interpret {xk}n
k=1 as the positions of n identically

charged particles, then, for sufficiently large n, the particles can be approximated as a continuous
fluid with a density σ(x). Since v(x) is convex for x ∈ [s,∞), we know that σ(x) is supported on a
single interval [s,b]. See [10] for a detailed analysis.

In Dyson’s works [19], such σ(x) is determined via the constrained minimization

min
σ

F [σ ] subject to
∫ b

s
σ(x)dx = n,

with

F [σ ] :=
∫ b

s
σ(x)v(x)dx−

∫ b

s

∫ b

s
σ(x) log |x− y|σ(y)dxdy.

According to Theorem 1.3 in Chapter I.1 of [31], the equilibrium density σ(x) satisfies the condition

v(x)−2
∫ b

s
log |x− y|σ(y)dy = A, x ∈ [s,b],

where A is the Lagrange multiplier that fixes
∫ b

s σ(x)dx = n. Differentiation of this equation with
respect to x gives rise to a singular integral equation

2P
∫ b

s

σ(y)dy
x− y

= v′(x), x ∈ [s,b],

where P denotes the Cauchy principal value. Based on the theory of singular integral equations (see
Theorem 3.1 in Chapter IV.3, [31]), we find

σ(x) =
1

2π2

√
b− x
x− s

P
∫ b

s

v′(y)
y− x

√
y− s
b− y

dy, x ∈ (s,b). (4.1)
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From which the normalization condition
∫ b

s σ(x)dx = n reads

1
2π

∫ b

s

√
y− s
b− y

v′(y)dy = n. (4.2)

It should be pointed out that (4.1) and (4.2) are not applicable in the case s = 0. Hence in our
subsequent considerations, we assume s > 0 and and therefore S > 0.

Noting that

v′(x) =−α

x
+1− t

x2 ,

with the aid of integral identities listed in the Appendix, we obtain from (4.1)

σ(x) =
1

2π

√
b− x
x− s

[
1+
(

t
2
√

sb
−
(

α +
t

2b

)√ s
b

)
1
x
−
√

s
b
· t

x2

]
. (4.3)

Here we require
√

sb− t
2

(1
s +

1
b

)
> α to guarantee that σ(x) > 0 for s < x < b. Substituting (4.3)

into the normalization condition
∫ b

s σ(x)dx = n, or by using (4.2) directly, we find for s > 0,

b− s
4
− α

2
+

1
2
√

sb

(
α s+

t
2

( s
b
−1
))

= n.

Clearing the square root, we come to the next lemma.

Lemma 4.1. For s > 0 and t ≥ 0, the upper edge b of the support of the equilibrium density satisfies
an algebraic equation of degree five

b3 (b−2(2n+α)− s)2 = s
((

2α− t
s

)
b+ t

)2
. (4.4)

Substituting b = 2(2n+α)+ s+ b̃ into (4.4), one sees that, by sending n→ ∞, b̃ = O
(
n−1/2

)
.

Hence, for large n, we suppose b has the expansion of the form

b = 2(2n+α)+ s+
∞

∑
j=1

d j(s, t)n−
j
2 . (4.5)

Plugging this into (4.4) and by comparing the coefficient of the highest order term in n, we get
d1(s, t) = ±

(
α
√

s− t
2
√

s

)
. According to (3.19) of [27], we know that d1(s,0) = −a

√
s. Hence

we choose d1(s, t) = t
2
√

s −α
√

s. Successive coefficients d j(s, t) are uniquely determined, which
ultimately gives the expansion of b for large n.

Lemma 4.2. For s > 0 and t ≥ 0, the following asymptotic expansion of b holds

b =4n+2α + s+
(

t
2
√

s
−α
√

s
)

n−
1
2

+
1
8

(
αs

3
2 +

(
2α

2− 3t
2

)√
s− αt√

s

)
n−

3
2

− 1
8

(
α

2s−αt +
t2

4s

)
n−2 +O

(
n−

5
2

)
, n→ ∞,

(4.6)
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from which, on replacing s by S
4n and t by T

2n+1+α
, and by sending n to ∞, we find

b =4n+2α +

(
S
4
− α

2

√
S+

T
2
√

S

)
n−1

+

(
α2

8

√
S− (3α +2)T

8
√

S

)
n−2 +O

(
n−3) , n→ ∞.

