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This article continues the series of the works of 1998–2007 years devoted to the Multidimensional Superpo-

sition Principle, the concept easily explaining both classical soliton and more complex wave interactions in

nonlinear PDEs and allowing one, in particular, to construct the general Superposition Formulae for nonlinear

wave interactions. In the present research the technique of multiexpansions with constraints is considered for

finding the above SFs and investigation of the related solitons. (The simplest case of such expansions tech-

nically is analogous to the so-called invariant truncated singular expansions.) As the applications, the soliton

SFs of the MKdV±, Kaup-Kupershmidt and new A± equation are obtained for the bell-shape exponential

solitons of the various families, algebraic solitons, and the configuration of the two noninteracting kinks. The

linearized, parameterized versions of these SFs are investigated then, and the related analysis of the interactions

is presented. The obtained results allow one to consider the one soliton solutions mentioned as the strong bound

states of the simpler solitons. Concerning the results for the above concrete nonlinear PDEs, the approach being

developed made it possible both to obtain the new results and to reveal new moments for the already known

ones.
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1. Introduction

As since the publication of the last work from the series [3]– [11] of 1998–2007 years on the

Multidimensional Superposition Principle ten years have passed already, it is reasonable to recall

here its main points and stages for the readers.

The MSP was born as an answer to finding of the anomalous kinks interactions with the switch-

ing effect in hypothetic electrolytes [12,13]. Since the proposed nonlinear model possessed no prop-

erties characteristic for integrable systems, there was no hope to apply all known at that moment

for the last ones effective machinery for the equation derived. Moreover, the powerful switching

effect without any visible inelastic consequences demonstrated in the computer simulations was

new and unusual for the known soliton models. As a result, a new paradigm of soliton interactions

not based on the Inverse Scattering Transform, the Hirota’s method or other known approaches was

needed. Such a concept, in which the existence of solitons and the possibility of the various switch-

ing effects (the simplest one obviously is the famous soliton phase shift) for their interactions were

incorporated, was proposed soon, and the first results were presented on the International Mathe-

matical Congress in 1998 year [3]. That first technique used the structures arising in the framework

of the well-known truncated singular expansions (or the Painlevé expansions) approach [16,31] and
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shown that such truncated expansions are basically the very superposition formulae for soliton–

perturbations interactions. Starting from them, two soliton (bell-shape ones, kinks or poles) solu-

tions were derived for several nonlinear PDEs such as the MKdV, Burgers, Sawada-Kotera and

other equations. The fact that at that moment the truncated singular expansions were constructed

for many integrable soliton equations allowed one to basically close the question about the SFs for

their solitons and was reduced obtaining these SFs to the simple procedure with changing notations.

The existence of classical elastic soliton interactions in some nonintegrable systems together with

the prediction of some type inelastic interactions [6] were other important moments in the author’s

opinion.

In the work [8] the soliton invariant manifolds were introduced into the theory explicitly and

in the full volume, that allowed one to construct the algorithmic procedure for goal seeking the

nonlinear equations having solitons. The approach deals with a so-called system of the determining

equations for this and demands the use of the special computer algebra software, e.g. RifSimp [32]

on Maple or Crack [33] on Reduce.

The paper [10] was considering another technique for finding SFs using the expansions with

respect to the basis functions associated with some differential equations systems of the polynomial

type. The simplest cases with the second order polynomials are identical to the R Conte’s formal-

ism [16] of the truncated singular manifold method. The aim of the paper was to investigate also

the higher order cases, and the nonstandard solitons describing by the special functions together

with their SFs were presented, and the simplest nonintegrable model possessing such solitons were

indicated.

The works [9] and [11] deal with the special computer approaches for the investigations of

the soliton superposition nature itself, that does not have analogues in the scientific literature. For

an example, they are able to numerically restore the linearized version of SFs, to visualise the

excitations of the soliton structure and so on.

