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We consider the anti-de Sitter space H3
1 and the hyperbolic Hopf fibration h : H3

1(1)→ H2(1/2). Using their
description in terms of paraquaternions, we study the magnetic curves of the hyperbolic Hopf vector field.
A complete classification is obtained for light-like magnetic curves, showing in particular the existence of
periodic examples, and emphasizing their relationship with the hyperbolic Hopf fibration. Finally, we give a
new interpretation of magnetic curves in H3

1 using some techniques of Lie groups and Lie algebras.
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1. Introduction

Let (M,g) denote an n-dimensional pseudo-Riemannian manifold and ∇ its Levi-Civita connection.
A magnetic field on (M,g) is any closed two-form F on M. Through g, a magnetic field F corre-
sponds to a skew-symmetric (1,1)-tensor field Φ, called the Lorentz force, uniquely determined by
g(Φ(X),Y ) = F(X ,Y ), for any vector fields X ,Y tangent to M.
Under the action of F , a charged particle describes a trajectory γ , which satisfies the Lorentz equa-
tion ∇γ ′γ

′=Φ(γ ′). As such, magnetic curves are a natural generalization of geodesics, which satisfy
the Lorentz equation in the absence of any magnetic field. However, it is a remarkable fact that mag-
netic curves never reduce to geodesics. In fact, given a nontrivial magnetic field F on a Riemannian
manifold, there exists no affine connection whose geodesics coincide with the magnetic curves of
F [5, Proposition 2.1].
A wide literature is devoted to the study of the magnetic flow and curves, also motivated by the
fact that they naturally occur in several topics with an interesting physical meaning. For example,
many authors pointed out that the solutions of the Lorentz force equation are Kirchhoff elastic
rods. This establishes a relation between two distinct physical models, namely, the classical elastic
theory and the Hall effect. The solutions of the Lorentz equation are also critical points of a certain
functional (known as the Landau-Hall functional), so that magnetic trajectories are also solutions of
a variational problem.
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As one can expect, the first examples to be considered were the cases of magnetic curves in Rieman-
nian surfaces and in Riemannian spaces of constant sectional curvature, successively considering
cases of higher dimensions, different signatures, and less simple curvature.
A typical example of magnetic fields is obtained by multiplying the area form on a Riemannian
surface (M,g) by a scalar q (usually called strength or magnitude). When (M,g) is of constant
Gaussian curvature K, trajectories of such magnetic fields are well known. More precisely, on the
sphere S2(r), (K = 1

r2 ), trajectories are small circles of certain radius, on the Euclidean plane they are
circles, and on a hyperbolic plane H2(r), (K =− 1

r2 ), trajectories can be either closed curves (when
|q|> 1

r ), or open curves. Moreover, when |q|= 1
r , normal trajectories are horocycles ([15, 27]).

This study was also extended to different ambient spaces. For example, Kähler magnetic fields
in complex space forms were studied in [2], and explicit trajectories for Kähler magnetic fields
in the complex projective space CPn were determined in [1]. If the ambient is a contact man-
ifold, the fundamental two-form defines the so-called contact magnetic field. Interesting results
are obtained when the manifold is Sasakian, namely, the angle between the velocity of a normal
magnetic curve and the Reeb vector field is constant, and for their analogues of Lorentzian sig-
nature, that is, paraSasakian three-manifolds [11]. Moreover, an explicit description for normal
flowlines of the contact magnetic field on a three-dimensional Sasakian manifold is known [13, 14]
(see also [16, 21]).
In this framework, the three-dimensional case shows some special behaviors, since the Hodge star
operator ? and the volume form dvg of the manifold establish a one-to-one correspondence between
(closed) two-forms and (divergence-free) vector fields. This leads to define the significant class
of Killing magnetic fields, as the ones corresponding to Killing vector fields. It is then a natural
problem to determine Killing magnetic curves of a three-dimensional pseudo-Riemannian manifold
(see for example [17, 18, 25]). Such a study becomes particularly relevant when the Killing vector
field defining the magnetic field has a special geometric meaning, with a special focus on light-
like and periodic magnetic trajectories, the existence of closed lightlike trajectories in a Lorentzian
manifold being a well known topic (see for example [8, 28] and the works where they were cited).
The anti-de Sitter space is a well known and relevant model in Mathematical Physics, and it has
been studied under a wide range of different points of view. In this paper, we consider the anti-de
Sitter space H3

1 and the hyperbolic Hopf fibration h : H3
1(1)→H2(1/2). Although the choice of the

Hopf vector field is essentially due to its geometric meaning, lying in the fact that it is tangent to the
fibers of the Hopf fibration, it may be observed that principal fiber bundles often appear in Physics.
Using the description of H3

1 and h in terms of paraquaternions, we study the magnetic curves of
the hyperbolic Hopf vector field. A complete classification is obtained for its light-like magnetic
curves. In particular, our study leads to show the existence of periodic examples. Moreover, we also
investigate the projections of these magnetic curves on the hyperbolic plane H2(1/2). Finally, the
Lie group structure of the anti-de Sitter space also permits another interpretation of the magnetic
curves corresponding to the (Killing, right invariant) hyperbolic vector field and illustrates their link
with invariant geodesics.
The paper is organized in the following way. In Section 2 we report some basic facts about magnetic
curves and the description of H3

1 in terms of paraquaternions. Then, in Section 3 we obtain a com-
plete classification of light-like magnetic curves of the hyperbolic Hopf vector field. In particular,
we prove the existence of periodic light-like Hopf magnetic curves on H3

1, quantized in the set of
rational numbers. In Section 4 we show that projections in H2(1/2) of Hopf light-like magnetic
curves via the hyperbolic Hopf fibration, have constant curvature. In Section 5 we investigate the
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geometry of light-like magnetic curves in the hyperbolic Hopf tubes of their projections in H2(1/2).
Finally, in Section 6 we give a new interpretation of magnetic curves in H3

1 using some techniques
of Lie groups and Lie algebras.

2. Preliminaries

2.1. Magnetic curves

A magnetic curve represents the trajectory of a charged particle moving on the manifold under the
action of a magnetic field. A magnetic field on an n-dimensional Riemannian manifold (M,g), is a
closed two-form F . The corresponding Lorentz force of the magnetic field F is the skew-symmetric
(1,1)-tensor field Φ defined by

g(Φ(X),Y ) = F(X ,Y ), ∀X ,Y ∈ χ(M).

The magnetic trajectories of F are curves γ on M that satisfy the Lorentz equation

∇γ ′γ
′ = Φ(γ ′). (2.1)

The curve γ is also known as the flowline of the dynamical system associated with the magnetic
field F . See e.g. [5]. Obviously, magnetic curves naturally generalize geodesics. More precisely, the
equation satisfied by the geodesics of M, namely

∇γ ′γ
′ = 0

is nothing but the Lorentz equation in the absence of any magnetic field. Therefore, from the point
of view of dynamical systems, a geodesic corresponds to a trajectory of a particle when F = 0.
An important property of magnetic curves is that their speed v(t) is a constant v0 and hence, their
kinetic energy is also constant. This is a straightforward consequence of the skew-symmetry of
the Lorentz force. When the magnetic curve γ(t) is arc length parametrized (v0 = 1), it is called a
normal magnetic curve.
In the case of a three-dimensional (pseudo-) Riemannian manifold (M,g), two-forms and vector
fields may be identified via the Hodge star operator ? and the volume form dvg of the manifold.
Thus, magnetic fields and divergence-free vector fields are in one-to-one correspondence (see for
example [14]). In particular, Killing vector fields define an important class of magnetic fields, called
Killing magnetic fields. Recall that a vector field V on M is Killing if and only if it satisfies the
Killing equation:

g(∇YV,Z)+g(∇ZV,Y ) = 0

for every vector fields Y,Z on M, where ∇ is the Levi-Civita connection on M.
On a three-dimensional pseudo-Riemannian manifold (M,g), one can define the cross product of
two vector fields X ,Y ∈ χ(M) as

g(X×Y,Z) = dvg(X ,Y,Z), ∀Z ∈ χ(M).

If V is a Killing vector field on M, let FV = ιV dvg be the corresponding Killing magnetic field, where
ι denotes the interior product. Then, the Lorentz force of FV is given by (see [14])

Φ(X) =V ×X .
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Consequently, the Lorentz force equation (2.1) can be rewritten as

∇γ ′γ
′ =V × γ

′.