Based on logarithmic potential theory with an external field and the linear statistics formula, it
is proved in [14] that the monic polynomial Pn(x;s, t,α) orthogonal with respect to w(x; t,α) over
[s,∞) can be approximated as follows:

Pn(z;s, t,α)∼ e−S1(z;s,t,α)−S2(z;s,t,α), z ∈ C\[s,b],

where

S1(z;s, t,α) =
1
4

log

[
16(z− s)(z−b)

(b− s)2

(√
z− s−

√
z−b

√
z− s+

√
z−b

)2]
,

S2(z;s, t,α) =−n log
(√

z− s+
√

z−b
2

)2

+
1

2π

∫ b

s

v(x)dx√
(b− x)(x− s)

[√
(z− s)(z−b)

x− z
+1

]
,

and v(x) = − logw(x; t,α) = −α logx + x + t
x . We point out here a simpler representation for

e−S1(z;s,t,α):

e−S1(z;s,t,α) =
1
2

[(
z−b
z− s

) 1
4

+

(
z− s
z−b

) 1
4
]
.

The above result also appeared in the context of one dimensional free probability [26]. We now give
an evaluation of Pn(0;s, t,α).

Theorem 4.1. The monic polynomials Pn(x;s, t,α) orthogonal with respect to xαe−x− t
x over [s,∞)

with α >−1, t ≥ 0, s > 0, is evaluated at x = 0 by

(−1)nPn(0;s, t,α)∼nn+ α

2 +
1
4 (4s)−

α

2−
1
4

(
1+(1+2α)

√
s

2
√

n
+O

(
n−1))

· exp
[
−n+

√
4ns− s

2
+

t
4s

+O
(

n−
1
2

)]
, n→ ∞,

(4.7)

so that, we have for s = S
4n and t = T

2n+1+α
,

(−1)nPn
(
0; S

4n ,
T

2n+1+α
,α
)
∼nn+α+ 1

2 S−
α

2−
1
4

(
1+(1+2α)

(√
S

4
+

α

8

)
n−1 +O

(
n−2))

· exp
[
−n+

√
S+

T
2S

+O
(
n−1)] , n→ ∞.

(4.8)

As a consequence, we obtain as n→ ∞,

Pn
(
0; S

4n ,
T

2n+1+α
,α
)

Pn(0;0,0,α)
∼ Γ(1+α)√

2π
S−

α

2−
1
4 e
√

S+ T
2S . (4.9)
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Proof. In what follows, the symbol ∼ refers to ’asymptotic to’ for large n, in the sense that the
ratio tends to 1. We have

Pn(0;s, t,α)∼ e−S1(0;s,t,α)−S2(0;s,t,α),

where

e−S1(0;s,t,α) =
1
2

[(
b
s

) 1
4

+
( s

b

) 1
4

]
,

and

S2(0;s, t,α) =−n log
(√
−s+

√
−b

2

)2

+
1

2π

∫ b

s

−α logx+ x+ t
x√

(b− x)(x− s)

(√
(−s)(−b)

x
+1

)
dx.

By using the integral formulas given in the Appendix and taking the branch −s = seπi and −b =

beπi, we arrive at

e−S2(0;s,t,α) = (−1)n4−n−α

(√
b+
√

s
)2n
((

b
s

) 1
4

+
( s

b

) 1
4

)2α

· exp

( t
sb
−1
)(√b−

√
s

2

)2
 .

