
 

 
 

Journal of Nonlinear Mathematical 
Physics 

 
ISSN (Online): 1776-0852 ISSN (Print): 1402-9251 
Journal Home Page: https://www.atlantis-press.com/journals/jnmp  

 

Integrability Conditions for Complex Homogeneous Kukles Systems 

Jaume Giné, Claudia Valls 

To cite this article: Jaume Giné, Claudia Valls (2018) Integrability Conditions for Complex 
Homogeneous Kukles Systems, Journal of Nonlinear Mathematical Physics 25:3, 387–
398, DOI: https://doi.org/10.1080/14029251.2018.1494731 

To link to this article: https://doi.org/10.1080/14029251.2018.1494731 

 

Published online: 04 January 2021 



Journal of Nonlinear Mathematical Physics, Vol. 25, No. 3 (2018) 387–398

Integrability Conditions for Complex Homogeneous Kukles Systems

Jaume Giné
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In this paper we study the existence of local analytic first integrals for complex polynomial differential systems
of the form ẋ = x + Pn(x,y), ẏ = −y, where Pn(x,y) is a homogeneous polynomial of degree n, called the
complex homogeneous Kukles systems of degree n. We characterize all the homogeneous Kukles systems of
degree n that belong to the Sibirsky ideal. Finally, we provide necessary and sufficient conditions when n =
2, . . . ,7 in order that the complex homogeneous Kukles system has a local analytic first integral computing the
saddle constants and using Gröbner bases to find the decomposition of the algebraic variety into its irreducible
components.
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1. Introduction and statement of the main results

The integrability problem is one of the main problems in the qualitative theory of planar polyno-
mial differential systems. Although integrability is a restrictive condition and a generic system is
not integrable, the existence of a first integral allows to know the phase portrait of a planar differ-
ential system. These non-generic integrable differential systems are used to analyze a bigger family
of differential systems that are described as perturbations of this non-generic system, see [1] and
references therein. Closely related to the existence of a local analytic first integral is the so-called
center-focus problem. The center problem for planar polynomial real systems of the form

ẋ =−y+P(x,y), ẏ = x+Q(x,y) (1.1)

being P and Q polynomials is equivalent to study when such systems admit a local analytic first
integral of the form

Φ(x,y) = x2 + y2 + ∑
j+k≥3

φ j,kx jyk, φ j,k ∈ R. (1.2)

In this case the trajectories are closed and the singular point at the origin is called a center. By
definition any nonconstant differentiable function which is constant on the trajectories of (1.1) is a
first integral of system (1.1).
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Setting z = x+ iy we can write system (1.1) of the form

ż = iz+X(z, z̄) = iz+
n

∑
k=2

Xk(z, z̄) (1.3)

where each Xk is a homogeneous polynomial of degree k and z̄ = x− iy. It turns easier and more
convenient from the computational point of view to study the integrability problem not only for
system (1.3) but also for more general complex systems

ż = iz+
n

∑
j+k=2

X jkz j z̄k, ˙̄z =−iz̄+
n

∑
j+k=2

Yjkz j z̄k, (1.4)

where each X jk and Yjk are complex parameters. If we apply the change of time t 7→ it system (1.4)
becomes a system of the form

ż = z−
n

∑
j+k=2

a jkz j z̄k = z+P(z, z̄), ˙̄z =−z̄+
n

∑
j+k=2

b jkz j z̄k =−z̄+Q(z, z̄). (1.5)

For system (1.5) one can always find a function of the form

Φ(z, z̄) = zz̄+ ∑
j+k≥3

Φ jkz j z̄k, (1.6)

such that

Φ̇ :=
∂Φ

∂ z
(z+P(z, z̄))+

∂Φ

∂ z̄
(−z̄+Q(z, z̄)) = ∑

s≥1
gss(zz̄)s+1,

where gss are polynomials of a jk and b jk with rational coefficients called saddle constants. In the
case that Φ̇ = 0 we say that the origin is a complex center. Note that in this case Φ is a first integral
of system (1.5). If the differential system (1.5) is a complexification of the differential system (1.1)
then going back to the original coordinates we obtain from Φ a first integral of (1.1) of the form
(1.2).

Conditions for the existence of a complex center for system (1.5) (that is for the existence of a
first integral such as Φ in (1.6)) have been found for the case of quadratic systems (n = 2) (see for
instance [4, 6]). However, when n ≥ 3 is an open and difficult problem, see [12]. The case n = 3
with P and Q homogeneous polynomials was solved in [25]. The case when P and Q are of degree
3 but are not homogeneous was studied in [5] for a particular case.