2.2. The hyperbolic Hopf fibration

We shall now present the hyperbolic counterpart of the Hopf fibration S3 → S2(1/2). For further
details, we may also refer to [10] and [12].
Let us consider R4

2, the four-dimensional pseudo-Euclidean space equipped with the pseudo-
Riemannian flat metric

〈 , 〉=−dx2
0−dx2

1 +dx2
2 +dx2

3

of neutral signature (2,2). The anti-de Sitter (three-)space H3
1 is the hypersurface of R4

2, defined
by [19, 26]

{x = (x0,x1,x2,x3) ∈ R4 :−x2
0− x2

1 + x2
2 + x2

3 =−1}.

In terms of complex coordinates z = x0 + ix1, w = x2 + ix3, consider C2 endowed with the pseudo-
scalar product 〈q1,q2〉 = ℜe(−z1z̄2 +w1w̄2), where qa = (za,wa), a = 1,2 and denote it by C2

1.
Then, the above description of H3

1 becomes

H3
1 = {(z,w) ∈ C2

1 :−|z|2 + |w|2 =−1}.

Similarly, the pseudo (three-)sphere is given by

S3
2 = {x = (x0,x1,x2,x3) ∈ R4

2 :−x2
0− x2

1 + x2
2 + x2

3 = 1}

= {(z,w) ∈ C2 :−|z|2 + |w|2 = 1}.

Equipping both H3
1 and S3

2 with the Lorentzian metrics induced from 〈 , 〉 as hypersurfaces of
R4

2, they are complete Lorentzian manifolds, of constant sectional curvature −1 and 1 respectively.
Moreover, H3

1 and S3
2 are both diffeomorphic to S1×R2, and the map σ :R4

2→R4
2, σ(x0,x1,x2,x3)=

(x2,x3,x0,x1) is an anti-isometry which carries H3
1 onto S3

2 and conversely.
We now consider the canonical projection π :C2−{0}→CP1 which defines the complex projective
line CP1. When we restrict π to H3

1 ⊂C2−{0}, we obtain a diffeomorphism from H3
1 onto the unit

disk B2 = {ζ ∈ C : |ζ |< 1}, explicitly described by ζ = π(z,w) = w/z.
Next, we consider the (Riemannian) hyperbolic two-space, as the surface H2(r) ⊂ R3

1, of constant
curvature −1/r2 < 0 with r > 0 given by

H2(r) = {y = (y1,y2,y3) ∈ R3
1 : y2

1 + y2
2− y2

3 =−r2 and y3 > 0}.

Let p denote the stereographic projection p from the point (0,0,−1), that is,

p : H2(1)→ B2

(y1,y2,y3) 7→ ζ =

(
y1

1+ y3
,

y2

1+ y3

)
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and the homothety ηr : H2(1)→H2(r), y 7→ ry. Then, the hyperbolic Hopf map h is explicitly given
by

h = η 1
2
◦ p−1 ◦π : H3

1(1)→H2(1/2)

(z,w) 7→
(

z̄w,
|z|2 + |w|2

2

)
∈ C×R.

Similarly to the Riemannian case, h is a submersion with geodesic fibres, which can be defined as
the orbits of the S1-action

S1×H3
1→H3

1(
eit ,(z,w)

)
7→
(
eitz,eitw).

In particular, for any x = (x0,x1,x2,x3) ∈H3
1, the vector field

ξx = (−x1,x0,−x3,x2)

is tangent to the fibres of the hyperbolic Hopf map and 〈ξx,ξx〉 = 〈x,x〉 = −1. For this reason, in
analogy with the Riemannian case, we call ξ the hyperbolic Hopf vector field. It is easily seen that
ξ is a globally defined Killing vector field [12].
We shall now describe the anti-de Sitter space H3

1 in terms of paraquaternions, referring to [12] for
more details (see also [22]). Consider the algebra B of paraquaternionic numbers over R generated
by {1, i, j,k}, where −i2 = j2 = 1 and k = i j = − ji (they are also known as Gödel quaternions
or split quaternions in Theoretical Physics). This is an associative, noncommutative and unitary
algebra over R. The conjugate of a paraquaternonic number x = x0 + x1i+ x2 j + x3k, is given by
x̄ = x0− x1i− x2 j− x3k, and the norm of x is given by

||x||2 = xx̄ = x2
0 + x2

1− x2
2− x2

3.

Obviously, the norm of a paraquaternion corresponds to the pseudo-Euclidean metric 〈 , 〉 on R4
2,

namely

〈x,x〉=−xx̄.

It is easy to check that the paraquaternionic multiplication can be expressed in terms of complex
numbers as

(z1,w1) · (z2,w2) = (z1z2 +w1w̄2,z1w2 +w1z̄2).

Therefore, in terms of paraquaternions, the anti-de Sitter three-space H3
1(1) corresponds to

H3
1 = {x ∈ B : xx̄ = 1}.

Note that 1 ∈H3
1 and the multiplicative structure on B induces a group structure on H3

1. Moreover,
the vectors {i, j,k} form a pseudo-orthonormal basis of T1H3

1, the tangent space at 1 to H3
1, with

〈i, i〉=−1, 〈 j, j〉= 〈k,k〉= 1.
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In terms of paraquaternions, the hyperbolic Hopf vector field at x ∈ B is given by

ξx = i · x.

So, if we put

Ux = j · x, Vx = k · x,

for any x ∈ B, then {ξ ,U,V} is a global pseudo-orthonormal frame field on H3
1. Let g be the metric

induced on H3
1 by 〈 , 〉. With respect to g, the vector field ξ is time-like, while U,V are space-like.

If ∇ is the Levi-Civita connection of the metric g, we have (see also Section 4 in [12])

∇ξ ξ = 0, ∇U ξ =V, ∇V ξ =−U,

∇ξU =−V, ∇UU = 0, ∇VU =−ξ ,

∇ξV =U, ∇UV = ξ , ∇VV = 0.

(2.2)

On H3
1 we can consider the usual cross product, defined by g(X×Y,Z) = dvg(X ,Y,Z) for all X ,Y,Z

tangent to H3
1. Here, by dvg we denote the volume form on H3

1, defined by the Lorentzian metric g.
Subsequently, we have

ξ ×U =V, U×V =−ξ , V ×ξ =U.

3. Hopf magnetic curves of H3
1

Consider a smooth curve γ = γ(s) = (x0(s),x1(s),x2(s),x3(s)) ⊂ H3
1. Since ξ is Killing, we define

a magnetic curve γ , corresponding to ξ , as a solution of the equation

∇γ̇ γ̇ = q ξ × γ̇, (3.1)

where q 6= 0 is the strength (see also [14, 17, 18, 25]). We call γ a Hopf magnetic curve on H3
1.

Since {ξ ,U,V} is a frame on H3
1, there exist some smooth functions T1,T2,T3 (depending on s),

such that the velocity γ̇ = T1ξ +T2U +T3V . Moreover, T1 is a real constant. Indeed, using (2.2) and
(3.1) we have

Ṫ1 =
d
ds

g(γ̇,ξ ) = g(qξ × γ̇,ξ )+g(γ̇,∇γ̇ξ ) = 0.

Note that g(γ̇, γ̇) is constant. Therefore, the causal character of γ is the same at each point and
hence, it depends on the initial value of γ̇ . From now on, we focus on the case when γ is a light-like
magnetic curve of ξ .
Remark that γ is light-like if and only if 0 = ||γ̇||2 =−T 2

1 +T 2
2 +T 2

3 . In this case, T1 6= 0, otherwise
γ reduces to a point.
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Using (2.2), we can compute ∇γ̇ γ̇ . By a standard calculation, we get

∇γ̇ γ̇ = Ṫ1ξ + Ṫ2U + Ṫ3V.

On the other hand, from (3.1) we have

∇γ̇ γ̇ = q ξ × γ̇ = q(−T3U +T2V ).