Touch now the aim and plan of the paper. Although already the very first works on the MSP

allowed one to use the known truncated singular expansions to construct SFs, but, as was known

from that time researches, not for all cases the standard one manifold technique appeared to be suc-

cessful. For instance, such an expansion is not able to describe the bell-shape solitons of the MKdV

and gives the SF only for the MKdV kink [3,6]. The situation with the Kaup-Kupershmidt equation

is even more intriguing. While for two other integrable nonlinear PDEs of the fifth order, the higher

KdV and Sawada-Kotera equation, usual truncated expansions can be directly transformed [3] into

the full volume SFs, in the case with the KK it gives the SF for the very particular soliton case.

The KK solitons are known as the anomalous solitons, which cannot be described, e.g., by the usual

direct methods like the standard Hirota’s substitution. The serious research [29, 30] was fulfilled

to investigation this anomaly but nevertheless did not decided the problem completely. As we will

see, in reality the clue to the puzzle is the use of the two manifolds. Moreover, the two manifolds

approach with namely two identical branches is needed for the KK. This fact may seem astonishing.

According to the popular viewpoint, the use of one more identical branch is absolutely usefulness.

Together with the MKdV and KK a new soliton equation, the A± equation, is considered. For it the

noninteracting kinks configuration was discovered also.

The aim of this research, however, is not only expand and develop the basis functions expansions

technique for SFs [10]. The SFs sought can be used for the analysis of soliton interactions. It is

shown that for the analysis of some characteristics of such interactions the linearizations of SFs

can be used. The special section of the paper is devoted namely linearized SFs. Linearized SFs also
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have their own rights however and may be as much important as the full SFs. In particular, they

are interesting when investigating weak soliton interactions (e.g. in the ensemble of the solitons,

so-called soliton gases or soliton lattices [17]), bounded soliton states [23,24], stability [21,22], etc.

Summarizing the contents of the paper, it should be stress out that this investigation demands

very complicated algebra dealing with the systems of the differential and polynomial equations. All

the algebra was fulfilled with the use of the special purpose symbolic software Crack [33] for the

usual [20] and differential [27] Gröebner bases on Reduce system. So, we here are able to present

only the main and short enough formulae and frequently in the compact, simplified form.

Ending, adduce the article plan. In Section 2 the theoretical questions are considered. Two sep-

arate subsections are devoted to the main points of the MSP itself, one manifold technique and its

two manifolds extension with a constraint. In Section 3 the approach is applied for the MKdV±,

KK and A± equations. The SFs and several soliton families are obtained for them. The case with

the MKdV± equations is relatively simple in the viewpoint of the complexity of the algebra, so all

the underlying questions and algebra are considered in details to simplify the understanding of the

similar but much more huge cases. The next section, Sections 4, considers in details the lineariza-

tion of the SFs obtained previously and uses them for the soliton interactions analysis. In doing so,

the procedure of parametrization for such complicated SFs is introduced. The main results of the

research are listed in Conclusion. Note that in order to simplify reading, each of the sections starts

also with its own short introduction.

2. The Main Preliminaries

In this section the minimal theory on the MSP needed for understanding this investigation is pre-

sented (here only the simplest case corresponding to the well-known singular manifold technique

are applied relevantly to the concrete nonlinear PDEs under consideration). It touches both the gen-

eral and rigorous theory of the soliton invariant manifolds and multidimensional splitting and the

direct technique with the truncated expansions with respect to the simplest basis functions. For more

details about the MSP we would first of all recommend the paper [8].

