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We consider the discretization of Darboux integrable equations. For each of the integrals of a Laine equation
we constructed either a semi-discrete equation which has that integral as an n-integral, or we proved that such
an equation does not exist. It is also shown that all constructed semi-discrete equations are Darboux integrable.
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1. Introduction

When considering hyperbolic type equations

uxy = g(x,y,u,ux,uy) (1.1)

one finds an important special subclass, so called Darboux integrable equations, that is described
in terms of x- and y-integrals. Recall that a function W (x,y,u,ux,uxx, ...) is called a y−integral of
equation (1.1) if DyW (x,y,u,ux, ...)|(1.1) = 0, where Dy represents the total derivative with respect
to y (see [2] and [8]). An x-integral W̄ = W̄ (x,y,u,uy,uyy, ...) for equation (1.1) is defined in a
similar way. Equation (1.1) is said to be Darboux integrable if it admits a nontrivial x-integral and a
nontrivial y−integral.

The classification problem for Darboux integrable equations was considered by Goursat, Zhiber
and Sokolov (see [2] and [8]). In his paper Goursat obtained a supposedly complete list of Dar-
boux integrable equations of the form (1.1). A detailed discussion of the subject and corresponding
references can be found in the survey [9].

Later Laine [7] published two Darboux integrable hyperbolic equations, which were absent in
Goursat’s list. The first equation found by Laine is

uxy = ux

(√uy +uy

u− y
+

uy

u− x

)
. (1.2)
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It has a second order y-integral

W1 =
uxx

ux
− 1

2
ux

(
1

u− y
+

3
u− x

)
+

1
u− x

(1.3)

and a third order x-integral

W̄ =

uyyy−
u2

yy

2uy
−uyy

1+5u
1
2
y +4uy

u− y

uyy−2
uy +2u

3
2
y +u2

y

u− y

−1

−

2uy +2u
3
2
y −6u2

y−10u
5
2
y −4u3

y

(u− y)2

uyy−2
uy +2u

3
2
y +u2

y

u− y

−1

. (1.4)

The second equation found by Laine is

uxy = 2
(
(u+X)2 +ux +(u+X)

√
(u+X)2 +ux

)(√uy +uy

u− y
−

uy√
(u+X)2 +ux

)
. (1.5)

It has a second order y-integral

W2 =
uxx

2ux

(
1− u+X√

(u+X)2 +ux

)
+u+

(u+X)2 +2ux√
(u+X)2 +ux

− (u+X)2 +ux +(u+X)
√
(u+X)2 +ux

u− y
(1.6)

and a third order x-integral (1.4). For the second equation Laine assumed X to be an arbitrary
function of x. However Kaptsov (see [6]) has shown that X must be a constant function if equation
(1.5) admits the integrals (1.6) and (1.4). Thus it can be assumed, without loss of generality, that
X = 0.

One can also consider a semi-discrete analogue of Darboux integrable equations (see [1]). The
notion of Darboux integrability for semi-discrete equations was developed by Habibullin (see [3]).
For a function t = t(n,x) of the continuous variable x and discrete variable n we introduce notations

tk = t(n+ k,x), k ∈ Z, t[m] =
dm

dxm t(n,x), m ∈ N.

Then a hyperbolic type semi-discrete equation can be written as

t1x = f (x,n, t, t1, tx). (1.7)

A function F of variables x, n, and t, t1, . . . , tk is called an x-integral of equation (1.7) if DxF |(1.7) = 0.
A function I of variables x, n, t, t[1], . . . , t[m] is called an n-integral of equation (1.7) if DI|(1.7) = I,
where D is a shift operator. Equation (1.7) is said to be Darboux integrable if it admits a nontrivial n-
integral and a nontrivial x-integral. In what follows we consider the equalities DxF = 0 and DI = I,
which define x- and n-integrals F and I, only on solutions of the corresponding equations. For more
information on semi-discrete Darboux integrable equations see [3], [4] and [5].

