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We consider an auxiliary spectral problem originally introduced by Gerdjikov, Mikhailov and Valchev (GMV
system) and its modification called pseudo-Hermitian reduction which is extensively studied here for the first
time. We describe the integrable hierarchies of both systems in a parallel way and construct recursion oper-
ators. Using the concept of gauge equivalence, we construct expansions over the eigenfunctions of recursion
operators. This permits us to obtain the expansions for both GMV systems with arbitrary constant asymptotic
values of the potential functions in the auxiliary linear problems.

Keywords: Lax representation; gauge-equivalent equations; recursion operators; reductions.

2010 Mathematics Subject Classification: 37K 10, 37K30, 35Q55, 35Q51

1. Introduction

We are going to study the auxiliary linear problem

0 uv
Ly =(id,— AS)y =0, S=1|eu00|, AeC (1.1)
v: 00

and the theory of expansions over the adjoint solutions related to it. Above € = £1 and * stands
for complex conjugation. The complex valued functions u and v (the potentials) are assumed to be
smooth for x € R and they satisfy the relation:

elul® + > =1. (1.2)

The potentials must also satisfy some asymptotic conditions when x — oo to be discussed further
in text.

The system (1.1) for € = 1 was considered by Gerdjikov, Mikhailov and Valchev [6] with the
sign + before S. It is a particular case of a vector system introduced independently by Golubchik
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and Sokolov [12]. For reasons that will become clear later we shall prefer this equivalent form (one
just needs to change (u,v) to (—u,—v)).

Let us adopt the following convention: if € appears in formulas then it will be +1 or —1, if it is
used as an index or label it will mean either + or —. Thus we shall denote the original Gerdjikov-
Mikhailov-Valchev system by GMV . while the general case will be referred to as GMV, system.

According to [6,7] the GMV . system arises naturally when one looks for integrable system hav-
ing a Lax representation [L,A] = 0 with L and A subject to Mikhailov-type reduction requirements,
see [16—18]. This is also true for both GMV . systems. Indeed, the Mikhailov reduction group Gy
acting on the fundamental solutions of the system (1.1) could be defined as generated by the two
elements g and g; acting in the following way:

a(W)(A) = [Qew(x,AN)T0:] ', Qe =diag(l,e,1),

1.3
gQ(W)(X,A«):HW(x,—A)H, H:dlag(_1717l) ( )

where 1 denotes Hermitian conjugation. Since g,g>» = g»g1 and g% = g% =id, Gg = Zy x Z>. We
shall call the reduction defined by g1, g, for € = 1 Hermitian while the reduction defined by g;,g>
for € = —1 pseudo-Hermitian. The requirement that Gy is a reduction group immediately gives that
the coefficients of the operators L and

A=id+ Y A4,  Acesl(3,C) (1.4)
k=0

must satisfy:
HSH = -5, HAH = (—1)FA,,
0:S'Qe =5, QeAlQ: = Ay

One may consider a more general form of pseudo-Hermitian reduction, i.e. one with Qg ¢, =
diag (1,€1,&,), €2 = €7 = 1. However, it is easily checked this does not give anything new compared
to the pseudo-Hermitian reduction under consideration here.

As it can be checked the matrix S has constant eigenvalues. We have g~ 'Sg = Jy, where g is of
the form:

(1.5)

1 0 -1

g= eut V2v eut |, Jo = diag (1,0—1). (1.6)
V2 | \

% —\@u %

In case € = +1 the matrix g belongs to the group SU(3) (g = g~ ') and when & = —1 to the group
SU(2,1) (Q_g"Q_ = g1). Further on we shall use the general notation SU (&) referring to both
cases, i.e. it implies SU (¢) = SU(3) when € = 1 and SU (¢) = SU(2,1) when € = —1.

Since g(x) € SU(¢), the values of S(x) will be in the orbit &, (SU (g)) of Jy with respect to
SU(¢€) (it is a submanifold of isu (&)). Thus S(x) € 0y, (SU (€)) Ng; where g, is the space of the
matrices X in sl (3,C) such that HXH = —X, see (2.6) for the reason for this notation. Let us also
note that conversely, if we assume that S(x) € @,(SU (€)) Ng; then on the first place S has the form
as in (1.1). Next, as easily checked, the eigenvalues of the matrix S are

m=0,  po=—p3=/elu+}

But since they coincide with 0,41 we must have &|u|? + |[v|*> = 1.
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Our approach to the GMV_. system will be based on the fact that it is gauge equivalent to a
generalized Zakharov-Shabat auxiliary systems (GZS systems) on the algebra sl (3,C), see Sec.
3. Generalized Zakharov-Shabat systems, called Caudrey-Beals-Coifman (CBC) systems [2] when
J is complex, are probably the best known auxiliary linear problems. In their most general form
they are written on an arbitrary fixed simple Lie algebra g in some finite dimensional irreducible
representation and have the form:

Ly = (id; + q(x) — AJ) w = 0. (1.7)

Here, g(x) and J belong to g in some fixed representation, ¥ belongs to the corresponding group.
The element J must be such that the kernel of ad ; (ad ;(X) = [/, X], X € g) is a Cartan subalgebra b
of g. The potential g(x) belongs to the orthogonal complement b 7+ of b with respect to the Killing
form:

(X,Y) = tr(adxady) X,Y €g. (1.8)

It is assumed that g(x) is sufficiently smooth and it converges to O fast enough when x — +oo. The
system (1.7) is called GZS (CBC) system over g in canonical gauge. When the algebra is understood
from the context and as a representation is chosen the canonical one it is just called GZS (CBC)
system. The system (1.7) is gauge equivalent to

Ly=(i0,—AS(x)) ¥ =0, S(x)e 0. (1.9)

Usually, it is assumed that lim,_, 1. S(x) = J where the convergence is sufficiently fast. Here, 0}
stands for the orbit of J under the adjoint action of the group G corresponding to g: 07 = {X :
X = gJg~!, g € G}. The concept of gauge transformation, gauge equivalent auxiliary problems
and gauge equivalent soliton equations originates from the famous work [27] where it has been
employed to solve an equation that is a classical analogue of equations describing waves in magnetic
chains (spin 1/2). It has been shown that one of the nonlinear evolution equations (NLEEs) related
to L is the Heisenberg ferromagnet equation

1
=_[5,8S], Seisu(2), =1, lim S(x,7) = diag (1,—1)

2i X—rFoo

Si

being gauge equivalent to the famous nonlinear Schrodinger equation, see [4] for an extensive dis-
cussion on that issue. It should be mentioned that the soliton equations solvable through the auxiliary
linear problem L = 0 in the case sl (3,C) is related to a classical analog of the equation describing
spin 1 particle chains dynamics, see [3].

Later, the results of [27] were generalized to the soliton equations hierarchies associated with
L and L, the conservation laws of those NLEEs, the hierarchies of their Hamiltonian structures
etc. This was achieved by generalizing the so-called AKNS approach [1] (generating operators or
recursion operators approach). Initially, this was done in the sl (2,C) case, next in the case of GZS
system on arbitrary semisimple Lie algebra [5,9, 19]. Now, this theory is referred to as the gauge-
covariant theory of the recursion operators related to the GZS (CBC) systems in canonical and pole
gauge. For a detailed explanations of all these issues and more references (prior to 2008), see the
monograph [8].

For GZS system in pole gauge most of the essential issues could be reformulated from the
canonical gauge. Perhaps the main difficulty is to express explicitly all quantities depending on ¢
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and its derivative through $ and its derivatives. While there is a clear procedure how to achieve that
goal, in each particular case the details could be different. The procedure has been developed in
detail in the PhD thesis [19]. In the case of sl (3,C) in general position (with no reductions) it has
been carried out in [20].