2.1. The MSP and invariant manifolds of the soliton type

Let there to be some PDE, linear or nonlinear, for the simplicity of the evolution type, one dimen-

sional and not depending explicitly on the independent variables

ut = E (u,ux,uxx, . . .) , u = u(x, t). (2.1)

Let also there to be another PDE

ut1 +ut2 = E (u,ux1
+ux2

,ux1x1
+2ux1x2

+ux2x2
, . . .) , u = u(x1, t1,x2, t2) (2.2)

obtained from the former by the formal change of the differential operators

∂
∂x

=
∂
∂x1

+
∂
∂x2

,
∂
∂ t

=
∂
∂ t1

+
∂
∂ t2

. (2.3)

One will call the last equation the multidimensional adjoint or MD-adjoint to the first one. The

projections of the solutions u(x1, t1,x2, t2) for (2.2)

u(x, t) = u(x1, t1,x2, t2)
∣∣∣
x1=x2=x, t1=t2=t

(2.4)
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obviously are the solutions u(x, t) for (2.1). If this second equation has an invariant manifold being

described by the differential relations of the following forms

Q(u,ux1
, . . . ,unx1

) = 0, n ∈ N (2.5)

G j

(
∂
∂x2

;u,ux1
, . . . ,u(n−1)x1

)
= 0, j = 1,n′; n′ ∈ N, (2.6)

then Eq. (2.5) will be called a soliton envelope equation, Eqs. (2.6) are linkage equations, and the

above invariant manifold itself is an Invariant Manifold of the Soliton type. As a consequence of

(2.5) and (2.6), functions u(x1, t1,x2, t2) will be of the structure

u(x1, t1,x2, t2) = F
(

x1, t1;ϑ1(x2, t2), . . . ,ϑn(x2, t2)
)
, (2.7)

with the form of F is determined by the ODE (2.5), while the remaining equations, Eqs. (2.6),

determine the differential linkages with respect to x2 between ϑ j(x2, t2) in (2.7). The solution

u(x1, t1,x2, t2) and respectively u(x, t) in (2.4) can be interpreted as a soliton with the parameters ϑ j

modulated by some perturbation and describe their mutual (the soliton and a perturbation) super-

position. We will say that (2.7) is the Superposition Formula for the soliton and another wave. In

doing so, Eq. (2.2) leads to the split set of the equations determining the separate evolution of the

soliton and perturbation.

As an example, one will shortly adduce the results [6, 8] for the kink–perturbation SF of the

MKdV− equation

ut −6u2ux +uxxx = 0, u = u(x, t).

The soliton envelope equation (2.5) and linkage equations (2.6) are as follows

2ux1x1x1
ux1

−3u2
x1x1

+ k2u2
x1
= 0, k = const, (2.8)

ux1x1
+ux1x2

∓2uux1
= 0, 2ux1x1x2

ux1
+3u2

x1x1
∓4(ux1x1

ux1
u+u3

x1
)− k2u2

x1
= 0.

So, there are two linkages to the three ‘parameters’ associated with the soliton envelope equation

(2.8). The related SF (k �= 0) is

u(x1, t1,x2, t2) =±
[(

k+ϑx2

2

)
tanh

(
kx1 +

k3

2
t1 +Δ+ϑ
2

)
− ϑx2x2

2(k+ϑx2
)

]
,

k,Δ = const, ϑ = ϑ(x2, t2)

(2.9)

with ϑ satisfying the equation

2ϑt2 +2ϑx2x2x2
−ϑ 3

x2
−3kϑ 2

x2
−3k2ϑx2

− 3ϑ 2
x2x2

ϑx2
+ k

= 0, ϑ = ϑ(x2, t2) (2.10)

and obviously describes the interaction of the kink

u(x1, t1,x2, t2)
∣∣∣
ϑ=0

= u(x1, t1) =
k
2

tanh

(
kx1 +

k3

2
t1 +Δ

2

)
(2.11)

and an arbitrary perturbation (here k > 0 for the definiteness)

lim
x1→±∞

u(x1, t1,x2, t2) = u(x2, t2) =±
(

k+ϑx2

2

)
− ϑx2x2

2(k+ϑx2
)
. (2.12)
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(The expressions (2.11) and (2.12) are given for the sign ‘+’ in (2.9).) In the simplest case

ϑ(±∞, t2) = ϑ±∞ = const this interaction leads to the kink phase shift (ϑ+∞ −ϑ−∞)/k, while its

effect to the perturbation is more complicated. In particular, it includes the perturbation turn-over.