In this paper we contribute to the characterization of the complex centers for a linear complex
center perturbed by homogeneous polynomials of degree n, i.e., systems of the form

ẋ = x−
n−1

∑
j=−1

a j,n−1− jx j+1yn−1− j, ẏ =−y, (1.7)

where x,y ∈C and a j,n−1− j ∈C not all zero since otherwise system (1.7) would be linear. Note that

Pn(x,y) :=
n−1

∑
j=−1

a j,n−1− jx j+1yn−1− j (1.8)

is a homogeneous polynomial of degree n. These systems are called complex Kukles homogeneous
systems. The name comes from the fact that systems of this form in R2 and with the linear part with
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eigenvalues ±i were studied for the first time by Kukles in [18], who also was the first in studying a
linear center perturbed by cubic nonhomogeneous nonlinearities. More specifically Kukles in [18]
initiated the study of the necessary and sufficient conditions for the existence of a real center in
differential systems of the form

ẋ = y,

ẏ =−x+a1x2 +a2xy+a3y2 +a4x3 +a5x2y+a6xy2 +a7y3,
(1.9)

where x,y ∈ R and a1, . . . ,a7 ∈ R. The center problem for system (1.9) with a2 = 0 was solved
in [19] and with a7 = 0 in [3]. The first complete solution of the center-focus problem for Kukles’
system (1.9) was obtained in [20]. In [26] it was also given the complete solution using the Cherkas’
method of passing to a Liénard equation, see also the works [2, 3, 10, 17, 21, 27].

When n = 2 or n = 3 system (1.7) is a particular case of the system analyzed in [15], where the
authors studied the system

ẋ = x−a10x2−a01xy−a12y2−a20x3−a11x2y−a02xy2−a13y3,

ẏ =−y
(1.10)

with x,y ∈ C and ai j ∈ C not all zero. As a direct consequence of this study we state the following
result without proof.

Theorem 1.1 ([15]). System (1.7) with n = 2 has a complex center at the origin if and only if one
of the following two conditions hold.

(a) a1,0 = 0;
(b) a0,1 = a−1,2 = 0.

System (1.7) with n = 3 has a complex center at the origin if and only if one of the following two
conditions hold.

(a) a2,0 = a1,1 = 0;
(b) a1,1 = a0,2 = a−1,3 = 0.

Before stating the main results of this paper we want to mention that the case when we have a
real Kukles system with homogeneous nonlinearities, that is, a system of the form

ẋ = y, ẏ =−x+Qn(x,y), (1.11)

where x, y ∈R and Qn(x,y) a real homogeneous polynomial of degree n, was studied in [13] for the
case n odd and in [14] when n is even. In particular, it is proved under certain conditions an open
conjecture pointed in [28]: Is it true that a system (1.7) where x,y ∈ R with real nonlinearities of
degree higher than two has a center at the origin if and only if its direction field is symmetric about
one of the coordinate axes?

As we will see the case of complex centers is much more complicated to deal with than the real
ones and the obtained results are much different from the ones regarding for real centers.

We introduce in Section 2 the subvariety called the Sibirsky subvariety of the center variety, see
also [16, 22, 23]. The main results of the paper are the following.

Theorem 1.2. System (1.7) belongs to the Sibirsky variety if and only if one of the following two
conditions hold:
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(a) when n is even:

(a.1) an−1,0 = an−2,1 = · · ·= a n
2 ,

n
2−1 = 0;

(a.2) a n
2−1, n

2
= · · ·= a0,n−1 = a−1,n = 0.

(b) when n is odd:

(b.1) an−1,0 = an−2,1 = · · ·= a n−1
2 , n−1

2
= 0;

(b.2) a n−1
2 , n−1

2
= · · ·= a0,n−1 = a−1,n = 0.

Theorem 1.2 is proved in section 3. We recall that we have excluded from the Sibirsky variety
when all coefficients ai j are zero since then system (1.7) would be the linear system that is not the
case considered in this paper because we deal with nonlinear systems of degree n. Note that Theorem
1.2 is a general result for any n ≥ 2. We recall that for every point in the Sibirsky subvariety the
corresponding system has an analytic first integral defined in a neighborhood of the origin, see [16]
and Theorem 3.5.5 of [24]. So systems provided by Theorem 1.2 have complex centers at the origin.
We also recall that all time-reversible systems are inside the Sibirsky subvariety, see [22–24].