The interest in the continuous and discrete Darboux integrable models is stimulated by expo-
nential type systems. Such systems are connected with semi-simple and affine Lie algebras which
have applications in Liouville and conformal field theories.
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The discretization of equations from Goursat’s list was considered by Habibullin and Zhel-
tukhina in [5]. In the present paper we find semi-discrete versions of Laine equations (1.2) and
(1.5). In particular we find semi-discrete equations that admit functions (1.3) or (1.6) as n-integrals,
and show that these equations are Darboux integrable. This is the main result of our paper given in
Theorem 1.1 and Theorem 1.2 below.

Theorem 1.1. The semi-discrete chain (1.7), which admits a minimal order n-integral

I1 =
txx

tx
− 1

2
tx

(
1

t− ε(n)
+

3
t− x

)
+

1
t− x

, (1.8)

where ε(n) is an arbitrary function of n, is

t1x = tx
(t1− x)
(t− x)

B(n, t, t1) , (1.9)

where B is a function of n, t, t1, satisfying the following equation

(t1− ε)(t1− ε1)−2(t− ε)(t1− ε1)B+(t− ε)(t− ε1)B2 = 0 . (1.10)

Moreover, chain (1.9) admits an x-integral of minimal order 3.

Theorem 1.2. The semi-discrete chain (1.7), which admits a minimal order n-integral

I2 =
txx

2tx

(
1− t√

t2 + tx

)
+ t +

t2 +2tx√
t2 + tx

− t2 + tx + t
√

t2 + tx
t− ε(n)

, (1.11)

where ε(n) is an arbitrary function of n, is

t1x = 2A(tA− t1)
√

t2 + tx +A2tx +2tA(tA− t1) , (1.12)

where A is a function of n, t, t1, satisfying the following system of equations
At =

−2t1(t1− ε1)A+(−ε +2t)(t1− ε1)A2− ε1(t−2ε)A3

2(t1− ε1)(t− ε)(t1− tA)
,

At1 =
ε(t1− ε1)+(t− ε)(2t1− ε1)A−2t(t−2ε)A2

2(t1− ε1)(t− ε)(t1− tA)
.

(1.13)

Moreover, chain (1.12) admits an x-integral of minimal order 2.

The paper is organized as follows. In Sections 2 and 3 we give proofs of Theorems 1.1 and 1.2
respectively. In Section 4 we show that function (1.4) can not be a minimal order n-integral for any
equation (1.7).
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2. Proof of Theorem 1.1

Discretization by n-integral: Let us find f (x,n, t, t1, tx) such that DI1 = I1, where I1 is defined by
(1.8). Equality DI1 = I1 implies

fx + fttx + ft1 f + ftxtxx

f
− f

2

(
1

t1− ε1
+

3
t1− x

)
+

1
t1− x

=
txx

tx
− tx

2

(
1

t− ε
+

3
t− x

)
+

1
t− x

, (2.1)

where ε = ε(n) and ε1 = ε(n+1).

By comparing the coefficients before txx in (2.1), we get
ftx
f
=

1
tx

, which implies that f =

A(x,n, t, t1)tx. We substitute this expression for f in (2.1) and get

Ax +Attx +At1Atx
A

− Atx
2

(
1

t1− ε1
+

3
t1− x

)
+

1
t1− x

=− tx
2

(
1

t− ε
+

3
t− x

)
+

1
t− x

. (2.2)

The above equation is equivalent to a system of two equations
Ax

A
+

1
t1− x

=
1

t− x
,

At

A
+At1−

A
2

(
1

t1− ε1
+

3
t1− x

)
=
−1
2

(
1

t− ε
+

3
t− x

)
.