Comparing the two above equations for ∇γ̇ γ̇ , we get (again) Ṫ1 = 0 and{
Ṫ2 =−qT3,

Ṫ3 = qT2.
(3.2)

Integrating the above system of ordinary differential equations, we obtain the general solution as

T2(s)+ i T3(s) = αeiqs,

with α ∈ C. Then, T 2
1 = |α|2. Moreover, after a suitable translation in parameter s, one can make s

real and sgn(α) = sgn(T1), giving also α = T1.
Next, since ξγ(s) = i · γ(s), Uγ(s) = j · γ(s) and Vγ(s) = k · γ(s), we have

γ̇(s) =
(
T1(s)i+T2(s) j+T3(s)k

)
· γ(s).

Therefore, as γ(s) = x0(s)+x1(s)i+x2(s) j+x3(s)k, the components x0(s), . . . ,x3(s) of γ satisfy the
following system of differential equations

ẋ0

ẋ1

ẋ2

ẋ3

=


0 −T1 T2 T3

T1 0 T3 −T2

T2 T3 0 −T1

T3 −T2 T1 0




x0

x1

x2

x3

 .

In terms of complex coordinates, γ(s) = (z(s),w(s)), the above system becomes{
ż = T1iz+(T2 + iT3)w̄,

ẇ = T1iw+(T2 + iT3)z̄.
(3.3)

Thus, to solve (3.3), we introduce the new complex functions

ρ := e−iT1sz, ϕ := e−iT1sw, (3.4)

so that (3.3) becomes {
ρ̇ = αei(q−2T1)sϕ̄,

ϕ̇ = αei(q−2T1)sρ̄.
(3.5)

Taking the derivative with respect to s in both equations in (3.5) and replacing ρ̇, ϕ̇ again from (3.5),
we get the second order complex differential equations

ρ̈− i(q−2T1)ρ̇−T 2
1 ρ = 0, ϕ̈− i(q−2T1)ϕ̇−T 2

1 ϕ = 0. (3.6)

So, the above equations are both of the form

f̈ − ia ḟ −T 2
1 f = 0, (3.7)
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where a = q−2T1. Putting f = ei as
2 θ , from (3.7) we get the standard equation

θ̈ −
(

T 2
1 −

a2

4

)
θ = 0,

whose solution depends on the sign of T 2
1 − a2

4 = q
(
T1− q

4

)
. We shall now treat separately the three

cases determined by the possible values of q
(
T1− q

4

)
.

First Case: q
(
T1− q

4

)
= 0.

Then, T1 =
q
4 , as q 6= 0. Going back to equations (3.6), we get

ρ = ei qs
4 (a1s+a2), ϕ = ei qs

4 (b1s+b2),

for some complex constants a1,a2,b1,b2. By a standard calculation, from (3.5) we obtain

b1 =−iā1, b2 =
4ā1

q
− iā2. (3.8)

Thus, replacing into (3.4), we find

γ =
(
z(s),w(s)

)
= ei qs

2

(
a1s+a2,

4ā1
q − i(ā1s+ ā2)

)
.

It is easy to check that γ ⊂H3
1 implies 16|a1|2

q2 − 8
q ℑm(ā1a2)+1 = 0.

We can now rewrite γ ⊂H3
1 ⊂ R4

2 as follows:

γ(s) =
(
cos(qs

2 )+ isin(qs
2 )
)
(s V1 +V2),

where, if a1 = α1 + iα2,a2 = β1 + iβ2,b1 = λ1 + iλ2,b2 = µ1 + iµ2, we put

V1 = (α1,α2,λ1,λ2), V2 = (β1,β2,µ1,µ2).

Since γ is a light-like curve on H3
1 then, with respect to 〈 , 〉, the vector field V1 is light-like and V2

is a unitary and time-like vector field. Moreover, they are orthogonal and satisfy

〈V1, i ·V2〉=
q
4
.

Applying an isometry (that is, a pseudo-orthogonal transformation) of the ambient space, without
loss of generality we may take V2 = (1,0,0,0). Then, by (3.8) we immediately conclude that V1 =

(0,−q
4 ,

q
4 ,0), which gives

γ(s) =
(

cos(
qs
2
)+

qs
4

sin(
qs
2
),sin(

qs
2
)− qs

4
cos(

qs
2
),

qs
4

cos(
qs
2
),

qs
4

sin(
qs
2
)
)
. (3.9)

This curve cannot be periodic. Contrary, supposing that γ(0) = γ(P) for a certain P > 0, and com-
paring the third and the fourth components respectively, we obtain the contradiction qPcos

(qP
2

)
=

qPsin
(qP

2

)
= 0. Finally, the curve γ is a helix. See the Appendix A.

Summarizing, we proved the following result.

Theorem 3.1. Let γ ⊂H3
1 denote a light-like magnetic curve of the hyperbolic Hopf vector field ξ ,

that is, a solution of ∇γ̇ γ̇ = qξ × γ̇ , with q 6= 0. If g(γ̇,ξ ) =−q
4 , then γ is a light-like helix, explicitly

described, up to pseudo-orthogonal transformations, by equation (3.9). These light-like magnetic
curves are never periodic.
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Second Case: q
(
T1− q

4

)
= ω2, ω > 0.

In this case,

ρ = ei( q
2−T1)s(a1 cosh(ωs)+a2 sinh(ωs)), ϕ = ei( q

2−T1)s(b1 cosh(ωs)+b2 sinh(ωs)),

for some complex constants a1,a2,b1,b2, where b1,b2 can be explicitly determined in terms of a1,a2

by means of (3.5). Replacing into (3.4), we obtain

γ =
(
z(s),w(s)

)
= ei qs

2 (a1 cosh(ωs)+a2 sinh(ωs),b1 cosh(ωs)+b2 sinh(ωs)) .

Setting a1 = α1 + iα2, a2 = β1 + iβ2, b1 = λ1 + iλ2, b2 = µ1 + iµ2, we get

γ(s) =
(

cos(
qs
2
)+ isin(

qs
2
)
)(

α1 cosh(ωs)+β1 sinh(ωs)+ i(α2 cosh(ωs)+β2 sinh(ωs),

λ1 cosh(ωs)+µ1 sinh(ωs)+ i(λ2 cosh(ωs)+µ2 sinh(ωs))
)
.

Since γ ⊂H3
1, we have 〈γ(s),γ(s)〉=−1, which yields, by the above description of γ ,

−α2
1 −α2

2 +λ 2
1 +λ 2

2 =−1,

−β 2
1 −β 2

2 +µ2
1 +µ2

2 = 1,

−α1β1−α2β2 +λ1µ1 +λ2µ2 = 0.

Considering the following vector fields in R4
2

V1 = (α1,α2,λ1,λ2), V2 = (β1,β2,µ1,µ2),

we obtain that V1 (time-like) and V2 (space-like) are unitary and orthogonal. Then

γ(s) =
(
cos(qs

2 )+ isin(qs
2 )
)
(cosh(ωs)V1 + sinh(ωs)V2).

Without loss of generality, applying an isometry in the ambient space, it is enough to consider

V1 = (cosh(ψ),0,sinh(ψ),0), V2 = (0,sinh(ϑ),0,cosh(ϑ)).

Thus,

γ(s) =
(

cosh(ψ)cosh(ωs)cos(qs
2 )− sinh(ϑ)sinh(ωs)sin(qs

2 ),

cosh(ψ)cosh(ωs)sin(qs
2 )+ sinh(ϑ)sinh(ωs)cos(qs

2 ),

sinh(ψ)cosh(ωs)cos(qs
2 )− cosh(ϑ)sinh(ωs)sin(qs

2 ),

sinh(ψ)cosh(ωs)sin(qs
2 )+ cosh(ϑ)sinh(ωs)cos(qs

2 )
)
.

(3.10)

This curve is a helix. See the Appendix A. Moreover, by an argument similar to the one applied for
the first case, we conclude that the curve given by (3.10) is not periodic.
Thus, we proved the following.

Theorem 3.2. Let γ ⊂H3
1 denote a light-like magnetic curve of the hyperbolic Hopf vector field ξ ,

that is, a solution of ∇γ̇ γ̇ = qξ × γ , with q 6= 0. If g(γ̇,ξ ) = T1 and q
(
T1− q

4

)
= ω2, ω > 0, then γ

is a light-like helix, explicitly described, up to pseudo-orthogonal transformations, by (3.10). These
light-like magnetic curves are never periodic.
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Third Case: q
(
T1− q

4

)
=−ω2, ω > 0.