Now we characterize all the complex centers of system (1.7) when n = 4,5,6,7. This is the
content of the following four results.

Theorem 1.3. System (1.7) with n = 4 has a complex center at the origin if and only if one of the
following three conditions hold:

(a) a3,0 = a2,1 = 0;
(b) a1,2 = a0,3 = a−1,4 = 0;
(c) a3,0 = a1,2 = a−1,4 = 0.

The proof of Theorem 1.3 is given in section 4.

Theorem 1.4. System (1.7) with n = 5 has a complex center at the origin if and only if one of the
following three conditions hold:

(a) a4,0 = a3,1 = a2,2 = 0;
(b) a2,2 = a1,3 = a0,4 = a−1,5 = 0;
(c) a4,0 = a2,2 = a1,3 = a−1,5 = 0.

The proof of Theorem 1.4 is given in section 5.

Theorem 1.5. System (1.7) with n = 6 has a complex center at the origin if and only if one of the
following four conditions hold:

(a) a5,0 = a4,1 = a3,2 = 0;
(b) a2,3 = a1,4 = a0,5 = a−1,6 = 0;
(c) a5,0 = a3,2 = a2,3 = a1,4 = a−1,6 = 0;
(d) a5,0 = a4,1 = a2,3 = a1,4 = a−1,6 = 0.

The proof of Theorem 1.5 is given in section 6.

Theorem 1.6. System (1.7) with n = 7 has a complex center at the origin if and only if one of the
following four conditions hold:

(a) a6,0 = a5,1 = a4,2 = a3,3 = 0;
(b) a3,3 = a2,4 = a1,5 = a0,6 = a−1,7 = 0;
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(c) a6,0 = a5,1 = a3,3 = a2,4 = a1,5 = a−1,7 = 0;
(d) a6,0 = a4,2 = a3,3 = a2,4 = a1,5 = a−1,7 = 0.

The proof of Theorem 1.6 is given in section 7.

2. The Sibirsky subvariety

To state the main result of this paper we need to introduce the subvariety called the Sibirsky subva-
riety of the center variety. To define this subvariety we proceed as follows. We consider a system of
the form

ẋ = x− ∑
(p,q)∈S

apqxp+1yq, ẏ =−y+ ∑
(p,q)∈S

bqpxqyp+1, (2.1)

where apq,bqp ∈ C and

S = {(p j,q j)|p j +q j ≥ 1, j = 1, . . . , l} ⊂ {{−1}∪N}×N.

Let L : N2l → N2 be the linear operator such that for ν = (ν1, . . . ,ν2l) ∈ N2l ,

L(ν) :=
(

p1

q1

)
ν1 + · · ·+

(
pl

ql

)
νl +

(
ql

pl

)
νl+1 + · · ·+

(
q1

p1

)
ν2l =

(
L1(ν)

L2(ν)

)
and let

M :=
⋃
k∈N

{
ν ∈ N2l : L(ν) =

(
k
k

)}
.

Let also C[M ] denote the subalgebra of C[a,b] generated by all monomials of the form

aν1
p1q1

aν2
p2q2
· · ·aνl

plql
bνl+1

ql pl
bνl+2

ql−1 pl−1
· · ·bν2l

q1 p1
(2.2)

for all ν ∈ M . In order to simplify notation we will abbreviate such a monomial by [ν ] =

[ν1, . . . ,ν2l]. For ν ∈M , let

ν̄ = (ν2l, . . . ,ν1).

The Sibirsky ideal is

Isib = 〈[ν ]− [ν̄ ]|ν ∈M 〉.

As pointed out in the introduction, this variety is very important since for every point in the Sibirsky
subvariety the corresponding system has an analytic first integral defined in a neighborhood of the
origin, see [16].

For system (1.7), for any fixed n, we have that l = n+ 1, and (p1,q1) = (0,n− 1), (p2,q2) =

(1,n− 2), . . . ,(pn+1,qn+1) = (−1,n). Moreover, since C[M ] denote the subalgebra of C[a,b]
generated by all monomials of the form (2.2) and for system (1.7) we have that bq j p j = 0 for
j = 1, . . . , l = n+1, in M we can take

νl+1 = · · ·= ν2l = νn+2 = · · ·= ν2(n+1) = 0

since otherwise C[M ] = {0} and this case is not considered here since this correspond to the linear
systems which are not taken into account due to the fact that we deal with nonlinear systems of
degree n≥ 2.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

391
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3. Proof of Theorem 1.2

Note that in system (2.1) we have bqp = 0 for all p,q ∈ S and (2.1) can be written in the form of
system (1.7).