Regarding now the system GMV 4, it was the Hermitian case, i.e. GMV, that was mainly con-
sidered so far. The first paper in which GMV . was studied in detail for the asymptotic conditions
limy 1ot =0, lim,, 1. v = expi®y was [7]. It contained discussion of the spectral properties of
the GMV . system, two operators whose product play the role of a recursion operator were pre-
sented and expansions over the so-called adjoint solutions were derived. We shall also discuss these
issues, however, we want to stress on the following: a) We shall be dealing with both GMV . sys-
tems simultaneously; b) Our approach will be completely different, based on the gauge equivalence
we mentioned above. Consequently, we shall be able to consider general asymptotic conditions —
constant limits limy_, 4. # and lim,_,+.v; ¢) Our point of view on the recursion operators when
reductions are present is somewhat different from that adopted in [7].

2. Algebraic preliminaries

In order to proceed further, we shall need some information about the algebra sl (3, C) and the invo-
lutions we are going to use which we introduce below. All facts from the theory of the semisimple
Lie algebras we use are classical, see [13]. We also use the normalizations adopted in this mono-
graph and most of its notation.

The Lie algebra sl (3,C) is a simple Lie algebra of rank 2. We shall denote its Killing form
tr (ad yady) by (X,Y) where as usual ad x(Y) := [X,Y]. It is known that tr(ad yady) =6 tr (XY)
which simplifies considerably the calculations. A Cartan subalgebra could be introduced using any
regular element X € sl (3,C) and constructing the space hx =kerad x. As it is known, the subalgebra
of the diagonal matrices is a canonical choice for Cartan subalgebra. It is also equal to h = kerad ;
where J is any diagonal matrix diag (41,4, 43) with distinct A4;. In that case, we shall call § the
Cartan subalgebra. For the canonical choice of the Cartan subalgebra the system of roots A for
s1(3,C) is

A:{ai,jZSi_8j7 l#‘]a lv]:1>273} (21)

where ¢&; are functionals acting on b in the following way: €;(diag(hy,ha,h3)) = h;. Then the set of
positive roots A consists of the elements ¢;:

0 =& —&, OGQh=&6&—&, 03=§& —&=0+ 0. (2.2)

The corresponding root vectors Eq, &t € A together with the matrices Hy, , Hy, Written below:

1 1 1

EOC] == %6127 EOCZ - %6237 EOC3 - %8137
1 1 1
E_o = %621, E_q, = %632, E_o = %631, (2.3)
1 1
Hy = —(e11 —e2), Hgy, = —(e2 —e33)

6 6

form the Cartan-Weil basis of sl (3,C) associated with the Cartan subalgebra h. Here as usual ¢;;
means a matrix whose only nonzero entry equal to one is located in the intersection of the i-th row
and j-th column. The matrices Hy, , Hq, span h and the matrices E, span ht.
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The relations (1.5) have the following Lie algebraic meaning. First, the map #: X — HXH =
HXH™! is involutive automorphism of sl (3,C). Next, Q. defines a complex conjugation o, of
s1(3,C):

0e(X) = —0:X"Q,. (2.4)

The complex conjugation o defines the real form su (3) (€ = +1) or the real formsu (2,1) (e =—1)
of s1(3,C). In order to treat both cases simultaneously we shall adopt the notation su (€) meaning
su (3) when € = +1 and su (2,1) when € = —1. Note that the complex conjugation 6; commutes
with the automorphism A. Now, let us introduce the spaces:

g ={X:h(X)=(-1)X}, j=0,L (2.5)
Then we shall have the splittings

s1(3,C) =go D g

(2.6)
su(g)=(goNsu(e))® (g1 Nsu(e)).

The space g consists of all off-diagonal matrices X = (x;;) for which x23 = x32 = 0 and gy consists
of all traceless matrices X = (x; j) for which x12 = xp1 = x13 = x31 = 0. Of course, S involved in the
GMV satisfies S € g;. Also, since £ is automorphism, the spaces go and g; are orthogonal with
respect to the Killing form.

Below we shall see that & we already introduced (X — h(X) = HXH) is closely related to the
automorphism X +— k(X ) = KXK where

001
K=1010]. 2.7
100

So we shall need how 4 and k act on the Cartan-Weil basis. Note that similar to /4 the automorphism
k is also involutive, that is k> = id . For & we get that

h(Eioc]) - _Eiom h(Eiocz) — Eiaza h(Eioc_g) = _Ei(X37

(2.8)
h(H,) = H,, h(H,) = H;.
while for k we have
k(E+e,) = Exq,, k(E+ay) = Exqs, k(Ete,) = Exqy 2.9
k(Hy) = —H,, k(H) = —H,.
The above formulas become simpler if we introduce the action . of k on the roots:
H (o) =Fop,  H(*ow)=Fo,  H(*m)=TFo. (2.10)

We observe that .# maps positive roots into negative and vice-versa. Of course, #~ just as k satisfies
2 =id. There is no need to introduce the action of / on the roots since this is simply the identity.
With the above notation we have

where r(a) = 1if o« = oy, +0a3 and r(a) = —1 if & = 0. Note that r(a)r(—a) = 1.
Co-published by Atlantis Press and Taylor & Francis
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The invariance under the group generated by g1, g> means that if y is the common Gy-invariant
fundamental solution of the linear problem

Ly =(i0,—AS(x)w=0, Sk e, Csl(3,C) (2.12)

and the linear problem of the type:
~ n ~ ~
AP =idy+ Y VA p=0, A esl(3,C) (2.13)
k=0

we must have S € g Nisu (&) and
Agri1 € g1 Nisu (g), Ao € goNisu (€), k=0,1,2,... (2.14)

The conditions on A and S coincide with (1.5), in particular, we have that 4(S) = —S and 0¢(S) =
—S. This forces S to be in the form we introduced in (1.1). Also, as a direct consequence from the
last relations we obtain that

hoadg= —adgoh, oc.oadg = —ad go Og. (2.15)

Consequently, the spaces kerad g = hg (which obviously is a Cartan subalgebra) and its orthogonal
complement b SL are invariant under 4. Each of them splits into two h-eigenspaces (for the eigenval-
ues +1 and —1 respectively):

bs =fo®f1,  bs=ho®bi. (2.16)

Several consequences follow from the above :

(1) ads and adS_1 interchange the spaces fo and f;:

ad sfo = f1, ad sf1 = fo,

(2.17
ad'fo = f1, ad 5 'f1 = fo. .

(2) Since S € g1, S} =52 — %1 € go, the spaces ho, b are 1-dimensional and are spanned by S
and S| = §% — %1 respectively.
(3) From the previous item follows that

Sc€g,  (S)e=(5%)x€g0 (2.18)
and since Sy and (S ), are orthogonal to hg we have
Sc€f1,  Si=(S1)x=(5%)s €fo. (2.19)

Another issue we must discuss is the relation between /4 from one side and adS_1 and g from
the other. Here 7 is the orthogonal projection on the space f)SL with respect to the Killing form and
adS_1 is defined only on the space f)ﬁ. As one can show, see [7,22], adS_1 could be expressed as a
polynomial ps(adg) in ad ¢ where only odd degrees of ad g are present (ad le through ad;, in the
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notation of [7]). From the other side, this means that g could be expressed as a polynomial in ad g
where enter only the even powers of ad g. Consequently, one obtains that

adg'oh=—hoady', mgoh=homs (2.20)
and in the same way
adg' oo, = —0goadg !, Tlg 0 Gp = O O Try. (2.21)

Remark 2.1. If we understand ad El as polynomial p3(ad) it is clear that instead of ad 51 o 7ty one
can simply write adS_1 which is usually done without mentioning.