We now have

ρ = ei( q
2−T1)s(a1 cos(ωs)+a2 sin(ωs)), ϕ = ei( q

2−T1)s(b1 cos(ωs)+b2 sin(ωs)),

for some complex constants a1,a2,b1,b2, with b1,b2 determined in function of a1,a2 using (3.5).
Then, (3.4) yields

γ =
(
z(s),w(s)

)
= ei qs

2 (a1 cos(ωs)+a2 sin(ωs),b1 cos(ωs)+b2 sin(ωs)) .

We set again, as in the previous cases, a1 = α1 + iα2, a2 = β1 + iβ2, b1 = λ1 + iλ2, b2 = µ1 + iµ2

and we find

γ(s) =
(

cos(
qs
2
)+ isin(

qs
2
)
)(

α1 cos(ωs)+β1 sin(ωs)+ i(α2 cos(ωs)+β2 sin(ωs),

λ1 cos(ωs)+µ1 sin(ωs)+ i(λ2 cos(ωs)+µ2 sin(ωs))
)
.

Since 〈γ(s),γ(s)〉=−1, we immediately obtain
−α2

1 −α2
2 +λ 2

1 +λ 2
2 = −1,

−β 2
1 −β 2

2 +µ2
1 +µ2

2 = −1,

−α1β1−α2β2 +λ1µ1 +λ2µ2 = 0.

Consider V1 = (α1,α2,λ1,λ2) and V2 = (β1,β2,µ1,µ2), two constant vectors in R4
2, which are uni-

tary, time-like and 〈V1,V2〉= 0.
We can now describe γ as follows:

γ(s) =
(

cos(
qs
2
)+ isin(

qs
2
)
)
(cos(ωs)V1 + sin(ωs)V2).

Up to an isometry of the ambient space, it suffices to take

V1 = (cosh(ψ),0,sinh(ψ),0) , V2 = (0,−ε cosh(ϑ),0,sinh(ϑ))

for some real constants ψ and ϑ , where ε = sgn(q).
Thus,

γ(s) =
(

cosh(ψ)cos(ωs)cos(qs
2 )+ ε cosh(ϑ)sin(ωs)sin(qs

2 ),

cosh(ψ)cos(ωs)sin(qs
2 )− ε cosh(ϑ)sin(ωs)cos(qs

2 ),

sinh(ψ)cos(ωs)cos(qs
2 )− sinh(ϑ)sin(ωs)sin(qs

2 ),

sinh(ψ)cos(ωs)sin(qs
2 )+ sinh(ϑ)sin(ωs)cos(qs

2 )
)
.

(3.11)

We have the following result.

Theorem 3.3. Let γ ⊂H3
1 denote a light-like magnetic curve of the hyperbolic Hopf vector field ξ ,

that is, a solution of ∇γ̇ γ̇ = qξ × γ , with q 6= 0. If 〈γ̇,ξ 〉 = T1 and q
(
T1− q

4

)
= −ω2, with ω > 0,
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then γ is a light-like helix, explicitly described, up to pseudo-orthogonal transformations, by (3.11).
If ψ + εϑ 6= 0, then these light-like magnetic curves are periodic if and only if

q
ω
∈Q.

Proof. The fact that γ is a helix is proved in the Appendix A. For the second part of the statement,
suppose that γ(s) = γ(s+P), for all s and some P > 0. The curve γ has the following general form

γ(s) =
(
acos(λ s)+bcos(µs),asin(λ s)−bsin(µs),ccos(λ s)+d cos(µs),csin(λ s)−d sin(µs)

)
,

where a,b,c,d are real constants and λ ,µ are non-zero real constants with λ 6= µ . In our case
λ = ω + q

2 , µ = ω− q
2 and

a =
1
2
(cosh(ψ)− ε cosh(ϑ)),b =

1
2
(cosh(ψ)+ ε cosh(ϑ)),

c =
1
2
(sinh(ψ)+ sinh(ϑ)),d =

1
2
(sinh(ψ)− sinh(ϑ)).

In the case when ad−bc 6= 0 we know that γ is periodic if and only if λ

µ
∈Q. Moreover, ad−bc = 0

is equivalent to sinh(ψ + εϑ) = 0. Henceforth, if ψ + εϑ 6= 0, the curve γ is periodic if and only if
q
ω

is a rational number. �

Remark 3.1. If ψ + εϑ = 0, the curves γ given in (3.11) have the form

γ(s) =
(

cosh(ψ)cos(λ s),cosh(ψ)sin(λ s),sinh(ψ)cos(λ s),sinh(ψ)sin(λ s)
)
,

where λ = q/2− εω . Hence, they are always periodic.

Remark 3.2. The existence of closed trajectories is a fascinating topic in dynamical systems.
In [14], periodic orbits of the contact magnetic field on the unit three-sphere were found and a
condition for periodicity was obtained. These results were generalized in [21] to Berger spheres of
dimension three. In Physics, such a condition for periodicity is known as a quantization principle.
In Theorem 3.3, our criterion of periodicity q/ω ∈ Q states that the set of periodic light-like mag-
netic curves on H3

1 of the hyperbolic Hopf vector field ξ of the third type are quantized in the set of
rational numbers.

4. Projections in H2 of Hopf magnetic curves

As we have already reported in Section 2, the hyperbolic Hopf map is defined by

h : H3
1(1)→H2(1/2) , (z,w) 7→

(
z̄w, |z|

2+|w|2
2

)
∈ C×R≡ R3

1.

Denoting by ḡ the usual Riemannian metric on H2(1/2), the map h becomes a pseudo-Riemannian
submersion. We now investigate the geometry of the curve γ̄ = h ◦ γ , that is, the projection of a
light-like Hopf magnetic curve γ ∈H3

1 via the hyperbolic Hopf map.
Let γ be a light-like magnetic curve in H3

1(1), given by γ(s) = (z(s),w(s)), where the complex
functions z and w satisfy (3.3). We first prove the following result.
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Theorem 4.1. The projection γ̄ of a light-like Hopf magnetic curve γ ⊂ H3
1(1) via the hyperbolic

Hopf map is a curve of constant curvature in H2(1/2).

Proof. We compute the curvature κ̄ of γ̄ and show that it is a constant. We first compute ˙̄γ . Using
(3.3) and (3.2), we get

˙̄γ =
(
(T2− iT3)w2 +(T2 + iT3)z̄2,2ℜe

(
(T2− iT3)zw

))
.

In particular, ḡ( ˙̄γ, ˙̄γ) = (T 2
2 +T 2

3 )(|z|2−|w|2)2 = T 2
1 . Therefore, s̄ = T1s is the arc-length parameter

for γ̄ , and the unit tangent of γ̄ is T̄ = 1
T1

˙̄γ . We also find

¨̄γ =
(
(2T1−q)i

[
(T2− iT3)w2− (T2 + iT3)z̄2

]
+4T 2

1 z̄w̄,

2T 2
1
(
|z|2 + |w|2

)
+2(2T1−q)ℜe

(
i(T2− iT3)zw

))
.

If ∇̄ denotes the Levi-Civita connection of ḡ, then the curvature of γ̄ is given by

∇̄T̄ T̄ = κ̄N̄,

where N̄ is the unit normal of γ̄ . A classical computation yields

κ̄N̄ =
1

T 2
1

¨̄γ−4γ̄.

Therefore, we may write

κ̄N̄ =
2T1−q

T 2
1

(
i
[
(T2− iT3)w2− (T2 + iT3)z̄2],2ℜe

(
i(T2− iT3)zw

))
.

Consequently, κ̄ =
∣∣∣2T1−q

T1

∣∣∣ is a constant. �

Remark 4.1. Recall the following fact about curves of constant curvature in the hyperbolic plane
H2(r) (r > 0) of curvature −1/r2. Let γ̄ be such a curve and κ̄ be its geodesic curvature; then γ̄

belongs to the following list:

• if κ̄ ∈ (0,r), then the curve γ̄ is contained in an equidistant curve from a geodesic;
• if κ̄ = r, then γ̄ is part of a horocycle;
• if κ̄ > r, then the curve γ̄ is contained in a circle.

Remark 4.2. This classification, together with the above Theorem 4.1, completely describes the
projections of light-like Hopf magnetic curves in the hyperbolic plane.