Lemma 3.1. The Sibirsky component of the center variety of system (1.7) for each fixed n ≥ 2 is
defined by the following equations

n−1

∏
j=0

aν j+1
j,n−1− ja

νn+1
−1,n = 0,

with ν j ∈ N for j =−1, . . . ,n−1 such that

n

∑
j=1

(n−2 j+1)ν j +(n+1)νn+1 = 0. (3.1)

Proof. The proof follows directly from the definition of Sibirsky variety taking into account that in
our case bpq = 0 for all p,q ∈ S and so ν = (ν1, . . . ,νn,νn+1) (see the last paragraph in section 2).
Hence the condition defining the Sibirsky variety becomes(

0
n−1

)
ν1 +

(
1

n−2

)
ν2 + · · ·+

(
n−1

0

)
νn +

(
−1
n

)
νn+1 =

(
k
k

)
,

or in other words

ν2 +2ν3 + · · ·+(n−1)νn−νn+1 = k,

(n−1)ν1 +(n−2)ν2 + · · ·+νn−1 +nνn+1 = k,

which yields

ν2 +2ν3 + · · ·+(n−1)νn−νn+1

= (n−1)ν1 +(n−2)ν2 + · · ·+νn−1 +nνn+1.

This condition can be written as

(n−1)ν1 +(n−3)ν2 + · · ·+(1− (n−2))νn−1− (n−1)νn +(n+1)νn+1 = 0,

or equivalently

n

∑
j=1

(n−2 j+1)ν j +(n+1)νn+1 = 0.

This concludes the proof. �
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Proof. [Proof of Theorem 1.2] We first take n≥ 2 even. In this case we can write (3.1) as follows

n/2

∑
j=1

(n−2 j+1)ν j +(n+1)νn+1−
n

∑
j=n/2+1

(2 j−1−n)ν j = 0,

that is

ν n
2
+

n/2−1

∑
j=1

(n−2 j+1)ν j +(n+1)νn+1 = ν n
2+1 +

n

∑
j=n/2+2

(2 j−1−n)ν j.

Since ν j ∈ N, and ν j is the exponent of a j−1,n− j for j = 1, . . . ,n and νn+1 is the exponent of a−1,n,
it is clear that the two conditions are

a n
2−1, n

2
= · · ·= a0,n−1 = a−1,n = 0,

and

a n
2 ,

n
2−1 = · · ·= an−2,1 = an−1,0 = 0.

This concludes the proof when n is even.

When n is odd, it follows from the general theory of Lyapunov constants that a n−1
2 , n−1

2
= 0 since

it corresponds to the first Lyapunov constant.

In this case we can write (3.1) as follows

(n−1)/2

∑
j=1

(n−2 j+1)ν j +(n+1)νn+1−
n

∑
j=(n+3)/2

(2 j−1−n)ν j = 0,

that is

ν n−1
2
+

1
2

(n−3)/2

∑
j=1

(n−2 j+1)ν j +(n+1)νn+1 = ν n+3
2
+

1
2

n

∑
j=(n+5)/2

(2 j−1−n)ν j.

Since ν j ∈ N, and ν j is the exponent of a j−1,n− j for j = 1, . . . ,n and νn+1 is the exponent of a−1,n,
it is clear that the two conditions are

a n−1
2 , n−1

2
= a n−3

2 , n+1
2
· · ·= a0,n−1 = a−1,n = 0,

and

a n−1
2 , n−1

2
= a n+1

2 , n−3
2

= · · ·= an−2,1 = an−1,0 = 0.

This concludes the proof. �

Before giving the proof of Theorem 1.3 we give the following result proved in [4]. If an inte-
grating factor is not well defined in a neighborhood of a singular point the following statement can
be applied.
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Lemma 3.2. (i) If system

ẋ = x−
n−1

∑
p+q=1

ap,qxp+1yq, ẏ =−y+
n−1

∑
p+q=1

bq,pxqyp+1 (3.2)

has a local inverse integrating factor µ(x,y)= (xy)α
∏

m
i=1 Fβi

i with Fi analytic in x and y, Fi(0,0)= 0
for i = 1, . . . ,m, α 6= 0, and α is not an integer greater than 1, then it has a first integral of the form
(1.6).
(ii) If system (3.2) has a local inverse integrating factor µ(x,y) = (xy)α and aα,α−1 = bα−1,α = 0,
then it has a first integral of the form (1.6).