For convenience we formulate these facts as a proposition:

Proposition 2.1. The projection s commutes with h and O¢.

3. The GMV_ system and its gauge equivalent

It has been pointed out [7] that the GMV_ system is gauge equivalent to a GZS type system. For
the system GMV . the situation is the same. After the gauge transformation L +— L' = g~ (x)Lg(x)
with g(x) given in (1.6) we obtain the system

L'y = (idi+q —AJo)y' =0 3.1)

where ¢’ =ig~'g,. After expressing g with u and v, we obtain

; Euuy + v V2(uve —vuy) euny +vvy
g = 5 V2e(viut —uvt) 2(eutu, +vive) V2e(viut —utvi) | . (3.2)
guny +vvy V2(uvy —vuy) euu + v

As it should be for GZS system Jj is a real diagonal matrix and its diagonal elements are ordered
to decrease going down along the main diagonal. This is in fact our motivation when we choose the
sign in front of S. As one could see, in the above ¢’ is not off-diagonal as GZS requires and in [7]
authors just stopped here. It turns out, however, that the issue could be easily addressed making
one more gauge transformation. Indeed, due to the condition &|u|? + |v|*> = 1 the diagonal part of ¢’
equals 5 (euu} +vvi)J' = b(x)J' where J' = diag (1,2, ). Moreover, the diagonal part is real, that
is b(x) = 5 (euuy +vvy) is real. Then the gauge transformation

L= <exp (=i [ xmb(y)dy)> 7 <exp (i’ 1 xmb(y)dy)) (3.3)
maps the spectral problem into
Ly = (idc+q—AJo)y =0 (3.4)
where
4(x) = exp [—u’ [ b<y>dy} d(x)exp {u’ [ b(y)dy} |

One can easily see that g is off-diagonal and since the entries of ¢’ decay when x — +oco the entries
of g also decay. Now, since the diagonal elements of Jy are distinct we conclude that GMVy is a
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problem of GZS type in pole gauge on sl (3,C). We shall exploit this fact but we want to address
first some other issues. The first one is whether we can be more precise about the potential g in the
GZS system (3.4) to which GMV. is equivalent. With direct calculation we are able to establish
that the potential ¢ in (3.4) has special properties, namely Qeq'Q, = ¢ and KgK = g where K has
been introduced in (2.7). We also notice that KJoK = —Jy and ngg Q: = Jo.

The next issue is about the asymptotic conditions S must satisfy. Passing from GZS system in
canonical gauge (3.4) to GZS in pole gauge (1.9) usually involves the Jost solution y;, of (3.4) such
that lim,_, . Y{(x) =1 at A = 0. The gauge transformation is then ¥ — ¥ = 1//6’1 v. In that case
we obtain § = V/{)’lJo l[/(/) and lim,_, .. S(x) = Jy. However, this is not our case and such a condition
is not compatible with the reductions. Natural for the GMV_ system are conditions when u, v tend
to some constant values. In this work we shall assume that lim,_, 1o u(x) = u, limy_, 10 v(x) = vy.
In that case the limit of g when x — +oo is equal to

1 0 -1
&+ =—F Su*i \/Qvi Suj: . (35)
V2 vi —V2us vi

Now we notice the following. If we come back to how g was constructed, we shall see that the
function

_iJ’/x b(y)dy »
Wome = g (3.6)

(for the definitions of g and b see the explanations after (3.2)) is as a matter of fact a solution to the
system (3.4) for A = 0. It satisfies:

lim yo=g~',  lim yo=exp(—i®l)s! (3.7)

X——o0

where
+o0
&= / b(y)dy  (mod27). (3.8)

Remark 3.1. One can easily show that b(x) is a conservation law density for all the NLEEs asso-
ciated to the GMV. system. Thus @ is a conservation law and does not depend on time. Moreover,
as it is well-known the conservation laws densities are local, this shows

Blor) = [ bn)dy

is a local expression (depends on x, only through u, v and its derivatives).

So we can make a gauge transformation where instead of y{, we use Y. Since Jy and J' com-
mute, we obtain that S(x) = v Loy satisfies

. _ 71 _ . _ 71 _
Jim S(x) =g-Jog=' =S-,  lim S(x)=gJogy =5+ (3.9)
0 u+ v4
Se= et 0 0 |, (3.10)
vi 0 0
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i.e. we have the correct asymptotic for S(x). The last remark, which is in fact quite important, is that
taking the explicit form of yp, see (3.6), one gets the following important formula:

Kyo=wH, y;'K=Hy' (3.11)

where H was introduced earlier in relation to the GMV system and K is given in (2.7). One could
also obtain the same result in another way. Suppose one starts with the GZS system and assume
it has the property that if yyg is a fundamental solution, then KypK also is. Then naturally Ky is
also a fundamental solution. So we must have Ky = ypP where P is some non-degenerate matrix.
Taking x — —oo we get that Kg~! = ¢~'P. But, since Kg~! = ¢"'H we have P = H. Finally, we
formulate the results of the above discussions as a theorem:

Theorem 3.1. The GMV_ system is gauge equivalent to a canonical GZS linear problem on
sl (3,C)

Ly = (idi+q—AJo)y =0 (3.12)

subject to a Mikhailov reduction group generated by the two elements hy and hy. These elements
act on the fundamental solutions ¥ of the system (3.12) in the following way:

m(W)(xA) = [Qew(xA*) Q] ™', Qe=diag(l,e,1), e==I,

(3.13)
ha(y)(x,4) = Ky(x,—A)K.

Since h% = h% = id and h hy = hyhy we have again a Z, X Z; reduction.

The properties of the fundamental solutions of the auxiliary systems play a paramount role in
the spectral theory of such systems and for the theory of integration of the NLEEs associated with
them. Since for the GZS systems with Z, reductions these questions have been studied in detail,
see [11] (whether or not K is Coxeter automorphism does not make any difference here) the above
theorem opens the possibility to study the GMV 1 system using its gauge-equivalent GZS system
with Z, X Z, reduction. In [11], it was considered much more complicated case of a CBC system
and the automorphism has order p > 1 (in our case p = 2 since K> = 1). Then the complex plane is
divided into p sectors by straight lines through the origin and in each sector there is a fundamental
analytic solution to the corresponding CBC system. In our case the things are much simpler: we
have the real line dividing C into upper and lower half-plane. Then the system (3.12) possesses
fundamental analytic solutions (FAS) x*(x,A) of the form m* (x,A)exp (—iAxJo). The functions
m*(x,A) (m~(x,A)) are meromorphic in A in the upper (lower) half plane C, (C_). Naturally,
= (x,4) have the same analytic properties in A as m™*(x,A). The points of C that belong to the
discrete spectrum are those at which m*(x,4) and their inverse have singularities with respect to
A in C, (C.). It is usually considered the case when these singularities are poles, see for example
[10] in the general case and [11] for the case of reductions. There is no difficulty to include the
discrete spectrum for the GMV_ in our considerations but this will make all the formulas much
more complicated so we shall do it elsewhere. Here we intend to explain mainly how our approach
works and most of the issues are algebraic. Thus, in what follows we shall assume that there is
no discrete spectrum for the GZS system gauge equivalent GMV 1 and consequently no discrete
spectrum for GMV .
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Continuing with the properties of m™*(x, 1), if the potential g(x) has integrable derivatives up to
the n-th order then

m*(x,A) = 1+i"ai(x)z*i+o(ﬁ") (3.14)
i=1

when |A| — o0 and A remains in C (C_ respectively). The asymptotic is uniform in x € R, and the
coefficients a;(x) could be calculated through ¢ and its x-derivatives. In particular, for absolutely

integrable g we have V%lim m*(x,A) = 1. The functions m* allow extensions by continuity to the
—>00

real line, these extensions will be denoted by the same letters. In addition, m™ satisfy:

Km* (x,A\)K = mT (x,—1),

lim, , m*(x,A) =1. G-15)
Since KJoK = —J, the solutions y* also allow extensions by continuity to the real line (denoted
again by the same letters) and satisfy:
Kx*(x, \)K = xF(x,—1). (3.16)
It is simple to see that in our case y* will also satisfy:
Qe(x™) (6, A)Qe = (X7 (x, A7) ™" (3.17)

We build from y*(x,A) fundamental analytic solutions 7= (x,A) of the system (2.12) by setting:
TE0A) =y (x4, (3.18)
Now we have:
Theorem 3.2. The solutions 7= (x, 1) satisfy*:
Qe(X(xA"))'Qe = (X7 (x,A))™",  HI*(x,A)H =27 (x,~A)KH. (3.19)

Proof. The proof of the first statement is straightforward, one needs to see only that Qng Qe = Jo.
The second one is obtained if one takes into account (3.11):

HY*(x,A) =Hyy ' 2 (x,A) = yy 'KxF (x,4)
=y, 'Ky (MK =y T (x, —A)K = 7 F (x, —A)K.

Finally, we note that we have the same type of asymptotic behavior both for GMV_ and GMV_
which allowed to treat both cases simultaneously. Of course, the solutions we speak of are dif-
ferent for different choices of € but we denote them by the same letter since it will not cause
ambiguities. As it is well known, the asymptotic of y*(x,A) when x — 4oo are of the type
a3 exp (—iAJox). So the asymptotic of 7*(x, 1) are of the type g_a™ exp (—iAJox) when x — —oo
and g expi(®J')a: exp (—iAJox) when x — +oo.

n [6,7] FAS have mistakenly been claimed to satisfy H¥ ™ (x,A)H = ¥ (x,—A).
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4. Recursion operators for the GMV . system

The recursion operators (A-operators) are theoretical tools that permit to describe [8]:

e The hierarchies of the NLEEs related to the auxiliary linear problem.
e The hierarchies of conservation laws for these NLEEs.
o The hierarchies of compatible Hamiltonian structures of these NLEE:s.

The issue about the Hamiltonian structures is closely related to a beautiful interpretation of the
recursion operators originating from the work [15]. In fact, the adjoint of the recursion operators
could be interpreted as Nijenhuis tensors on the infinite dimensional manifold of ‘potentials’ (the
functions S(x)), see [8].

Recursion operators arise naturally when one tries to find the hierarchy of Lax pairs related
to a particular auxiliary linear problem [28]. So suppose we want to find the NLEEs having Lax
representation [L,A] = 0 with L =id, — AS as in (2.12) and

n
A=id+ Y 24, A, ebs 4.1
k=0
The first thing we notice is that we must have id,A, € hg and Ag = const in x. Using a gauge
transformation depending only on ¢ one can achieve Ay = 0. Then one can show that the coefficients

Ay fork=1,2,...n— 1 are calculated recursively. In order to see it we first recall that the elements
Sand S| =% — %1 span hs = kerad g and that

<S7S> =12, <SI>S1> =4, <S3Sl> =0. 4.2)

As before, denote by 7y the orthogonal projection (with respect to the Killing form) onto the space
h_%. Then the orthogonal projection onto hg will be 1 — g and for X € s1(3,C) we shall have

S S
(1—7)X = —(S,X) + (S}, X). (4.3)
12 4
Putting
Al = (1-m5)A,, A% =4, (4.4)

we obtain that the coefficients A for k = 1,2,...n— I are obtained recursively in the following way:

A2 = ALAY 4.5)
s 7 S, 7
~ . ~ 1 ~
A=id o [@s)av+ S [@rsye 4.6)
iOO ioo
where
S. T Sie [
Ri(2) =iadg'ms | 0.2+ / Z.5)dv+ 2 [ (2,51)dy 47
+oo oo

and for the sake of brevity we write here and below S, instead of (7).
The operators Ay are recursion (generating) operators for GMV . system. As one can see, they
do not depend on the second reduction, that is on the choice of the real form. In fact, the recursion
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operators for the sl (3,C)-GZS system in general position were already known both in canonical
and pole gauge [20,21] and one can obtain A for GMV from those as it was described in [22]. The
expressions for the recursion operators for sl (n,C)-CBC in pole gauge is also known [23]. From it
one also could easily find A.. Let us note that in [7] we already mentioned what is called recursion
operator is in fact A2 and it has been introduced as a product of two operators which differ from
A This complicates the picture (we shall discuss that a little further).

Let us continue with the calculation of the coefficients Ay. For the coefficient A,_; one has that
i0,A, = [S,A,,_l] and since A, € b there are scalar functions o, B8 such that A, = oS + BS;. This
gives

10, +1BeS1 +iaSy +iB(S)x € b
and therefore o and 3 are constants. Thus
Ay =iaadg 'Sy +ifadg'Six
and the hierarchy of NLEEs related to L in general position is
—adg'9,S+ (As)"(ad 5" (aSs+ B(Six) = 0. (4.8)

In the case of GMV, system A, | € isu (&) so a and B must be real. Next, if A, € h; and n =
1(mod 2) because of the (4.5) and (4.6) we shall have automatically

Az}c € ([)1 @f]) Nisu (8), A2k71 S (f)o@fo) Nisu (8) 4.9)

If A, € b and n = 0(mod 2) we have again (4.9). Thus the Mikhailov type reductions are compatible
with the action of recursion operator and the general form of the equations related to the GMV,
system is:

r m
adg'9,S=Y an(As)*adg' (S)+ Y an—1(Ae)* (ad ' (Si) (4.10)
k=0 k=1

where a; are some real constants. This is the hierarchy found in [7] although it was presented there
in a different form.

Let us denote the space of rapidly decreasing functions Z(x) with values in fo (f1) by fo[x] (f1[x]).
Since fp and f; are orthogonal with respect to the Killing form and taking into account Remark 2.1
we have

Ze f() [x],
x
Au(2)=iad |2z + 0 [Zsiav) el @.11)
)
Z € f1lx],
X
As(Z)=iad' | AZ+ % (Z,S)dy | € folx]. (4.12)
foo
Now, let us do the following:
e Put in the above expressions S = —L; (in order to express everything through L).
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e Take into account that what is called Killing form in [7] and denoted (X,Y) is not the
canonical definition of the Killing form, it is in fact tr (XY) and as we know in our notation
(X,Y)y =61t (XY).

e Take into account that because Z is orthogonal to hs we have (Z(x),S,) = —(Z,,S(x)) and
(Z(x),815) = = (Z:,81(x)).-

Then one could convince himself that the operators Aj[,Azi introduced in [7] are defined by the
expressions standing in the right hand sides of (4.11) and (4.12), see [22]. In other words, Ali,Azi
are restrictions of the operators A on the spaces fo[x] and f;[x] respectively. If the hierarchy of the

soliton equations (4.10) is written in terms of A?E,AjE it acquires the form that was presented in [7].