We shall now explicitly describe all three cases discussed in the previous Section, also providing
some examples corresponding to each of them.
For the (Riemannian) hyperbolic plane H2(1/2), we consider the hyperboloid model, namely,
H2(1/2) =

{
y = (y1,y2,y3) ∈ R3

1 : y2
1 + y2

2− y2
3 =−1

4

}
.
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In the first case, the magnetic curve γ is given by (3.9). Its projection via the Hopf map is then
parametrized by

γ̄(s) =
(

qs
4
,
q2s2

16
,
1
2
+

q2s2

16

)
.

This represents the intersection of the hyperbolic plane (as upper sheet of the hyperboloid) with the
light-like plane with equation {y3− y2 = 1

2}. A particular example is illustrated in the following
Figure 1.

Fig. 1. Projection of a light-like magnetic curve (3.9) on H2(1/2)

In the second case, the magnetic curve γ is given by (3.10), and the projection is given by

γ̄(s) = 1
2

(
sinh(ψ−ϑ)cosh(ψ +ϑ)+ cosh(ψ−ϑ)sinh(ψ +ϑ)cosh(2ωs),

cosh(ψ−ϑ)sinh(2ωs),

sinh(ψ−ϑ)sinh(ψ +ϑ)+ cosh(ψ−ϑ)cosh(ψ +ϑ)cosh(2ωs)
)
.

It is not difficult to check that γ̄ is now the intersection of the hyperbolic plane with the time-like
plane {y1 cosh(ψ +ϑ)− y3 sinh(ψ +ϑ) = 1

2 sinh(ψ −ϑ)}. Particular examples are shown in the
following Figure 2.

Fig. 2. Projection of a light-like magnetic curve (3.10) on H2(1/2):
(left) ψ = ϑ = 1

2 , ω = 1
2 ; (right) ψ = 1,ϑ = 0, ω = 1

2e
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Finally, the magnetic curve given by (3.11) projects onto the curve γ̄ on H2(1/2) parametrized by

γ̄(s) = 1
2

(
sinh(ψ− εϑ)cosh(ψ + εϑ)+ sinh(ψ + εϑ)cosh(ψ− εϑ)cos(2ωs),

ε sinh(ψ + εϑ)sin(2ωs),

cosh(ψ−ϑ)cosh(ψ +ϑ)+ sinh(ψ−ϑ)sinh(ψ +ϑ)cos(2ωs)
)
,

which lies at the intersection of the hyperbolic plane with the space-like plane

{y1 sinh(ψ− εϑ)− y3 cosh(ψ− εϑ) =−1
2

cosh(ψ + εϑ)}.

See the following Figure 3 for particular examples. We may remark that in this case, the projection
γ̄ is a closed curve on H2(1/2).

Fig. 3. Projection of a light-like magnetic curve (3.11) on H2(1/2):
(left) ψ = ϑ = 1, ω = 1

2 e2; (right) ψ = 3
2 ,ϑ = 0, ω = 1

2 e
3
2

5. Light-like magnetic curves on the hyperbolic Hopf tube

Let β : I ⊂ R −→ H2(1/2), 0 ∈ I, be a curve on H2(1/2) (not necessarily parametrized by arc-
length). For any (z0,w0) ∈ H3

1 such that h(z0,w0) = β (0), there exists a unique curve β̂ , known as
the horizontal lift of β , such that β̂ (0) = (z0,w0), β̂ is orthogonal to ξ and β̂ projects to β , i.e.
h(β̂ (s)) = β (s), for any s ∈ I.
We then call hyperbolic Hopf tube over β its complete lift to H3

1, given by

Hβ := h−1(β ) =
{

eit
β̂ (s) : t ∈ R,s ∈ I

}
.

Consider now the following parametrization of Hβ :

F : I×R −→ H3
1

(s, t) 7−→ eit β̂ (s).
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The tangent plane to the surface Hβ is spanned by Fs and Ft , which are computed as{
Fs(s, t) = eit β̂ ′(s),
Ft(s, t) = iF(s, t) = ξF(s,t).

When β is the projection of a magnetic curve on H3
1, it has constant speed v (not necessarily equal

to 1). We have

h∗,β̂ (s)β̂
′(s) = β

′(s), ∀s ∈ I.

On Hβ we consider the induced metric from the metric 〈 , 〉 of H3
1. We also have that 〈 , 〉 = h∗ḡ,

where ḡ is the metric on the hyperbolic plane H2(1/2). Consequently, we can compute the induced
metric gβ on Hβ and we obtain

gβ = v2ds2−dt2,

which yields at once the following result.

Proposition 5.1. The hyperbolic Hopf tube Hβ over a constant speed curve β is flat.

The unit normal at β̂ (s) to Hβ is the horizontal lift at β̂ (s) of the unit normal ν(s) at β (s), denoted
by ν̂(s). Hence, β̂ (s) is a horizontal vector orthogonal to β̂ ′(s). The unit normal at F(s, t) to Hβ is
then given by N(s, t) = eit ν̂(s).
An arbitrary curve Γ on Hβ writes (locally) as t = t(s) and so, it may be expressed as Γ(s) =
eit(s)β̂ (s). It follows that

Γ
′(s) = t ′(s)ξΓ(s)+ eit(s)

β̂
′(s).

Let now γ be a magnetic curve on H3
1, parametrized by pseudo-arc length s. Denoting by β its

projection on H2(1/2), we obviously have γ ⊂ Hβ .
As we have seen above, γ̇ has a component along ξ and a horizontal component. From the previous
Sections we know that 〈γ̇(s),ξγ(s)〉 is a constant c. We now prove the following.

Theorem 5.1. A light-like magnetic curve γ on H3
1 is a geodesic on the corresponding hyperbolic

Hopf tube.

Proof. From the Lorentz equation (3.1) we conclude that ∇γ̇ γ̇ , being orthogonal to ξ and γ̇ , is
orthogonal to Hβ . Using the Gauss’s formula, we then obtain at once that γ is a geodesic on Hβ .
�

Remark 5.1. We may express the equation of γ in terms of coordinates on Hβ . More precisely,
since γ ⊂ Hβ , parametrize γ as t = t(s). Then γ̇ = t ′(s)ξγ(s)+ eit(s)β̂ ′(s). It follows that

c = 〈γ̇,ξγ〉=−t ′(s),

and hence t(s) = t(0)− cs. Thus, we conclude that γ is a (portion of a) straight line in Hβ .
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We end this Section describing explicitly the situation in Case I. The remaining cases can be treated
in a similar way. By the previous Section, we have to consider

β : R−→H2(1/2) , β (s) =
(

qs
4

,
q2s2

16
,

1
2
+

q2s2

16

)
.

We take (z0,w0) = (1,0) ∈H3
1, which projects to β (0) =

(
0,0, 1

2

)
.

We then construct the horizontal lift of β through (z0,w0). To do this, we take
β̂ : R−→H3

1 ⊂ C2
1, β̂ (s) = (z(s),w(s)). We must have

(a) −|z(s)|2 + |w(s)|2 =−1,
(b) ℜe

[
i
(
z′(s)z̄(s)−w′(s)w̄(s)

)]
= 0,

(c) z̄(s)w(s) = qs
4 + i q2s2

16 ,

(d) |z(s)|2 + |w(s)|2 = 1+ q2s2

8 , ∀s ∈ R.

Combining (a) and (d), we may choose two real functions u and v (depending on s), such that

w(s) =
qs
4

eiu(s) and z(s) =

√
1+

q2s2

16
eiv(s),

with v(0) = 0. By (c), we then get 1+ i qs
4 =

√
1+ q2s2

16 ei(u−v) and hence, u(0) = 0 and

u′(s)− v′(s) =
q

4
(

1+ q2s2

16

) . (5.1)

Finally, from (b), we get

q2s2

16
u′(s)−

(
1+

q2s2

16

)
v′(s) = 0. (5.2)

From (5.1) and (5.2) we obtain

u(s) =
qs
4

and v(s) =
qs
4
− arctan

qs
4

.

We can now write explicitly β̂ , as

β̂ (s) =
(

cos
qs
4
+

qs
4

sin
qs
4

, sin
qs
4
− qs

4
cos

qs
4

,
qs
4

cos
qs
4

,
qs
4

sin
qs
4

)
.