(2.3)

The first equation of system (2.3) can be written as ∂

∂x(ln |A| − ln |t1− x|+ ln |t − x|) = 0 which
implies that

A(x,n, t, t1) =
t1− x
t− x

B(n, t, t1) (2.4)

for some function B of variables n, t, t1. Substituting expression (2.4) for A into the second equation
of system (2.3), we get

− 1
t− x

+
Bt

B
+

B
t− x

+
Bt1(t1− x)

t− x
− B(t1− x)

2(t− x)

(
1

t1− ε1
+

3
t1− x

)
=−1

2

(
1

t− ε
+

3
t− x

)
. (2.5)

Thus

(t− x)
Bt

B
+(t1− x)Bt1−

B
2

(
1+

t1− x
t1− ε1

)
=−1

2

(
1+

t− x
t− ε

)
. (2.6)

We compare the coefficients before x and x0 in (2.6) and obtain
−Bt

B
−Bt1 +

B
2(t1− ε1)

=
1

2(t− ε)
,

tBt

B
+ t1Bt1−

B
2
− t1B

2(t1− ε1)
=
−1
2
− t

2(t− ε)
,

(2.7)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

169



K. Zheltukhin and N. Zheltukhina / On the discretization of Laine equations

which is equivalent to 
Bt =

B(ε−2t + t1− εB+ tB)
2(t− ε)(t− t1)

,

Bt1 =
−ε1 + t1 + ε1B+ tB−2t1B

2(t1− ε1)(t− t1)
.

(2.8)

The last system is compatible, that is Btt1 = Bt1t , if and only if equality (1.10) is satisfied.

Existence of an x-integral: Let us show that equation (1.9) where function B satisfies (1.10) has a
finite dimensional x-ring. We have,

t1x =
t1− x
t− x

Btx, t2x =
t2− x
t− x

BB1tx, and t3x =
t3− x
t− x

BB1B2tx, (2.9)

where B = B(n, t, t1), B1 = B(n+ 1, t1, t2) and B2 = B(n+ 2, t2, t3). We are looking for a function
F(x,n, t, t1, t2, t3) such that DxF = 0, that is

Fx +Fttx +Ft1t1x +Ft2t2x +Ft3t3x = 0. (2.10)

Thus

Fx +Fttx +Ft1
t1− x
t− x

Btx +Ft2
t2− x
t− x

BB1tx +Ft3
t3− x
t− x

BB1B2tx = 0, (2.11)

which is equivalent to{
Fx = 0,
(t− x)Ft +(t1− x)BFt1 +(t2− x)BB1Ft2 +(t3− x)BB1B2Ft3 = 0.

(2.12)

By comparing the coefficients of x0 and x in the last equality we get the following system{
tFt + t1BFt1 + t2BB1Ft2 + t3BB1B2Ft3 = 0,
−Ft −BFt1−BB1Ft2−BB1B2Ft3 = 0.

(2.13)

After diagonalization this system becomes
Ft +BB1(t2−t1)

t−t1
Ft2 +

BB1B2(t3−t1)
t−t1

Ft3 = 0,

Ft1 +
B1(t−t2)

t−t1
Ft2 +B1B2(t−t3)

t−t1
Ft3 = 0.

(2.14)

We introduce vector fields

V1 = ∂

∂ t +
BB1(t2−t1)

t−t1
∂

∂ t2
+ BB1B2(t3−t1)

t−t1
∂

∂ t3
,

V2 = ∂

∂ t1
+ B1(t−t2)

t−t1
∂

∂ t2
+ B1B2(t−t3)

t−t1
∂

∂ t3
.

(2.15)

and V = [V1,V2]. Then, we have

2(t− t1)2

B1
V = (t1− t2 +B(t2− t +(t− t1)B1)

∂

∂ t2
+B2(t1− t3 +B(t3− t +(t− t1)B1B2))

∂

∂ t3
.
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Direct calculation show that

[V1,V ] =
3ε−4t + t1

2(ε− t)(t− t1)
V and [V2,V ] =

3ε1 + t−4t1
2(ε1− t1)(t1− t)

V. (2.16)

Hence vector fields V1, V2 and V form a finite-dimensional ring. By the Jacobi Theorem the system
of three equations V1(F)= 0, V2(F)= 0, V (F)= 0 has a nonzero solution F(t, t1, t2, t3). The function
F(t, t1, t2, t3) is an x-integral of equation (1.9).