5. Completeness relations for the GMV_. system

We have seen that the consideration of the NLEEs hierarchy (4.10) shows that the operator ‘mov-
ing’ the equations along the hierarchy is A% and it does not depend on the real form. The geometric
interpretation of the hierarchies and their conservation laws which is developed for the case of
GMV, [24] also suggests that the appropriate operator we must consider is A%.. It remains to con-
sider the third important aspect of the recursion operators — their relations to the so-called expan-
sions over the adjoint solutions. In that approach one considers these expansions and then finds
operators, for which the adjoint solutions entering into them are eigenfunctions. The importance
of the adjoint solutions is related to the fact that they form complete systems, so roughly speak-
ing, one can expand S and its variation over them and then have the famous interpretation of the
inverse scattering method as a generalized Fourier transform, see [8, 14]. Recently, the theory of the
expansions over adjoint solutions has been extended to the case when there are reductions. In [11],
the theory for the CBC systems with Z,, reductions was presented in full taking into account the
discrete spectrum while in [25] is discussed also the gauge-covariant formulation of the expansions
with Z, reductions. The geometric aspects of the NLEEs associated with CBC systems in canonical
and pole gauge with reductions were presented recently in [26].

Our approach will be the following. We start from the spectral theory of the generating operators
for (3.12) (a GZS system in canonical gauge) which is very well known and from it obtain the theory
of the generating operators for GMV . (a GZS system in pole gauge). So let us sketch the theory
for GZS in canonical gauge, for all the details see [8,20]. The adjoint solutions for the system GZS
system (3.12) are defined as follows:

ey :=o (X EaX™), acA (5.1

where 7 is the orthogonal projector on h* where b is the Cartan subalgebra of sl (3,C) and g
stands for the matrix inverse to ¥ € SL(3,C). The generating operators A then have the form:

AL (Y(x)) =ad;! |19 + moady¥ (x) +ad, / (1— mp)ad ¥ (y)dy| . (5.2)
oo

As mentioned, the above formula together with its derivation could be found in many sources, see
for example [5,8, 10, 11]. From the asymptotic behaviour of the solutions x* follows that for & > 0
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we have

A (ef(x, 1) =Aef(t,A),  A_(ey(r,A)) =Ae y4(x,A)

As(ety(nA) =Aet (tA),  Ay(eg(xA)) = Aey(x,A). G-

(It is of no importance whether or not we have some reductions). Let us define now the adjoint
solutions for the GMV 1 in the following way:

& =75 (TEaX™), Q€A (5.4)

Let us recall now that we have a reduction defined by the automorphism 4. Taking into account
that 4~ commutes with 7y (see Proposition (2.1)) and the properties of yy (see (3.11)) we see that
h(&%)(x, 1) equals

s (HX Eo}XTH) (x, ) = 15 (X TKEoKX™) (x,~A) = s (X ExaX™) (x,—A)
so we have:
h(€y)(x,A) = &% o (x,—A). (5.5)

One proves easily that 75 = Ad (') o 7ty o Ad (), and then one sees that for & € A we have that
82 (x,A) = Ad (y; ")eZ(x,A). Here Ad (r) denotes the adjoint action of the group on its algebra,
that is Ad (r)X = rXr~!. All the theory then develops in a similar way as in the case when we make
a gauge transformation with a Jost solution which is very well known [10]. For example, one has
that

Asr=Ad(y, ") oAroAd (w). (5.6)

As a consequence, for o € A we have

A (x,1)) = xéjf(x,x), A(@,(x,1)) = 4674 (x, 1), 5
e

Talnd),  Au(Eg(nA)) = A (x,4).

We are now ready to discuss the completeness of the adjoint solutions for the GZS system in pole
gauge (which under reductions becomes our GMV 4 problem). In order to simplify the formulas we
shall have further, let us adopt the following notation: for the functions X (x),Y (x) : R — s1(3,C)
we put

o0

(X,Y)) = /(X(x),Y(x)}dx. (5.8)

—o0

First, we write the completeness relations for the ’adjoint® solutions of the canonical gauge GZS
system (details can be found in [5, 8]). We also remind that we disregard the discrete spectrum.
Then for the GZS system in canonical gauge (3.12) the following theorem holds:

Theorem 5.1. Let . be the space of sufficiently smooth functions defined on the real axis with
values in b tending fast enough to zero when x — oo, Then for every Z(x) € .7 the following
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expansion formulas hold (n = %):

200=5 [ [ Y elr ) (sl Z)) —e B A)(ea" o, ZD) [ R (59)

aEA,

—o0

Let us make now a gauge transformation in the above completeness relations for the GZS system
in canonical gauge, one will easily see that they transform to completeness relations for the GZS
system in pole gauge (which becomes GM V. if we impose reductions):

Theorem 5.2. Let .7 be the space of sufficiently smooth functions defined on the real axis with
values in h§ (x) tending fast enough to zero when x — 4-oo. Then for every Z(x) € 7 the following
expansion formulas hold (n = %):

Z(X)Zﬁ/ [ Y &(nA)((@1,,[5.2]) &g (x, A){(&",[S.2])) | dA.  (5.10)

aEA L

Note that we have two expansions here — for 1 = + and 7 = —. One is over the eigenfunctions
of A_, the other is over the eigenfunctions of A . In fact the above is the spectral theorem for these
operators.

Now we assume that we have the reductions defined by / and 6, and we are going to transform
these expansions so that it will be easier to see the action of # and o, on these expansions when we
expand functions that have values in the eigenspaces fo, f; respectively or are ‘real’ or ‘imaginary’
with respect to the complex conjugation Og.

Let us start with the reduction defined by 4. We have seen that £ acts on the adjoint solutions
according to (5.5). Then using the invariance of the Killing form with respect to the action of & we
get

oo . te >
/ <éﬁa(x;_l),[S,Z]>dx:/ <h(é1la(x7—l)),h([s,2])>dx

o0 - - - o0
= [ @ A HIS 2 = — [ (A, 1.2

N

Therefore

€AY, ),[8,20) = A€, (0 2) [ (€ g2, I8,

—o0

Suppose for example /(Z) = Z. Then the above is simply written as:
&g (x,—A) (€4 (x,—2),[S,2])) = —h(& /], (x. 1)) (€% o (x. 1), [S.2])).
Since #" maps positive roots into negative and vice versa, we shall have:
Yaea, &a(x,—A) (€14 (x,=1),[S,Z])) = — Loea, h(E4(x,1))((&" (x,2),[S.2])),
Yoca. & g, ~A)((€" (x,=1),[S.Z])) = — Laea, h(Ea(x,2)){([€"4(x,1),[5.2])).

Now, let us make the change of variables A — —A in the integral standing in the right hand side of
(5.10) and use the above relations. We obtain:

20=5- | I Y AR A)(E 0. [8.2]) —hE Lx A)(E" [8.2]) | dh. .11
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But then combining the original expansion with this one we immediately get:

20~ L | [ ¥ S A 5.2) S ANEL 52 |4 G2)

aeA L

where

(0 2) = 5 (€l (6 4) +h(Ely(x. 1) (5.1

In view of the formulas we shall write a little further, we also note, that one has

(&%, 15, 2])) = ((h(&}q). h([S.2]))) =

SO one can write

where
Al (6 2) = = (@14(r,A) —h(@l,(x,1))) (5.14)

Thus finally we obtain:

_ T R ) - 1 e 5
Z(x) =5 / [ Y 84 A)((@7,,18.2]) 5 a(x,A)){(ag, [S.2])) [ dA.  (5.15)
oo LOXEAL
If instead of 4(Z) = Z we assume that #(Z) = —Z then in the same manner we shall obtain

2= | [ )3 az<x,z><<é"a,[s,2]>>—az<x,x>><<é3,[s,2]>>] 16

[ ) ﬁg(x,l)«g"a,[&z]»—ﬁZ(%M)((ﬁz,[&z]»] da.

o |aea

Naturally,
h(8le(x, 1)) =8L4(x,4), h(aly(x,A)) = —al,(x,2). (5.17)
Thus in case h(Z) = Z or h(Z) = —Z the expansions could be written in terms of new sets of adjoint

solutions, 871, (x,A) in the first case and a7, (x, A) in the second, that reflect the symmetry of Z.