It is easy to check that 〈β̂ ′, β̂ ′〉= q2

16 .
The hyperbolic Hopf tube over β may now be parametrized as

F(s, t) =
(

cos
(
t +

qs
4
)
+

qs
4

sin
(
t +

qs
4
)
, sin

(
t +

qs
4
)
− qs

4
cos
(
t +

qs
4
)
,

qs
4

cos
(
t +

qs
4
)
,

qs
4

sin
(
t +

qs
4
))

.

Comparing with Theorem 3.1, we conclude that the magnetic curve γ , parametrized by (3.9), may
be expressed, in terms of coordinates s and t of Hβ by t(s) = qs

4 . Hence, γ is a straight line on the
hyperbolic Hopf tube over the projection of γ itself via the hyperbolic Hopf map.
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6. The Lorentz equation and the Lie group structure of H3
1

As we have seen in Section 2, there exists a natural Lie group structure on H3
1 and a compatible bi-

invariant pseudo-Riemannian metric. The vector field ξ which was essentially used in the study of
magnetic curves is Killing and right invariant. This is the reason why, in this Section, we give a new
approach of our study trying to relate all the ingredients involved in the Lorentz equation with the
Lie group structure of H3

1. This can be done since H3
1 is realized as a subgroup of the multiplicative

group of the algebra of paraquaternions. Note that in [6] (respectively in [21]) the study of magnetic
curves on the Euclidean 3-sphere (respectively on the 3-dimensional Berger sphere) is done by using
quaternions.

6.1. General things on T1H3
1

The Lie brackets in B correspond to the commutator and hence we have

[i, j] = 2k, [ j,k] =−2i, [k, i] = 2 j.

Then, the cross product of two vectors in T1H3
1 can be expressed in terms of the Lie brackets, that

is, for a suitable choice of orientation on T1H3
1 we set [v0,w0] = 2v0×w0 for any v0,w0 ∈ T1H3

1.
One can then define the cross product of two tangent vectors asking for the cross product to be a
bi-invariant tensor. Hence, if v = (Rg)∗(v0) and w = (Rg)∗(w0) for some v0,w0 ∈ T1H3

1, then

v×w =
1
2
(Rg)∗([v0,w0]).

Here Rg : H3
1 −→ H3

1, Rg(h) = hg (for g ∈ H3
1) is the right multiplication and

(Rg)∗ : T1H3
1 −→ TgH3

1 is the linear tangent map.

6.2. Magnetic curves in H3
1

If γ(t) is a path in H3
1 and γ̇(t) is its velocity, then one can define a path η(t) in T1H3

1 by η(t) =
(Rγ(t))

−1
∗ (γ̇(t)). It follows that the acceleration of γ can be written as

∇γ̇ γ̇ = (Rγ(t))∗
dη

dt
.

This expression comes from the general theory of Lie groups endowed with a bi-invariant
(pseudo-)Riemannian metric. We will briefly recall, in the Appendix B, some basic facts on Lie
groups.
Let now γ be a solution of the Lorentz equation ∇γ̇ γ̇ = qξ (γ)× γ̇ . Consider ξ0 ∈ T1H3

1 such that
ξ (γ(t)) = (Rγ(t))∗ξ0 (in fact ξ0 = i). Thus, the Lorentz equation becomes a first order ordinary
differential equation in T1H3

1, namely,

η̇(t) =
q
2
[ξ0,η(t)].

The general solution of this equation is η(t) = Ad(exp(tv0))η0, where v0 = q
2 ξ0 and η0 ∈ T1H3

1.
Therefore,

γ̇(t) = (Rγ(t))∗(Ad(exp(tv0))η0) = (Rγ(t) ◦ cexp(tv0))∗η0.
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If we put α(t) = exp(−tv0)γ(t) we have:

α̇(t) = (Lexp(−tv0))∗,γ(t)γ̇(t)+(Rγ(t))∗,exp(−tv0)
d
dt (exp(−tv0)

= (Lexp(−tv0) ◦Rγ(t) ◦ cexp(tv0))∗η0− (Rγ(t))∗,exp(−tv0)(Rexp(−tv0))∗v0

= (Rα(t))∗(η0− v0).

This implies that α is a parametrized geodesic in H3
1. Hence, we obtain the following:

Theorem 6.1. Magnetic curves in H3
1 corresponding to the (right-invariant) Killing vector field ξ

are all of the form γ(t) = exp(tqξ0/2)α(t), where α is a geodesic in H3
1.

We note that the geodesic α is light-like if and only if η0− q
2 ξ0 is light-like.

In order to connect this approach with the results obtained in the first part of the paper, let us look
at the Hopf magnetic curves we obtained in Theorem 3.1. We may identify the following objects:
ξ0 = i, η(t) = q

4

(
i+ cos(qt) j+ sin(qt)k

)
, η0 =

q
4(i+ j) and α(t) = (1,−qt

4 ,
qt
4 ,0).

6.3. Hopf fibration

The Hopf fibration h : H3
1→H2(1/2) can be also understood in this setting. If ξ0 is a unitary time-

like vector in T1H3
1, then it generates a maximal compact subgroup H = {(eiθ ,0) : θ ∈ R} ⊂ H3

1.
The fibers of the Hopf projection are right cosets Hg, for g ∈ H3

1. More precisely, if g ∈ H3
1 and

x ∈ H2(1/2) we define a right action of H3
1 over H2(1/2) as x · g := h(h−1(x)g), this being an

isometry. In particular we have

• h(eiθ ,0) = (0,1/2) := x0;
• h−1(x0) = {(0,eiθ ) : θ ∈ R}∪{(eiθ ,0) : θ ∈ R};
• (0,eiθ )(z,w) = (eiθ w̄,eiθ z̄) := g1 and (eiθ ,0)(z,w) = (eiθ z,eiθ w) := g2;
• h(g1) = h(z,w) and h(g2) = h(z,w).

Hence h(g) = x0 ·g. This shows that for γ(t) as before, we have h(γ(t)) = h(α(t)).
It is known that we have three types of geodesics in H3

1, namely time-like, space-like and light-like
depending on which conjugacy class of SL(2,R) the corresponding monodromy matrices belong
to (namely the elliptic, hyperbolic, or parabolic class, respectively). For some connections with
Physics, see e.g. [23]. Geometrically, each geodesic is a part of the intersection of the one-sheet
hyperboloid with a 2-plane passing through the origin in the ambient. Every such 2-plane inherits
a metric which is either negative definite, indefinite or negative semi-definite of rank 1, and the
corresponding geodesics are of the respective three types described above. For some related results,
we may refer, for example, to the remarkable paper of Calabi and Markus [7].
Let α(t) = gα0(t), where α0(t) is a 1-parameter subgroup of H3

1. It follows that h(γ(t)) = x0 ·
α(t) = (x0 ·g) ·α0(t) and this is an orbit of the 1-parameter group α0(t). In the view of the previous
comments, we distinguish different cases:

• if α0(t) is time-like, then it is the group of (Euclidean) rotations around a time-like axis and so,
the projection h(γ(t)) is a circle;
• if α0(t) is space-like, then it fixes a geodesic and hence h(γ(t)) is an equidistant line from this

geodesic;
• if α0(t) is light-like, then α(t) fixes a point on the boundary of H2 and so h(γ(t)) is a horocycle.

This discussion is related to the Theorem 4.1 and Remark 4.1.
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Appendix A

In this section we give more geometric information on the magnetic curves obtained in Section 3.
More precisely, we prove that these curves are helices (meaning that their curvature and torsion are
constant) in all three cases described in Section 3.
First case: For the curve given in (3.9), we calculate T = γ̇ and γ̈ , and describe the Frenet-Serret
frame along γ . In fact, we obtain a Cartan null frame for the null curve γ (see for example [20]). We
have

T =

(
q2s
8

cos(
qs
2
)− q

4
sin(

qs
2
),

q2s
8

sin(
qs
2
)+

q
4

cos(
qs
2
),

−q2s
8

sin(
qs
2
)+

q
4

cos(
qs
2
),

q2s
8

cos(
qs
2
)+

q
4

sin(
qs
2
)

)
and

γ̈(s) =− q2

4

(qs
4

sin(
qs
2
),−qs

4
cos(

qs
2
),

qs
4

cos(
qs
2
)+ sin(

qs
2
),

qs
4

sin(
qs
2
)− cos(

qs
2
)
)
.