3. Proof of Theorem 1.2

Discretization by n-integral: Let us find a function f (x,n, t, t1, tx) such that DI2 = I2, where I2 is
given by (1.11). The equality DI2 = I2 implies that

fx + fttx + ft1 f + ftxtxx

2 f

1− t1√
t2
1 + f

− t2
1 + f + t1

√
t2
1 + f

t1− ε1
+ t1 +

t2
1 +2 f√
t2
1 + f

=
txx

2tx

(
1− t√

t2 + tx

)
− t2 + tx + t

√
t2 + tx

t− ε
+ t +

t2 +2tx√
t2 + tx

, (3.1)

where ε = ε(n) and ε1 = ε(n+1). Comparing the coefficients before txx in equality (3.1), we get

ftx
f

1− t1√
t2
1 + f

=
1
tx

(
1− t√

t2 + tx

)
. (3.2)

This can be written as

∂

∂ tx
ln

 f

√
f + t2

1 + t1√
f + t2

1 − t1

=
∂

∂ tx
ln

(
tx

√
tx + t2 + t√
tx + t2− t

)
. (3.3)

Thus √
f + t2

1 + t1 = (
√

tx + t2 + t)A(x,n, t, t1) , (3.4)

where A is some function of variables x, n, t and t1. The last equality is equivalent to

f = (2A2t−2At1)
√

tx + t2 +A2tx + t(2A2t−2At1). (3.5)

We substitute f given by (3.5) into equality (3.1), use (3.4) and equality√
f + t2

1 − t1 =
f (
√

tx + t2− t)
Atx

to get

1√
tx + t2

√
f + t2

1

(
Λ1t2

x +Λ2tx
√

tx + t2 +Λ3tx +Λ4

√
tx + t2 ++Λ5t2

)
= 0 , (3.6)

where

Λi = αi1Ax +αi2At +αi3At1 +αi4, 1≤ i≤ 5 (3.7)
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and

α11 = 0, α12 = 1, α13 = A2, α14 =
A

t− ε
− A3

t1− ε1
,

α21 = 0, α22 = t− t1
A
, α23 =−3t1A+3tA2,α24 =

−t1 +2tA
t− ε

+
2t1A2−3tA3

t1− ε1
+A2−A,

α31 = 1, α32 = t2, α33 = 2t2
1 +5t2A2−6t1tA,

α34 =
−t1t + t(t +2ε)A

t− ε
+
−5t2A3 +4t1tA2− t2

1 A
t1− ε1

+ t1 +2tA2− t1A,

α41 = t− t1
A
, α42 = 0, α43 = 4t3A2−6t1t2A+2t2

1 t ,

α44 =
2εt2A+ εtt1

t− ε
+
−4t3A3 +4t1t2A2− t2

1 tA
t1− ε1

+2t2A2− t1tA ,

α51 = 1, α52 = 0, α53 = 2t2
1 +4t2A2−6t1tA ,

α54 =
−t1t +2εt

t− ε
+
−4t2A3 +4t1tA2− t2

1 A
t1− ε1

+ t1 +2tA2− t1A.

We can solve the overdetermined system of linear equations Λi = 0, i = 1,2 . . .5, with respect to Ax,
At , At1 and obtain 

Ax = 0 ,

At =−
A

t− ε
+

A2

2(t1− tA)

(
Aε1

t1− ε1
− ε

t− ε

)
,

At1 =
A

t1− ε1
− 1

2(t1− tA)

(
Aε1

t1− ε1
− ε

t− ε

)
.