The more difficult case is, e.g, the capture of the kink by a perturbation [6].

2.2. The MSP and truncated singular expansions

As was shown already in the very first works on the multidimensional superposition principle, the

well-know truncated singular expansions [31], [16] directly lead to the SFs for classical solitons.

The procedure is trivial and fully straightforward [3]– [8], [10]. Let an equation under consideration

E ([u]) = 0, u = u(x, t) (2.13)

admit of the above-mentioned expansion

u(x, t) =
m

∑
j=0

Wj ([S], [C])V (x, t) j, m ∈ N (2.14)

with the singular manifold equation

ESME ([S], [C]) = 0. (2.15)

The function V (x, t) is associated with the singular manifold and satisfies the system

Vx =−V 2 − S
2
, Vt =CV 2 −CxV +

CS+Cxx

2
, S = S(x, t), C =C(x, t) (2.16)

with the compatibility condition Vxt −Vtx = 0 or

St +Cxxx +2SCx +CSx = 0.

Here we use the formalism introduced by R Conte in the work [16]. Historically, the above series

are associated with the so-called generalized Laurent expansions [31] with respect to the singular

manifold function f (x, t)

u(x, t) =
+∞

∑
j=−m

w j(x, t) f j(x, t), m ∈ N (2.17)

arose in the framework of the hypothesis on the Painlevé properties for the nonlinear PDEs inte-

grable via the Inverse Scattering Transform [1]. Conte however shown that the series (2.17) can be

presented in the more elegant and compact form (2.14) in terms of the above functions V , S and C
which have the simple link with the singular function f (x, t) from (2.17)

V (x, t) =
fx

f
− fxx

2 fx
, S(x, t) =

fxxx

fx
− 3

2

f 2
xx

f 2
x
, C(x, t) =− ft

fx
.

As was demonstrated in [10], the expansions analogous (2.14) can take place also for more compli-

cated than the system (2.16) cases, and some special solitons together with their SFs were obtained

there for already the nonintegrable models.
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If the singular manifold equation (2.15) has solutions for some constant values of C and S, that

corresponds to the existence of a soliton for the nonlinear PDE, then the SF for the last one is

restored from (2.14) via the following relations

V (x1, t1,x2, t2) =
k
2
(1+θx2

) tanh

[
k
2

(
x1 − vt1 +Δ+θ

)]− θx2x2

2(1+θx2
)
,

S(x2, t2) =
θx2x2x2

1+θx2

− k2

2
(1+θx2

)2 − 3

2

(
θx2x2

1+θx2

)2

,

C(x2, t2) =
v−θt2

1+θx2

, θ = θ(x2, t2), k,v,Δ = const; k �= 0

(2.18)

or

V (x1, t1,x2, t2) =
1+θx2

x1 − vt1 +Δ+θ
− θx2x2

2(1+θx2
)
, θ = θ(x2, t2)

S(x2, t2) =
θx2x2x2

1+θx2

− 3

2

(
θx2x2

1+θx2

)2

, C(x2, t2) =
v−θt2

1+θx2

, v,Δ = const

(2.19)

and of cause (2.3). In doing so, the singular manifold equation (2.15) brings to the governing equa-

tion for the perturbation function θ . As a consequence, in view of the form of (2.14), all such SFs

will be of the following standard structures [8]

uSF,I (x1, t1,x2, t2) =
m

∑
j=0

Φ j ([θ ],k,v) tanh j
[

k
2

(
x1 − vt1 +Δ+θ

)]
, (2.20)

uSF,II (x1, t1,x2, t2) =
m

∑
j=0

Φ j ([θ ],v)[
x1 − vt1 +Δ+θ

] j , m ∈ N (2.21)

for (2.18) and (2.19) respectively, and the interactions are of the unified features. In particular, they

leads to the soliton phase shifts. In their turn the expressions for the perturbations before and after

the interactions have the form

uSF,I,p±∞(x2, t2) = uSF,I(±∞, t1,x2, t2) =
m

∑
j=0

(±1) jΦ j ([θ ],k,v) , m ∈ N, (2.22)

uSF,II,p±∞(x2, t2) = uSF,II(∞, t1,x2, t2) = Φ0 ([θ ],v) . (2.23)