In particular, 〈γ, γ̈〉 = 0. Moreover, 〈γ̈, γ̈〉 = q4

16 , so that γ̈ is space-like. Note that the pseudo-arc

length parameter, s̃, which would make γ̈ unitary, is s̃ = q2

4 s. Since γ̈ = ∇γ̇ γ̇ , the normal vector field
N := γ̈(s)

||γ̈(s)|| is given by

N =
(
−qs

4
sin(

qs
2
),

qs
4

cos(
qs
2
),−sin(

qs
2
)− qs

4
cos(

qs
2
),cos(

qs
2
)− qs

4
sin(

qs
2
)
)
.

The binormal B is a light-like vector field along γ defined by the conditions g(N,B) = 0 and
g(T,B) = 1. It can be computed as

B =
2
q

(
sin(

qs
2
),−cos(

qs
2
),cos(

qs
2
),sin(

qs
2
)
)
.

The torsion of γ , defined by τ = g(dN
ds̃ ,B), is constant τ =− 4

q2 . With respect to the pseudo-arc length
s̃, the Frenet-Serret equations may be written as

d
ds̃

(T N B) = (T N B)

0 −4/q2 0
1 0 4/q2

0 −1 0

 .

Therefore, γ is a light-like helix.
Second case: For the curve given by (3.10) we determine T = γ̇ , γ̈ and the Frenet frame along γ . A
standard computation gives

T =
((

ω cosh(ψ)− q
2 sinh(ϑ)

)
sinh(ωs)cos(qs

2 )−
(
ω sinh(ϑ)+ q

2 cosh(ψ)
)

cosh(ωs)sin(qs
2 ),(

ω cosh(ψ)− q
2 sinh(ϑ)

)
sinh(ωs)sin(qs

2 )+
(
ω sinh(ϑ)+ q

2 cosh(ψ)
)

cosh(ωs)cos(qs
2 ),(

ω sinh(ψ)− q
2 cosh(ϑ)

)
sinh(ωs)cos(qs

2 )−
(
ω cosh(ϑ)+ q

2 sinh(ψ)
)

cosh(ωs)sin(qs
2 ),(

ω sinh(ψ)− q
2 cosh(ϑ)

)
sinh(ωs)sin(qs

2 )+
(
ω cosh(ϑ)+ q

2 sinh(ψ)
)

cosh(ωs)cos(qs
2 )
)
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and

γ̈(s) =−qω

((
sinh(ϑ)+ρ cosh(ψ)

)
cosh(ωs)cos(qs

2 )+
(

cosh(ψ)−ρ sinh(ϑ)
)

sinh(ωs)sin(qs
2 ),(

sinh(ϑ)+ρ cosh(ψ)
)

cosh(ωs)sin(qs
2 )−

(
cosh(ψ)−ρ sinh(ϑ)

)
sinh(ωs)cos(qs

2 ),(
cosh(ϑ)+ρ sinh(ψ)

)
cosh(ωs)cos(qs

2 )+
(

sinh(ψ)−ρ cosh(ϑ)
)

sinh(ωs)sin(qs
2 ),(

cosh(ϑ)+ρ sinh(ψ)
)

cosh(ωs)sin(qs
2 )−

(
sinh(ψ)−ρ cosh(ϑ)

)
sinh(ωs)cos(qs

2 )
)
,

where ρ := 〈i ·V1,V2〉= ρ = sinh(ψ−ϑ). In particular, ρ = q2−4ω2

4qω
6= 0, 〈γ, γ̈〉= 0 and 〈γ̈, γ̈〉= q2T 2

1 ,

so that γ̈ is space-like. The normal vector field is given by N := γ̈(s)
||γ̈(s)|| =

1
||qT1|| γ̈ . Note that the

pseudo-arc length parameter, s̃, which would make γ̈ unitary, is s̃ = qT1s. The binormal vector field
B is light-like and obtained from the equations 〈B,N〉 = 0, 〈B,γ〉 = 0 and 〈B,T 〉 = 1. It may be
computed as

B =
(
X cosh(ωs)sin(

qs
2
)+Y sinh(ωs)cos(

qs
2
),−X cosh(ωs)cos(

qs
2
)+Y sinh(ωs)sin(

qs
2
),

Z cosh(ωs)sin(
qs
2
)+W sinh(ωs)cos(

qs
2
),−Z cosh(ωs)cos(

qs
2
)+W sinh(ωs)sin(

qs
2
)
)
,

where X ,Y,Z,W are real constants, explicitly given by

X = 1
2T1

(cosh(ψ)− ε sinh(ψ)), Y = 1
2T1

(sinh(ϑ)+ ε cosh(ϑ)),

Z = 1
2T1

(sinh(ψ)− ε cosh(ψ)), W = 1
2T1

(cosh(ϑ)+ ε sinh(ϑ)),

with ε = sgn(q).

The torsion of γ is then given by τ = g
(dN

ds̃ ,B
)
=

ω2− q2
4

q2ωT 2
1
, and so, it is a constant.

Third case: Now, consider γ given by (3.11) and determine T = γ̇ , γ̈ and the Frenet-Serret frame.
A standard calculation gives

T =
((

ε
q
2 cosh(ϑ)−ω cosh(ψ)

)
sin(ωs)cos(qs

2 )−
(q

2 cosh(ψ)− εω cosh(ϑ)
)

cos(ωs)sin(qs
2 ),(

ε
q
2 cosh(ϑ)−ω cosh(ψ)

)
sin(ωs)sin(qs

2 )+
(q

2 cosh(ψ)− εω cosh(ϑ)
)

cos(ωs)cos(qs
2 ),

−
(q

2 sinh(ϑ)+ω sinh(ψ)
)

sin(ωs)cos(qs
2 )−

(q
2 sinh(ψ)+ω sinh(ϑ)

)
cos(ωs)sin(qs

2 ),(q
2 sinh(ψ)+ω sinh(ϑ)

)
cos(ωs)cos(qs

2 )− (q
2 sinh(ϑ)+ω sinh(ψ))sin(ωs)sin(qs

2 )
)

and

γ̈(s) = qω

((
ε cosh(ϑ)−ρ cosh(ψ)

)
cos(ωs)cos(qs

2 )+
(

cosh(ψ)− ερ cosh(ϑ)
)

sin(ωs)sin(qs
2 ),(

ε cosh(ϑ)−ρ cosh(ψ)
)

cos(ωs)sin(qs
2 )−

(
cosh(ψ)− ερ cosh(ϑ)

)
sin(ωs)cos(qs

2 ),

−
(

sinh(ϑ)+ρ sinh(ψ)
)

cos(ωs)cos(qs
2 )+

(
sinh(ψ)+ρ sinh(ϑ)

)
sin(ωs)sin(qs

2 ),

−
(

sinh(ϑ)+ρ sinh(ψ)
)

cos(ωs)sin(qs
2 )−

(
sinh(ψ)+ρ sinh(ϑ)

)
sin(ωs)cos(qs

2 )
)
,

where ρ := 〈i ·V1,V2〉= ε cosh(ψ + εϑ). In particular ρ = q2+4ω2

4qω
6= 0.
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It is easy to check that 〈γ, γ̈〉 = 0 and g(γ̈, γ̈) = q2T 2
1 . Then, the normal vector field is (space-like

and) given by N = 1
|qT1| γ̈ . The binormal vector field B (light-like) is then given by

B =
(

X cos(ωs)sin(
qs
2
)+Y sin(ωs)cos(

qs
2
),−X cos(ωs)cos(

qs
2
)+Y sin(ωs)sin(

qs
2
),

Z cos(ωs)sin(
qs
2
)+W sin(ωs)cos(

qs
2
),−Z cos(ωs)cos(

qs
2
)+W sin(ωs)sin(

qs
2
)
)
,

where X ,Y,Z,W are real constants, explicitly given by

X = 1
2T1

(cosh(ψ)+ ε1 sinh(ψ)), Y =− 1
2T1

(ε cosh(ϑ)+ ε1 sinh(ϑ)),

Z = 1
2T1

(sinh(ψ)+ ε1 cosh(ψ)), W = 1
2T1

(sinh(ϑ)+ εε1 cosh(ϑ)),

where ε1 =±1 such that sinh(ψ + εϑ) = ε1(q2−4ω2)
4|q|ω .