(3.8)

By direct calculations one can check that Att1 = At1t , so the above system has a solution.
Existence of an x-integral: We are looking for a function F(t, t1, t2) such that DxF = 0 that is

Fttx +Ft1t1x +Ft2t2x = 0, (3.9)

where t satisfies equation (1.7) with function f given by (3.5). We use

t1x = A2(t, t1)tx +2A(t, t1)(tA(t, t1)− t1)(
√

tx + t2 + t)

and √
f + t2

1 = (
√

tx + t2 + t)A− t1 ,
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to get

t2x = A2(t, t1)A2(t1, t2)tx +2(
√

tx + t2 + t)(tA(t, t1)− t1)A(t, t1)A2(t1, t2)+

2(
√

tx + t2 + t)(t1A(t1, t2)− t2)A(t, t1)A(t1, t2).

By substituting these expressions for t1x and t2x into equality (3.9) and comparing the coefficients
of
√

tx + t2, tx and t0
x , we obtain the following system of equations

2A(t, t1)(tA(t, t1)− t1)Ft1 +2A(t, t1)A(t1, t2)(tA(t, t1)A(t1, t2)− t2)Ft2 = 0 ,
Ft +A2(t, t1)Ft1 +A2(t, t1)A2(t1, t2)Ft2 = 0 ,

2tA(t, t1)(tA(t, t1)− t1)Ft1 +2tA(t, t1)A(t1, t2)(tA(t, t1)A(t1, t2)− t2)Ft2 = 0 .

To check for the existence of a solution we transform the above system to its row reduced form
Ft +

A2(t, t1)A(t1, t2)(t2− t1A(t1, t2))
tA(t, t1)− t1

Ft2 = 0 ,

Ft1 +
A(t1, t2)(t2− tA(t, t1)A(t1, t2))

−tA(t, t1)+ t1
Ft2 = 0.

(3.10)

The corresponding vector fields

V1 =
∂

∂ t
+

A2(t, t1)A(t1, t2)(t2− t1A(t1, t2))
tA(t, t1)− t1

∂

∂ t2
,

V2 =
∂

∂ t1
+

A(t1, t2)(t2− tA(t, t1)A(t1, t2))
−tA(t, t1)+ t1

∂

∂ t2

commute, that is [V1,V2] = 0, provided A satisfies system (3.8). Thus by the Jacobi theorem, system
(3.10) has a solution. To solve the system define a function E(t, t1, t2) by

Et =
A2

tA− t1
, Et2 =

1
A1(t1A1− t2)

, Et1 =
t2− tAA1

(tA− t1)(t1A1− t2)
+

1
t1− ε1

E ,

where A = A(t, t1) and A1 = A(t1, t2).
One can check that Ett1 = Et1t and Et1t2 = Et2t1 , so such a function E exists. Function E is a first
integral of the first equation of system (3.10). We write system (3.10) using new variables

t̃ = t, t̃1 = t1, t̃2 = E(t, t1, t2)

and obtain {
Ft̃ = 0
Ft̃1 +

t̃2
t̃1−ε1

Ft̃2 = 0.
(3.11)

Therefore one of the x-integrals is F(t, t1, t2) = E(t, t1, t2)/(t1− ε(n+1)) where function E defined
above.
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4. Nonexistence of a chain (1.7) admitting the minimal order n-integral (1.4)

Let us find a function f (x,n, t, t1, tx) such that equation (1.7) has the n-integral

I =
txxx− t2

xx
2tx
− txx

1+5
√

tx+4tx
t−x − 2tx+2tx

√
tx−6t2

x−10t2
x
√

tx−4t3
x

(t−x)2

txx− 2tx+4tx
√

tx+2t2
x

t−x

.