By plugging the expansion of b given by (4.6) into e−S1(0;s,t,α) and e−S2(0;s,t,α), we obtain (4.7). Upon
substituting S

4n for s and T
2n+1+α

for t in (4.7), and by sending n to ∞, expression (4.8) follows.
Since Dn(0,0,α) has a closed-form expression and reads (see [29], p.321)

Dn(0,0,α) =
n−1

∏
j=0

Γ( j+1)Γ( j+α +1),

we have

(−1)nPn(0;0,0,α) =
Dn(0,0,α +1)

Dn(0,0,α)
=

Γ(n+1+α)

Γ(1+α)
.

Hence, it follows from (4.8) that

Pn
(
0; S

4n ,
T

2n+1+α
,α
)

Pn(0;0,0,α)
∼ Γ(1+α)

nn+α+ 1
2 e−n

Γ(n+1+α)
S−

α

2−
1
4 e
√

S+ T
2S

∼ Γ(1+α)√
2π

S−
α

2−
1
4 e
√

S+ T
2S .

Here in the last step, we make use of the approximation(n
e

)n
∼ Γ(n+1+α)√

2π
n−α− 1

2 ,

which results from Stirling’s formula [25]

n!∼
√

2πn
(n

e

)n
,
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and the standard asymptotic approximation for Gamma function

Γ(n+α)∼ Γ(n)nα , α ∈ C.

The proof is completed. �

Bearing in mind that

Pn
(
0; S

4n ,
T

2n+1+α
,α
)

Pn(0;0,0,α)
∼ ∆(S,T,α +1)

∆(S,T,α)
, n→ ∞,

we establish the following statement.

Corollary 4.1. The undetermined terms that appear in the asymptotic expansions of
log∆(S,T,α) in the previous section satisfy a difference equation

C j

(
T
S
,α +1

)
−C j

(
T
S
,α

)
= log

(
Γ(1+α)√

2π

)
+

T
2S

, j = 1,2,3, (4.10)

and therefore, up to a constant that is independent of α,S and T the term C j
(T

S ,α
)

has the form

log
G(α +1)
(2π)α/2 +

α

2
· T

S
,

where G(·) denotes the Barnes-G function defined by

G(z+1) = Γ(z)G(z), G(1) = 1.

Proof. Since the proofs of (4.10) for j = 1, 2, 3 are similar, we only prove the case j = 1 with S
large and T ≥ 0 fixed. We find from (3.12)

lim
n→∞

Pn
(
0; S

4n ,
T

2n+1+α
,α
)

Pn(0;0,0,α)
=

∆(S,T,α +1)
∆(S,T,α)

∼ exp
[
C1

(
T
S
,α +1

)
−C1

(
T
S
,α

)
+
√

S−
(

α

2
+

1
4

)
logS

]
.

Comparing this with (4.9) leads to

C1

(
T
S
,α +1

)
−C1

(
T
S
,α

)
= log

(
Γ(1+α)√

2π

)
+

T
2S

.
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Appendix A. Some Relevant Integral Identities

We state the following integral identities for 0 < a < b, which are relevant to our derivation and
could be found in [9], [15] and [20].∫ b

a

dx√
(b− x)(x−a)

= π,

∫ b

a

x dx√
(b− x)(x−a)

=
(a+b)π

2
,

∫ b

a

dx

x
√
(b− x)(x−a)

=
π√
ab

,

∫ b

a

dx

x2
√
(b− x)(x−a)

=
(a+b)π
2(ab)3/2 ,∫ b

a

logx dx√
(b− x)(x−a)

= 2π log

(√
a+
√

b
2

)
,

∫ b

a

logx dx

x
√
(b− x)(x−a)

=
2π√
ab

log

(
2
√

ab
√

a+
√

b

)
.
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[8] Y. Chen and M.V. Feigin, Painlevé IV and degenerate Gaussian unitary ensembles, J. Phys. A: Math.

Gen. 39 (2006), 12381–12393.
[9] Y. Chen, N.S. Haq and M.R. McKay, Random matrix models, double-time Painlevé equations, and
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