The torsion of γ is a constant, namely τ =− 1
qT1
〈N, Ḃ〉= ω2+ q2

4
2T 2

1
.

Appendix B

In this Appendix we set some notations and present some basic properties on Lie groups, Lie alge-
bras, left and right invariant vector fields, bi-invariant metrics and so on. We believe that this part
serve to make the paper self-contained for readers not familiar with the subject. For more details
see e.g. [9] and [24].
Let G be a Lie group, e its unit element and g= TeG the Lie algebra. We have the following.

• The left translation by g ∈ G:
Lg : G→ G, h 7→ gh is a diffeomorphism whose inverse is (Lg)

−1 = Lg−1 .
• The right translation by g ∈ G:

Rg : G→ G, h 7→ hg is also a diffeomorphism whose inverse is (Rg)
−1 = Rg−1 .

• If ν : G→ G, g 7→ g−1 is the inverse map, then we have
ν ◦Lg = Rg−1 ◦ν , ν ◦Rg = Lg−1 ◦ν and ν∗ := ν∗,e =−idg.
• For v0 ∈ g ≡ TeG and g ∈ G, one can define a left invariant vector field on G, denoted by Lv0 ,

by Lv0(g) = (Lg)∗v0 ∈ TgG. In the same way we can define a right invariant vector field on G
generated by v0, by Rv0(g) = (Rg)∗v0 ∈ TgG.
We have:
[Lv0 ,Lw0 ] = L[v0,w0], Rv0 = ν∗L−v0 , [Rv0 ,Rw0 ] =−R[v0,w0], [Lv0 ,Rwo ] = 0,
for any v0,w0 ∈ g.
• The map G×g→ T G defined by (g,v0) 7→ Lv0(g) is a diffeomorphism, which is usually called

the left trivialization of the tangent bundle of G.
• The Lie algebra of G is g = TeG together with the map [·, ·] : g× g→ g defined by [v0,w0] =

[Lv0 ,Lw0 ](e).
• The maps v0 7→ Lv0 and X 7→ X(e) define inverse linear isomorphisms between g and the set of

left invariant vector fields on G. The same considerations can be made when “left invariant” is
replaced by “right invariant”.
• Let exp : g→ G, v0 7→ γv0 be the exponential map. Here γv0 : R→ G is the path in G satisfying

γv0(0) = e,
dγv0
dt

∣∣∣
t=0

= v0, γv0(s+ t) = γv0(s)γv0(t), for all s, t ∈ R.

If v0 ∈ g, then φt(g) = gγv0(t) (respectively φt(g) = γv0(t)g) is the flow of Lv0 (respectively Rv0)
and γtv0(1) = γv0(t), for all t ∈ R.
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• For each g ∈ G, the conjugation map cg : G→ G, h 7→ ghg−1 is a diffeomorphism.
• The Adjoint representation of the Lie group G is the map Ad : G→ GL(g) defined by Ad(g) =
(cg)∗ : g→ g. More precisely, we have Ad(g) = (Rg−1)∗,g(Lg)∗.
The adjoint representation of the Lie algebra g is the map ad : g→Hom(g,g) defined by ad(v0)=

Ad∗(v0). Moreover, we have ad(v0)w0 = [v0,w0], for any v0,w0 ∈ g.
• The following formula d

dt

∣∣
t=0 Ad(exp(tv0))w0 = [v0,w0] holds for all v0,w0 ∈ g.

• Let X ,Y be two vector fields on G and {φt} the 1-parameter group of X . Define Y (t) :=
(φ−t)∗,φt(g)Yφt(g). Then we have dY

dt = [Y (t),X ].
• A metric 〈·, ·〉 on a Lie group G is called bi-invariant if it is both left and right invariant, that is
〈u,v〉h = 〈(Lg)∗,hu,(Lg)∗,hw〉gh, 〈u,v〉h = 〈(Rg)∗,hu,(Rg)∗,hw〉hg,
for any g,h ∈ G and u,v ∈ ThG. There exists a bijective correspondence between left-invariant
(respectively right-invariant) metrics on a Lie group G and inner products on the Lie algebra g of
G. Thus, there is a bijective correspondence between bi-invariant metrics on G and Ad-invariant
inner products on g, namely inner products satisfying the condition 〈Ad(g)v0,Ad(g)w0〉 =
〈v0,w0〉, for all g ∈ G and v0,w0 ∈ g. Hence, an inner product 〈·, ·〉 on g induces a bi-invariant
metric on G if and only if the linear map ad(v0) : g→ g is skew-symmetric for all v0 ∈ g which
means that 〈[u0,v0],w0〉= 〈u0, [v0,w0]〉, for all u0,v0,w0 ∈ g.
It follows that the Levi-Civita connection ∇ of a bi-invariant metric can be expressed as
∇Lv0

Lw0 =
1
2 L[v0,w0], for all v0,w0 ∈ g. Analogously, we can write ∇Rv0

Rw0 =−1
2 R[v0,w0].

• Let α(t) be an integral curve of the left invariant vector field X . The equation ∇XY = 1
2 [X ,Y ]

implies that ∇α̇ α̇ = ∇X X = 0 and hence α is a geodesic. Thus, the 1-parameter groups are
geodesics through the identity and all geodesics are left cosets of 1-parameter groups. More
precisely, for any v0 ∈ g and g ∈ G, the curve γ(t) = gexp(tv0) is a geodesic passing through
g and all the geodesics are of this form. Right invariant geodesics can be obtained from the left
invariant ones through inversions.

Acknowledgments

The first author was partially supported by University of Salento and MIUR (PRIN 2013). The
second author was partially supported by by CNCS-UEFISCDI grant PN-II-RU-TE-2011-3-0017
(Romania). He wishes to thank Department of Mathematics and Physics “E. de Giorgi” of the
University of Salento for the warm hospitality during his visit in Spring 2014. Both authors wish to
thank the anonymous referee for useful comments and remarks made on the initial version of this
paper.

References
[1] T. Adachi, Kähler Magnetic Field on a Complex Projective Space, Proc. Japan Acad. 70 Ser. A (1994)

12–13.
[2] T. Adachi, Kähler Magnetic Flow for a Manifold of Constant Holomorphic Sectional Curvature, Tokyo

J. Math. 18 (1995) 473–483.
[3] M. Barros, A. Ferrández, P. Lucas and M. A. Meroño, Hopf cylinders, B-scrolls and solitons of the

Betchov-Da Rios equation in the 3-dimensional anti-De Sitter space, C. R. Acad. Sci. Paris 321 (1995)
505–509.

[4] M. Barros, A. Ferrández, P. Lucas and M. A. Meroño, Solutions of the Betchov-Da Rios soliton equation
in the anti-De Sitter 3-space, in New Approaches in Nonlinear Analysis, (ed. Th. M. Rassias, Hadronic
Press Inc., Palm Harbor, Florida, 1999), 51–71.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

483



G. Calvaruso and M.I. Munteanu / Hopf magnetic curves in the anti-de Sitter space H3
1

[5] M. Barros and A. Romero, The Gauss-Landau-Hall problem on Riemannian surfaces, J. Math. Phys.
46 (2005) 112905, 15pp.

[6] J .L. Cabrerizo, Magnetic fields in 2D and 3D sphere, J. Nonlinear Math. Phys. 20 (2013) 440–450.
[7] E. Calabi, L. Markus, Relativistic space forms, Ann. Math. 75 (1962) 63–76.
[8] A .M. Candela, Lightlike periodic trajectories in space-time, Ann. Mat. Pura Appl. 171 (1996) 131–158.
[9] A. C̆ap, Lie Groups, (lecture notes, Institute for Mathematics, University of Vienna, 2015/2016) 68pp.

[10] M. Benyounes, E. Loubeau and S. Nishikawa, Generalized Cheeger-Gromoll metrics and the Hopf map,
Diff. Geom. Appl. 39 (2011) 187–213.

[11] G. Calvaruso, M.I. Munteanu and A. Perrone, Killing magnetic curves in three-dimensional almost
paracontact manifolds, J. Math. Anal. Appl. 426 (2015) 423–439.

[12] G. Calvaruso and D. Perrone, Metrics of Kaluza-Klein type on the anti-de Sitter space H3
1, Math. Nachr.

287 (2014) 885–902.
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