In the case (2.22), the interaction effects the state of the perturbation after it if obviously there are

odd terms. While this state in the second case (2.23) is not effected by the soliton or, say so, the

soliton is transparent for perturbations.

Note that the soliton envelope equations supplying (2.20) and (2.21) can enough easily be

obtained although will generally be huge enough. For instance, Eq. (2.8) is obviously the soliton

envelope equation for m = 1.

Although, as we see from the above formulae (2.18)–(2.23), there exist two qualitatively differ-

ent cases of SFs, (2.20) and (2.21), but simultaneously there is the direct link between them. And all

formulae for the second case with (2.21) can be formally obtained from their analogues for (2.20)

simply via passage to the limit k → 0. We will touch this question slightly later.

All the above facts are just as simple as important. Basically, since for the most part of the

soliton equations the truncated singular expansions are already known, it closes the questions on

their SFs and the nature of their soliton interactions.
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Pass now to the double expansion with the constraints. Estévez with the colleagues [18] were

the first who introduced a technique with two singular manifolds. This immediately allowed one

to move forward with the equations where the original one singular manifold version appeared to

be powerless. A number of the interesting papers were written. And in particular the MKdV was

investigated [28]. Main interest in these works was concentrated on the possibility to obtain Lax

pairs, Bäcklund and Darboux transformations. In the work [14] emphasis was made on the use of

constraints to the above manifolds and on the straightforward theory for finding them in the general

case. As a result, for example the known problems [19] with some ‘pathologic’ from the classical

view point equations were resolved.

The equations cases being considered in this paper are relatively simple and demand the simplest

link between two singular manifold functions. And here we confine ourself to the theory only for

this concrete case.

Let there to be two functions V1,2(x, t) satisfying as usually the systems

Vj,x =−V 2
j −S j/2, Vj,t =CjV 2

j −Cj,xVj +(CjS j +Cj,xx)/2, j = 1,2 (2.24)

the same as (2.16) with S1,2(x, t) and C1,2(x, t) are subject of the analogous compatibility conditions

Vj,xt −Vj,tx = 0 ( j = 1,2) for (2.24)

S j,t +Cj,xxx +2S jCj,x +CjS j,x = 0, j = 1,2. (2.25)

The above simplest link between them is of the form

L(V1,V2) =V1V2 − (αV1 +βV2 + γ −αβ ) = 0, (2.26)

where α(x, t), β (x, t) and γ(x, t) are undetermined yet functions. In doing so, as we will see below,

their specific occurrence into (2.26) is chosen in such a manner to simplify the further expressions.

In order that the link (2.26) takes place in any point x and at any t, L(V1,V2) has to be invariant with

respect to differentiation on x and t

Lx
∣∣
L=0

= Lt
∣∣
L=0

= 0.

Differentiating (2.26) on x, we have

−V 2
1 V2 −V1V 2

2 +V 2
1 α +V 2

2 β −V1(αx +S2/2)−V2(βx +S1/2)

+αxβ +βxα − γx +αS1/2+βS2/2 = 0

or, in view of the expression for V1V2 from (2.26),

−V1(αx +α2 + γ +S2/2)−V2(βx +β 2 + γ +S1/2)+αxβ +βxa− γx

+α2β +αβ 2 −αγ +αS1/2−βγ +βS2/2 = 0. (2.27)