We have,

t1x = f (x,n, t, t1, tx) ,

t1xx = fx + fttx + ft1 f + ftxtxx ,

t1xxx = ( fxx + fxttx + fxt1 f + fxtxtxx)+ tx( fxt + ftttx + ftt1 f + fttxtxx)+ fttxx

+ f ( fxt1 + ftt1tx + ft1t1 f + ft1txtxx)+ ft1( fx + fttx + ft1 f + ftxtxx)

+txx( fxtx + fttxtx + ft1tx f + ftxtxtxx)+ ftxtxxx .

Equality DI = I is equivalent to J := L(DL)(DI − I) = 0, where L =
√

2tx(t − x){txx(t − x)−
2tx(
√

tx +1)2}. We have,

J = Λ1txxx +Λ2t3
xx +Λ3t2

xx +Λ4txx +Λ5 ,

where Λk, 1≤ k ≤ 5, are some functions of variables x, n, t, t1, tx. In particular,

Λ1

2(t− x)(t1− x)tx f
= 2(t−x) f (1+

√
f )2−2(t1−x)tx ftx(1+

√
tx)2−(t1−x)(t−x)( fx+ fttx+ ft1 f ) ,

Λ2 = (t− x)2(t1− x)2{ f ftx− tx f 2
tx +2tx f ftxtx} ,

Λ3

(t− x)(t1− x)
= (t− x) f [4 f 3/2 +2 f 2 +(x− t1) fx + f (2+(x− t1) ft1)]+10(x− t1)t

3/2
x f ftx

+tx[10(t− x) f 3/2 ftx +2(t− x)(t1− x) ftx fx +4(t− x) f 2(2 ftx +(x− t1) ft1tx)]

+tx f (2(t− t1) ftx +(t− x)(x− t1)(3 ft +4 fxtx))

−2(t1− x)t2
x [2 f (2 ftx− ftxtx +(t− x) fttx)+ ftx( ftx +(x− t) ft)]

−4( f 2
tx −2 f ftxtx)(t1− x)t5/2

x −2( f 2
tx −2 f ftxtx)(t1− x)t3

x .

Equality Λ2 = 0 implies that f ftx− tx f 2
tx +2tx f ftxtx = 0, thus

f 2

ftx

∂

∂ tx

{
tx f 2

tx
f

}
= 0 .
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Hence,
tx f 2

tx
f

= A2(x,n, t, t1) for some function A depending on x, n, t, t1 only. Therefore,
ftx√

f
=

A√
tx

and hence
∂

∂ tx
{
√

f −A
√

tx = 0}. We have,

√
f = A

√
tx +B

where A = A(x,n, t, t1) and B = B(x,n, t, t1). We substitute f = A2tx +2AB
√

tx +B2 into Λ1 = 0 and
get

α1t2
x +α2t3/2

x +α3tx +α4
√

tx +α5 = 0.

We solve the system of equations αk = 0, 1≤ k ≤ 5, and obtain B = 0, that is

Ax =
B
2A

Bt −
3
2

ABBt1 +
2(t1− x)B+A{2(t− t1)+6(t− x)B+3(t− x)B2}

2(t− x)(x− t1)
,

At =
A
2B

Bt +
A3

2B
Bt1 +

A{2(t1− x)A+2(x− t1)B− (t− x)A2(2+B)}
2(t− x)(x− t1)B

,

At1 = −
1

2AB
Bt −

A
2B

Bt1 +
2(x− t1)+(t− x)A(2+3B)

2(t− x)(x− t1)B
,

Bx = −B2Bt1−
B(1+B)2

t1−x .

(4.1)

We substitute f = A2tx +2AB
√

tx +B2 into Λ3 = 0 and get

β1t3
x +β2t5/2

x +β3t2
x +β4t3/2

x +β5tx +β6
√

tx +β7 = 0.