Returning to the properties of the new families we introduced, we easily see that s/, (x,A) and
al ,(x,7) are not eigenfunctions of A_ or A, . In order to see what happens, we look how A is
related to 4 and o;.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
339



A. Yanovski and T. Valchev / Reduction of a Generalized HF Equation I
Lemma 5.1. The following relations hold:
hOIN\i:—IN\iOh, O'SOIN\ZEZ—IN\:EOGS. (518)

Proof. The proof of the first relation is straightforward, let us prove the second one. First, assume
that 0¢(Z) = Z (the case when 0¢(Z) = —Z is treated in a similar way). First, we remark that
0¢(Sy) = —S, and that 6¢(S;) = —S), consequently 0¢(S;,) = —S1.. Next, we have

(Z,8:)" = (0e(2),0¢(Sx)) = —(Z,Sy)
and similarly
(Z,S1)" = (0e(2), 0¢(S1r)) = —(Z, S1).-

So in case 0¢(Z) = Z (we call Z real in this case) the integrands in the formula for recursion oper-
ator are purely imaginary while for o¢(Z) = —Z (we then say that Z is purely imaginary) these
expressions will be real. Then, taking into account (2.21) we get

—0Og A+ (Z) =

As mentioned, one can show in a similar way that when o¢(Z) = —Z we have the same relation.
Finally, as each Z could be written in a unique way as Z = Z; + 27, where 6¢(Z) = —Z1, 6:(Z2) = 7>
then the second relation in (5.18) is proved for arbitrary Z.

Because of the relations (5.7) and the above lemma, for @ € A, one has

A(84(x,A)) =25 (x,A),  A_(574(x,4)) =Aa"4(x,A),

N ~ (5.19)
Ro@(x,2) = A85(6A), A8 4(x,2)) = A8 4 (x.A),

/~\+(§fa(x,7t)) = lﬁfa(x,l), AL (8, (x,A)) =Aay(x,A), 520
Re(@ (0 A) = A5 (0A), Ay (Eg(xA) = 485 (x.A) 20

and one sees that the functions in the expansions when we have some symmetry with respect to 4 are
eigenfunctions for A> (/~\%r) with eigenvalue A2. This together with the fact that when recursively
finding the coefficients for the pencil (4.1) one effectively uses /~\2+ has led to the interpretation that
in case we have 7, reduction defined by / the role of the Generating Operator is played by A2 .
Let us consider now the other reduction that we have in the GMV_. system, the one defined by
the complex conjugation o. In accordance with Theorem 3.2 the FAS fulfill Q¢ (7T (x,1))7 Qe =
(2T (x,A*))~! so on the real axis Q¢(¥7(x,A))"Qe = (¥ (x,A*))~'. Then taking into account
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Proposition (2.1) for o € A

Q80 (x, 1) Qe = 7 (%, ) QeEL Qe X (x, A7)

and we need to take into account how X — 0 (X) = —QX TQe acts on the Cartan-Weil basis. One
easily sees that

Oi+biay = —Exay;  Oibiey = —Exey,  Oibiay = —Ex
0 _FEig =FExq, 0 _Eiq, = Exq,, 0 FEiogy = —Exq, (5.21)
GgHaj — Haj, _]: 1,2

In order to write down these relations in a concise way, we introduce the symbol g¢ () which is
equal to —1 if € = 1 for arbitrary o € A but if € = —1 then ¢.(a) = 1 for & = 0, £+ and
ge(+a3) = —1. Then g¢(o)ge(—at) = 1 and we have

GgEa — qg(a)Efa, GgH(x’. — _Hai, i: 1,2. (5.22)

With the above notation Q& (x,A)TQe = —qe()é_1(x,A) or if one prefers expression through
the complex conjugation

o (8L(x, 1)) = ge()e_ 0 (x,A%). (5.23)
Naturally, we have
oe(8q(x, 1)) = qe(@)E_g(x,A), AR (5.24)
)

)
Consider now the coefficients ((&",,[S,Z])) introduced in the above and and let us assume that
0:Z = Z. We have

((€4.18,2])) = ((0e@" 4, 0¢[S. Z]))" = —qe(@) {(&a", [S,Z]))".

Consequently:

e (((€24(1),[S,2]))8a(x, A)) = —((& " (4),[S,2])) g (x, A). (5.25)
In case 6.Z = —Z we obtain in a similar way

e (((€14(2),[8.2]))8a(x, 1)) = (& (4),[S,Z]))e_g (x, 2). (5.26)

One could also see that in case 6.Z = Z we have
((@14(1),18,2]))" = ((0e€1 4 (4), 0e[S, Z])) = —((0e&1 (1), [S,2])).

Thus when 0.Z = Z (respectively 6.Z = —Z) the expansions (5.10) acquire the form:

2(x) = % 7 Lé (1+0e) (éZ(x,M«é”a(k),[S,Z]>>)] da (5.27)
and N

205 [ | £ 0-oo@uai@,mszn|a s
respectively. N
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In order to obtain expansions when both reductions are present, we notice that since o and /1
commute, in case 0Z = Z one has:

e (874, [S,2))3a(x,4)) = —((&",[S,Z]))5_& (x, A), (5.29)
oe (874, [5,2))ag(x,A)) = —((&", [S,Z]))a_g(x,A)

and in case 0.Z = —Z we have
oe(((@"4,[S,2]))5a(x,4)) = (&, [S,Z]))8_4 (x, 1), (5.30)
oe(((@"4,[5,2])aa(x,4)) = (", [S,2]))a_G(x, 1)

Then we obtain:

Theorem 5.3. The following expansions hold:
o Incase 6,Z =27, hZ=17

[ Y (A+o0e) (8 (x, 1) (&, [S,Z]>>(7L))] dA. (5.31)
[ Y (1+o0) (ﬁg(x,l)«é"a,[S,Z]>>(A))] dA. (5.32)

[ Y (1-c) (sz<x,z><<é"w[&Z]»(M)] . (533)

(XGA+

2= | [ Y (1-o) (az<x,m<<é"a,[&Z]>><x>)]dx. (5.34)

Corollary 5.1. In view of Lemma 5.1, we see that the functions that stay in the integrands of the
above expressions, that is (14 6¢)84(x,A) and (1= o¢)ag(x,A) remain eigenfunctions of A% with
eigenvalues A2, that is, the reduction defined by a real form does not change the recursion operators.

Let us make some final comments about the expansions we obtained. In the case GMV the
families 87, (x, A) and a7, (x, 1) as well as the relations (5.19), (5.20) were introduced in [7]. How-
ever, they were written in terms of the restrictions of A+ on the spaces fo[x] (f1[x]), namely through
the operators A7, A;t we mentioned already. This complicates their form and obscures their mean-
ing. We believe that the form in which we cast them now and in relation to Lemma 5.1 is are much
easier to understand. As about the expansions (5.15), (5.16) and about expansions in Theorem 5.3
they were not presented until now in their general form but only for the specific cases of expansions
of the functions Sy and (S} ),. Moreover, since in [7] the theory of the GMV ;. have been developed
not in parallel (though by analogy) to the corresponding system in canonical gauge, the knowledge
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about the GZS system in canonical gauge could not be exploited in full and everything ought to be
developed from the beginning. In particular, there have been considered more restricted boundary
conditions than necessary, namely the case uy = 0, vy = exp (i®~ ). Consequently, all the results
were obtained in less generality and with more effort.