4. Proof of Theorem 1.3

We first establish the sufficiency of all conditions of Theorem 1.3. Statements (a) and (b) are the
Sibirsky cases given in Theorem 1.2 when n = 4. For statement (c) system (1.7) becomes

ẋ = x−a2,1x3y−a0,3xy3

ẏ =−y.

This system has two invariant lines l1 = x, l2 = y, and one exponential factor f1 = ey3
. Moreover it

is possible to find an inverse integrating factor is of the form V = (l1l2)3e−2a0,3y3/3. In order to prove
the existence of an analytic first integral in a neighborhood of the origin we apply statement (ii) of
Lemma 3.2, First we make a change of time given by dτ = e−2a0,3y3/3dt. The new system has an
inverse integrating factor V = (xy)3 and we can apply statement (ii) of Lemma 3.2 to deduce the
existence of an analytic first integral of the form (1.6).

Now we prove the necessity of all conditions of Theorem 1.3. For doing this, we introduce in
system (1.7) with n = 4 the change of variables X = x+ iy, Y = x− iy and t 7→ t/i. With this change,
(1.7) becomes

Ẋ = Y + i(a03 +a12 +a14 +a21 +a30)X4/2
+(a03 +2a14−a21−2a30)X3Y + i(a12−3(a14 +a30))X2Y 2

+(a03−2a14−a21 +2a30)XY 3− i(a03−a12−a14 +a21−a30)Y 4/2,
Ẏ =−X +(a03 +a12 +a14 +a21 +a30)X4/2
−i(a03 +2a14−a21−2a30)X3Y +(a12−3(a14 +a30))X2Y 2

−i(a03−2a14−a21 +2a30)XY 3− (a03−a12−a14 +a21−a30)Y 4/2.

(4.1)

Now we write (4.1) in polar coordinates, i.e., we do the change of variables r2 = zz̄ and θ =

arctan(Imz/Rez), and system (4.1) becomes

ṙ = ir4
(
(a12 +a21)cosθ +(a03 +a30)cos3θ +a14 cos5θ

+i(a21−a12)sinθ + i(a30 +a03)sin3θ − ia14 sin5θ
)
/2

θ̇ = −1+ r3
(
(a12 +a21)cosθ +(a03 +a30)cos3θ +a14 cos5θ

+i(a21−a12)sinθ + i(a30−a03)sin3θ − ia14 sin5θ)/2.

(4.2)

To determine the necessary conditions to have a center for system (4.2) we propose a formal
Poincaré series of the form

H(r,θ) =
∞

∑
n=2

Hn(θ)rn, (4.3)
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where H2(θ) = 1/2 and Hn(θ) are homogeneous trigonometric polynomials respect to θ of degree
n. Imposing that this power series is a formal first integral of system (4.2) we obtain

Ḣ(r,θ) =
∞

∑
k=2

V2kr2k.

where V2k are in fact the Poincaré-Liapunov constants that depend on the parameters of system (4.1)
which correspond to the saddle (focus) quantities of the original system (1.7) with n = 4. It is easy
to see that these V2k are polynomials in the parameters of system (4.1). System (4.1) is polynomial
and due to the Hilbert Basis theorem, the ideal J = 〈V2,V4, ...〉 generated by the Poincaré-Liapunov
constants is finitely generated, i.e. there exist W1,W2, ...,Wk in J such that J = 〈W1,W2, ...,Wk〉. Such
a set of generators is called a basis of J and the conditions Wj = 0 for j = 1, . . . ,k provide a finite set
of necessary conditions to have a center. The set of coefficients for which all the saddle constants
V2k vanish is called the complex center variety of system (1.7) with n = 4 and it is an algebraic set.

In practice we determine a finite number of Poincaré-Liapunov constants thinking that inside
these number there is the set of generators. From this set a much harder problem is to decompose
this algebraic set into its irreducible components. We must use a computer algebra system. The
computational tool which we use is the routine minAssGTZ [7] of the computer algebra system
SINGULAR [9] which is based on the Gianni-Trager-Zacharias algorithm [8]. The computations
have been completed in the field of rational numbers. That is, we know that the decomposition of
the center variety that we encountered is complete. Therefore in the statement of the theorem we
provide sufficient and necessary conditions to have a complex center.