We solve the system of equations βk = 0, 1≤ k ≤ 7, and obtain B = 0, or

Ax =
3B
8A

Bt −
23
24

ABBt1 +
21(t1− x)B+A{16(t− t1)+51(t− x)B+23(t− x)B2}

24(t− x)(x− t1)
,

At =
3A
8B

Bt +
3A3

8B
Bt1 +

A{7(t1− x)A+8(x− t1)B− (t− x)A2(7+3B)}
8(t− x)(x− t1)B

,

At1 = −
3

8AB
Bt −

3A
8B

Bt1 +
7(x− t1)+(t− x)A(7+11B)

8(t− x)(x− t1)B
,

Bx = −B2Bt1−
B(1+B)2

t1−x .

(4.2)

We equate expressions for Ax and At from (4.1) and (4.2) and find
Bt = −

A{2(t1− x)B+A((t− t1)+(t− x)B)}
2(t− x)(x− t1)B

,

Bt1 =
t− t1 +3(t− x)B+2(t− x)B2

2(t− x)(x− t−1)B
.

(4.3)
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Then, it follows from (4.1) that

Ax =
(t1− x+(t− x)A)B

2(t− x)(x− t1)
,

At =
A((t1− x)A+(x− t)A2 +2(x− t1)B)

2(t− x)(x− t1)B
,

At1 =
x− t1 +(t− x)A(1+2B)

2(t− x)(x− t1)B
,

Bx =
B(t+t1−2x+(t−x)B)

2(t1−x)(x−t) .

(4.4)

Equality Att1−At1t = 0 becomes
(t1− x)2− (t− x)2A3

(t− x)2(t1− x)2B
= 0, thus

A3 =
(t1− x)2

(t− x)2 . (4.5)

Equality Axt1−At1x = 0 becomes
−(t1− x)2 +(t− x)2A(1+B)2

(t− x)2(t1− x)2B
= 0, thus

A(1+B)2 =
(t1− x)2

(t− x)2 . (4.6)

Equality Axt −Atx = 0 becomes
(t1− x)2(A−B)2− (t− x)2A3

(t− x)2(t1− x)2B
= 0. It implies that

A3

(A−B)2 =
(t1− x)2

(t− x)2 , (4.7)

or A = B, that leads to A = B = 0 and f = 0. It follows from (4.5) and (4.7) that A−B = 1 or
A−B = −1. It follows from (4.5) and (4.6) that 1+B = A or 1+B = −A. This gives rise to four
possibilities:
1) A−B = 1;
2) A−B = 1 and A+B =−1 which gives A = 0, B =−1 and therefore f = 1;
3) A−B =−1 and A−B = 1 which is an inconsistent system;
4) A−B =−1 and A+B =−1 which gives A =−1, B = 0 and therefore f = tx.

We have to study case 1) only. In this case we get B = A− 1 and equation
√

t1x = A
√

tx +B
becomes

√
t1x +1 = A(

√
tx +1), that can be written as well as

(
√

t1x +1)3 = A3(
√

tx +1)3. (4.8)

Due to (4.5), our equation (4.8) becomes

(
√

t1x +1)3

(t1− x)2 =
(
√

tx +1)3

(t− x)2 .

The last equation admits an n-integral I =
(
√

tx +1)3

(t− x)2 of order one.
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Let us consider case B = 0. We write DI− I = 0 for the chain t1x =C(x,n, t, t1)tx and get

Λ1txxx +Λ2t2
xx +Λ3txx +Λ4 = 0

where Λk = Λk(x,n, t, t1, tx), 1≤ k ≤ 4. Equation Λ1 = 0 implies

α1tx +α2
√

tx +α3 = 0

where αk = αk(x,n, t, t1), 1 ≤ k ≤ 3. In particular, α2 = 4C(−(t1− x)+ (t− x)
√

C). Since α2 = 0,
we have C = (t1−x)2(t−x)−2. The chain becomes t1x = (t1−x)2(t−x)−2tx. It admits the n-integral
I = (t− x)−2tx of order one.

Therefore, if equation (1.7) admits n-integral (1.4) then (1.4) is not a minimal order integral.
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