The above expansions have big theoretical interest. They show that similar to the general posi-
tion case (without reductions) the ’potential’ and its variation could be expanded over a family of
functions that are eigenfunctions of the operator that appears when one recursively solves the equa-
tions for the coefficients A;. Of course, it is important also to know that when we have reductions
the expansions could be written in a different form. Practically however, it is easier to adopt the
following attitude. We could simply ’forget’ that we have reductions. In other words, the whole
Gauge Covariant Theory of the Generating Operators will proceed in the usual way, with or with-
out reductions. Basically, all the formulas will remain true, one must simply take into account the
following:

e Some additional symmetries of the scattering data (see the next Section) which lead to
symmetries in the corresponding Riemann-Hilbert problem when one uses it for finding
exact solutions.

e The operators that permit to ‘move’ along the hierarchies are A% .

e Some of the conservation laws and Poisson structures in the corresponding hierarchies triv-
ialize.

For the first of these items one can see [7], as for the second and the third, according to the general
theory (see [8] or [20] specifically for the case of sl (3,C)) we have:

e The NLEEs (4.10) have the following series of conservation laws:

oo y
D%‘Y):/ /<Sy,ﬁi(ad§1§y)>dy dv, ~Bebh, B=const, B=gBg ' (539

—o00 |—o0

where s = 1,2,... Now, if k(B) = —B, then ad ' B, € ho and if s is even A’ (B,) € ho[x].

Since Sy € b [x] we have Dl(gs) = 0. This of course does not happen if s is odd. Analogously,

Dg) = 0if s is odd and k(B) = B. Thus indeed some of the conservation laws trivialize.
e The NLEEs (4.10) are Hamiltonian with respect to the hierarchy of symplectic forms:

Q) (858,,88,) = /<651,]\Pad§1552>dx, p=0,1,2,... (5.36)

where 6,5, 65 are some variations of S and
~ 1 - ~
A= §(A+ +A). (5.37)

Now, since (S,S) = 12, §,5,0,S are orthogonal to S and since h(S) = —S we have
h(81S) = —81S, h(8;S) = —8;S so finally 8,5, &S € fi[x]. Further, ad ;' &S € fo[x] and
therefore, if p is even Q(?) is identically zero. The simplest case is of course the case p =0,
that corresponds to the Kirillov Poisson structure ad s (restricted to the manifold of the
potentials) which obviously trivializes. On the contrary, for p odd, these structures are not
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trivial. The symplectic structure for p = 1 corresponds to the Poisson tensor idx (restricted
to the manifold of the potentials) and does not trivialize, see [24] for the details.

6. Application. Scattering data

As an application we are going to discuss the implications of the reduction over the scattering data
related to the sl (3,C)-GZS system in canonical and in pole gauge. First of all, as well-known from
the theory of the CBC (GZS) systems, there are essentially two types of scattering data: a) associated
with the asymptotic of FAS b) associated with the coefficients in the expansions over the adjoint
solutions. All these sets of scattering data are equivalent, but we are not going to enter into this issue
here.

6.1. Scattering data related to the asymptotics

As it follows from the general theory of CBC (GZS) systems, the functions m™ (x, 1) through which
we introduced the FAS for (3.12) in case of the real A have asymptotics, see for example [5] or [20]:

mt(x,A) = eyt (x,1) = SH(A), X — —oo,
m*(x,A) = eyt (x,A) = T—(A)DF(A), X — oo,
m=(x,A) =My (x,1) = S~ (1), X — —oo, (D
m(x,A) =My~ (x, ) > TT(A)D~ (1),  x— +oo.

The matrices S*,T* are upper triangular with with diagonal elements equal to 1, the matrices
S—, T~ are lower triangular with with diagonal elements equal to 1 and the matrices D™ are diagonal
with determinant 1. Besides, D" (1) could be defined in the upper half-plane C while D~ (A)
could be defined in the lower half-plane C_. They are meromorphic and the poles correspond to the
discrete spectrum. As agreed, we shall assume that there is no discrete spectrum, so D™ (1) (D~ (1))
are analytic in C (C_) respectively.

Since on the real line both y*(x,7) exist, there is a non-degenerate matrix R(A) such that
27 (x,A) = x (x,A)R(L) and we get that

R(A) =8 (A)S*(A) =D~ (AT (AT~ (A)D*(A), AeR.
One could cast this in an equivalent form, introducing a matrix 7'(1)
T(A) =T (A)D*(M)ST(A) =TT (A)D (A)S (1), AeR. (6.2)

The matrices S*,7™ are upper-triangular with diagonal elements equal to 1, the matrices S~, 7~
are lower triangular with diagonal elements equal to 1 and the matrices D* are diagonal. The above
shows that the matrices we just introduced are factors of two Gauss decompositions of the matrix
T(A), which is called the transition matrix. We have the following representations of the Gauss
factors:

ST(A) =exp Z sy (A)Eq, ST(A) =exp Z s_oq(A)E_q,

a€A+ a€A+
2 2
DY(A)=exp Y df(A)H;, D (A)=exp ¥ d. (A)H,, (6.3)
i=1 i=1

TT(A) =expLlaea.la(M)Ea; T~ (A) =expLoca, t-a(A)E-q-
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As it is known, see [5, 8, 10] each one of the families of functions

Fy={st(A),s",(A), AER, acA,},

(6.4)
Fr={tg(A),14(X), AER, aeA;}

could be taken as a scattering data, from which one could reconstruct the potential ¢ (and hence the
potential function §). We have reductions and they impose some restrictions on the scattering data.
To start with, since Ky (x,A)K = xF(x,—A), we get that

KStH(-MK=5"(A), KT (-A)K=T*(),

(6.5)
KD (—A)K =D~ (A).

Using the quantities introduced in (6.3), the above relations could be written in an equivalent form:
foroo e Ay

SCa(=A)=5T (M), 1Ta(=A) =114, (R),
Sa(—A )—sm( ) ta(=A) =ty (R), (6.6)

df (A)=—d; (A),  dy(=A)=—d; (A)

where % is the action of the automorphism K on the roots. The second involution leads to the
relations:

Qc(ST(A) Qe =(S"(A)™!,  Qe(TT(A))'Qe = (T~ (1)), (6.7)
(D* ()" = (D~ (),
(sq(2))" = ( sTq(A), (tg(A)" =ge(@)t74(2),  a€A; (6.8)
(d;"(A))" di(A), i=1.2

where in all the above relations A is real.
Now it is not hard to find the corresponding relations for the GMV . system. Indeed, because of
(3.18) we get

eiMOxg:IZ+(x,l) —>S+(l), X — —o
eiMf’xgllZ+(X,l) N el¢]/T7(l)D+(l), X — oo 6.9)
eilJoxg:IZ_(x7)L) _>S_(A)7 X e |
eiljoxgllz—(x’;t) - eld)J/T-i-()y)D_ (7{,)7 X — oo
Since J' = Hj — H, we easily get that
' T—(M)Dt(A) =T (A)DT(A), (6.10)
' TH(A)D~ (L) =T+(A)D~ (1) |
where
DT () =%/ DH(A), D= (1) =e®' D~ (1),
(A)=e (1) (A)=e (4) (6.11)

~

i(},) — ei(PJ/Ti(A)e—iCI)J’.
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We also put ST(1) = S*(A). Since KJ'K = J the factors D*(1),5F(1),T+(A) obey the same

relations (6.5) as the factors D*(1),S%(1),T"(1). Also, we can write
DY) =ep Tdf(WH. D ()= exp ¥ d (A
T(0) = eXpLaca, FralM)Eias  §*(2) = expEae, LalA)Exq
where §4¢ = 5+q and
df =df +i®, df =df —i®, 7, =t exptia(J)d.