5. Proof of Theorem 1.4

We first establish the sufficiency of all conditions of Theorem 1.4. Statements (a) and (b) are the
Sibirsky cases given in Theorem 1.2 when n = 5. For statement (c) system (1.7) becomes

ẋ = x−a3,1x4y−a0,4xy4

ẏ =−y.

This system has two invariant lines l1 = x, l2 = y, and one exponential factor f1 = ey4
. With these

ingredients we can find an inverse integrating factor of the form V = (l1l2)4e−2a0,4y3/3. To prove the
existence of an analytic first integral in a neighborhood of the origin we also apply statement (ii) of
Lemma 3.2. We make a change of time given by dτ = e−2a0,4y3/3dt. The new system has an inverse
integrating factor V = (xy)4 and we can apply statement (ii) of Lemma 3.2 to deduce the existence
of an analytic first integral of the form (1.6).

The necessity of all conditions of Theorem 1.4 is proved by the same method used in the previ-
ous theorem.

6. Proof of Theorem 1.5

The sufficiency of all conditions of statements (a) and (b) of Theorem 1.5 come from Theorem 1.2
when n = 6. For statement (c), note that system (1.7) becomes

ẋ = x−a4,1x5y−a0,5xy5

ẏ =−y.
(6.1)
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System (6.1) has two invariant lines l1 = x, l2 = y, one exponential factor f1 = ey5
and an inverse

integrating factor of the form V = (l1l2)5e−4a0,5y5/5. To prove the existence of an analytic first inte-
gral in a neighborhood of the origin we apply statement (ii) of Lemma 3.2. We made a change of
time given by dτ = e−4a0,4y3/5dt. The new system has an inverse integrating factor V = (xy)5 and
we can apply statement (ii) of Lemma 3.2 to deduce the existence of an analytic first integral of the
form (1.6).

For statement (d), note that system (1.7) becomes

ẋ = x−a3,2x4y2−a0,5xy5

ẏ =−y.
(6.2)

System (6.2) has two invariant lines l1 = x, l2 = y, one exponential factor f1 = ey4
and an inverse

integrating factor of the form V = (l1l2)4e−3a0,5y5/4. To prove the existence of an analytic first inte-
gral in a neighborhood of the origin we also apply statement (ii) of Lemma 3.2 by making a change
of time similarly as in the proof of Theorem 1.4.

The necessity of conditions of Theorem 1.5 is proved by the same method used in Theorem 1.3.

7. Proof of Theorem 1.6

The sufficiency of all conditions of statements (a) and (b) of Theorem 1.6 come from Theorem 1.2
when n = 7. For statement (c), note that system (1.7) becomes

ẋ = x−a4,2x5y2−a−1,6xy5

ẏ =−y.
(7.1)

System (7.1) has two invariant lines l1 = x, l2 = y, one exponential factor f1 = ey6
and an inverse

integrating factor of the form V = (l1l2)5e−4a−1,6y6/6.

For statement (d), note that system (1.7) becomes

ẋ = x−a4,1x5y−a−1,6xy5

ẏ =−y.
(7.2)

System (7.2) has two invariant lines l1 = x, l2 = y, one exponential factor f1 = ey4
and an inverse

integrating factor of the form V = (l1l2)6e−5a−1,6y6/6. To prove the existence of an analytic first
integral in a neighborhood of the origin in both cases we apply statement (ii) of Lemma 3.2 in the
same way that in the previous cases, by making a convenient change of time.

The necessity of conditions of Theorem 1.6 is proved by the same method used in Theorem 1.3.

In view of the results obtained we can formulate the following conjecture: Is it true that a system
(1.7) has a complex center at the origin if and only if it belongs to the Sibirsky ideal or it is Liouville
integrable?

Recall that a differential system in the plane is Liouville integrable if it has an integrating factor
of the form V = exp{D/E}∏iC

λi
i where D, E and Ci ∈ C[x,y] and λi ∈ C. Note that E and Ci are

invariant algebraic curves of the system and exp{D/E} is an exponential factor, see for instance [11]
and references therein.
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[13] J. Giné, J. Llibre, C. Valls, Centers for the Kukles homogeneous systems with odd degree, Bull. London
Math. Soc. 47 (2015) 315–324.
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