So setting S*(1) = $*(1) and §5,, = 5T, one could put (6.9) in a more symmetric form

elthorg g+ (x, 1) = S+(A), X — —oo,
Mg 1gt(xA) > T~ (A)DF(A),  x— oo,
eMorglg=(x,1) = 5§ (1), X — —oo,
Mgl 7= (x,1) — TT(L)D~(A), X — oo,

S oA =5 (), Ta(—A) =1 ,4(2),
() =5yg(A), H(-A) =Ty(R).
&f (~2)=—dy (), df(-2)=—d; (4)

Fs=1{55(A),5-,(1), AER, acA.},
jt:{f+(k),f:a(l), AER, (XEA+}

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

could be considered as scattering data for the GMV 4 system. Taking into account that @ is integral
of motion for the NLEEs associated to the GMV 1 system (see Remark 3.1) we notice that passing
from quantities without tilde to quantities with tilde is essentially the same thing, that is S could be
reconstructed using the same scattering data as the scattering data for g, something that of course

could be expected.

6.2. Scattering data related to the expansions over the adjoint solutions

Now let us turn our attention to the scattering data associated with the expansions over the adjoint
solutions of the GMV ... First we make the following observation. Suppose B = const € h. Then the
function B = gBg~! obviously satisfies [S,B] = 0, so B takes values in hs. Moreover, we have that
(B,S) = (B,Jo) = const and (B,S;) = (B,J;) = const where J; = J§ — %1. But Jy and J; span b, so
B is of the form B = agJy + a;J; where ag,a; are some numbers. Then B = agS + a1S;. From the
other side, we have seen that S, and Sy , are orthogonal to hg, so we see that B, is also orthogonal to
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bs, that is, belongs to h_%. Take now any fundamental solution } and a any root vector E,. We have
(Bu, XEaX ') = (Br,ms(XEaX ")) = ([S,ad 5 ' B, ms(XEaX "))
From the other side, since id,(¥Eq% ') = A[S, ZEaJ '], we have that
%((B.XEaX ")) = (Bx, XEaX ")

Combining these relations we obtain that

1\ |

/ <[S,ad§1§x],n5()ZEaZ_])>dx:<I§,2Eax >‘,oo7 AER? acA (617)

provided the integral exists, that is the right hand exists. Putting in the above formulas ¥ = 7*
we see that we can calculate the coefficients in the expansions from Theorem 5.2 for the functions
ad;lgx. We present the result of these calculations as a theorem.

Theorem 6.1. The following expansion formulas hold:

1 7
st ][5 5 tiopoelo

aceA

o (6.18)
~ 1
b) —ad;le “or / Z (6;aéta - 63_.706?:&) da.
275_00 acAy i
The coefficients p and & (of course we have o € A and A € R) are equal to
Pira = ((5%)7'BS* Exa) = ((S%)7'BS*  Exa),
Gpig = (DF) NT*)'BTED* Esq) = (6.19)
(D*)"NT*)"'BT*D*,Esa).
The functions
Prra = ((§%)7'BS* Exa),
(6.20)

GBioc (DF)"NT*)"'BT*D* E.q)

are exactly the coefficients one obtains expanding iad ;01 [B,q] over the adjoint solutions of (3.12),
see for example [5,20]. Thus we have

st _ o+ =+ .+
pB,:Foc - pB,:;:av GB,ia - GB,ia' (621)
It is known that provided that B is a regular element, the families

Tp={pg_a(A), Pgad): AER, acA},

(6.22)
Fo={044(A), Op_qA): AER, achi}
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could also be taken as sets of scattering data for GZS (3.12), that is using it one can construct the
potential g. Then the families

Fp=1Ps_a(A), Pga(A): AER, acA}, 62
Fo={644(A), 65_o(A): AER, ach} '

could be treated as scattering data for the GMV. system. In particular, if one chooses B = Jy and
B = J; one will obtain expansions for the functions ad;le and adng 1x- However, depending on
the properties of B the scattering data have different symmetries. Indeed, suppose that h(B) = B,
where 1 = +1. This as easily seen is equivalent to k(B) = 1B. Then of course we shall have also
h(B,) = nB, and

((S,ad 5 ' B s 2 (x, M) Eal(X7) 7 (x,4))) =
n{([S,ad 5 'B.], ms¥ T Eva(X7) " (x,—1))).

Consequently, for o € A; we have

- o B . (6.24)
GB,oc()’) :7703%05(—1), GB,ftx(l) 277037_105(—1)-
Since k(Jy) = —Jo and k(J;) = J;, taking for example B = Jj, one obtains
[3‘}:770[(2,) = _ﬁj_07_;g/a(_7t)7 ﬁj_(),(x(l) = _ﬁ\;g_)gfa(l)v (6 25)
613_05()’) = _61;1/05(_1')7 6,];’70((1') = _6\]—57—%05(_1)
and one sees that
P o
a) —adsle: E/ [ ZA (pj&_asj;—pjmasa)] dA,
e AR (6.26)
b) —ad 15, = 5+ &t,—6, 8, )|dA
) —adg Oy = E ZA (Gjo,ocs—a - 610770‘5&)
o LOEAL

as it should be according to the theory we developed. If we expand adng 1x then the expansion

could be reformulated as expansion over the functions a;.

7. Conclusions

In the present work we have been able to do the following:

e We have showed that the results for the GMV = GMV . system about the expansions over
the adjoint solutions could be generalized in two directions: i) To apply for the system
GMV _ corresponding to a pseudo-Hermitian reduction of a certain sl (3,C)-GZS system in
pole gauge subject to Z; X Z, reduction of Mikhailov type. ii) Both for GMV_ and GMV _
we have been able to develop the theory of expansions for arbitrary constant asymptotic
conditions of the potentials.

o We have showed how the expansions over adjoint solutions should be modified if one takes
into account possible symmetries of the functions we expand.
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The above was achieved using the gauge equivalence between the GZS system in pole gauge and
the one in canonical gauge, see Theorem 3.1. This has permitted to avoid repetition of cumbersome
proofs and frequently to reduce the things to purely algebraic arguments.

Since the expansions over the adjoint solutions of an auxiliary linear problem are the main tool
of the so-called recursion operator method to the soliton equations, it would be natural to develop
the theory of these equations, their conservation laws, hierarchies of compatible Poisson structures
etc., for the GZS system in pole gauge and in canonical gauge, making all the approach gauge-
covariant. As mentioned in the introduction this task that has been successfully achieved in the case
of the Heisenberg Ferromagnet hierarchy and nonlinear Schrodinger hierarchy and later generalized
for systems on arbitrary simple Lie algebra with no reductions.

Also, one must consider the discrete spectrum which we have not done here for the sake of
brevity.

Another direction in which we would like to proceed is construct special exact solutions for the
first equations in the hierarchies since they are likely to have some physical applications.

Including all these issues in one article is, of course, not possible, so we intend to address them
in future works.
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