Then it remains to equate the coefficients at V1, V2 and the free part in (2.27) to zero to arrive at the

equations to α , β and γ

αx =−α2 − γ −S2/2, βx =−β 2 − γ −S1/2, γx =−2γ(α +β ). (2.28)

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

7



A.A. Alexeyev / A multidimensional superposition principle: IV

Analogously differentiating (2.26) on t , we will obtain other three equations

αt =C2,xx/2−C2,xα +α2C2 +C1γ +C2S2/2,

βt =C1,xx/2−C1,xβ +β 2C1 +C1S1/2+C2γ,
γt = γ (−C1,x −C2,x +2αC2 +2βC1)

(2.29)

to these functions. For (2.28), (2.29), the compatibility conditions are obviously the same (2.25) as

for (2.24).

The technique of double expansions with the constraint (2.26) is similar to the usual version in

the whole. Namely, we seek a solution u(x, t) for an equation of interest (2.13) in the form

u =W0(x, t)+
m1

∑
j=1

W1, j(x, t)V1(x, t) j +
m2

∑
j=1

W2, j(x, t)V2(x, t) j, m1,2 ∈ N (2.30)

without of the cross products V n1

1 V n2

2 (n1n2 �= 0) in the strange of (2.26). As usually, here m1,2 are

determined by the leading terms in Eq. (2.13) and can be both different (for the different branches)

and equal (in particular for the identical branches). Analogously, because of (2.26), the nonlinear

PDE after the substitution (2.30) will give

E0 +
M1

∑
j=1

E1, jV
j

1 +
M2

∑
j=1

E2, jV
j

2 = 0, M1,2 ∈ N (2.31)

and after equating the coefficients E0, E1, j, E2, j in (2.31) to zero leads to the system

E0

(
[W0]; [W1,1], . . . ; [W2,1], . . . ; [S1], [C1], [S2], [C2],α,β ,γ

)
= 0, (2.32)

E1, j

(
[W0]; [W1,1], . . . ; [W2,1], . . . ; [S1], [C1], [S2], [C2],α,β ,γ

)
= 0, j = 1,M1, (2.33)

E2, j

(
[W0]; [W1,1], . . . ; [W2,1], . . . ; [S1], [C1], [S2], [C2],α,β ,γ

)
= 0, j = 1,M2 (2.34)

It is worth noting that the highest equations E1, j = 0 and E2, j = 0 for determining W1, j and W2, j

in (2.33), (2.34) are of the same structure as the analogous equations in the one manifold case for

the same singular branches. As a consequence, we also obtain the same expressions for W1, j, W2, j.

However, the rest of the overdetermined system (2.32)–(2.34) will be much more complicated.

Introduce the splitting of the independent variables (x, t)→ (x1, t1,x2, t2) and rewrite the formu-

lae analogous to (2.18) and (2.19) ( j = 1,2)

Vj
(
x1, t1, [θ j],k j,v j

)
=

k j

2
(1+θ j,x2

)Tj − θ j,x2x2

2(1+θ j,x2
)
, θ j = θ j(x2, t2),

Tj(η j) = tanh
(η j

2

)
, η j = k j(x1 − v jt1 +Δ j +θ j), k j �= 0,v j,Δ j = const, (2.35)

S j
(
[θ j],k j

)
=

θ j,x2x2x2

1+θ j,x2

− k2

2
(1+θ j,x2

)2 − 3

2

(
θ j,x2x2

1+θ j,x2

)2

, Cj
(
[θ j],v j

)
=

v j −θ j,t2

1+θ j,x2
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A.A. Alexeyev / A multidimensional superposition principle: IV

and

Vj
(
x1, t1, [θ j],v j

)
= (1+θ j,x2

)Pj − θ j,x2x2

2(1+θ j,x2
)
, θ j = θ j(x2, t2),

Pj(η j) =
1

η j
, η j = x1 − v jt1 +Δ j +θ j, v j,Δ j = const

S j
(
[θ j]
)
=

θ j,x2x2x2

1+θ j,x2

− 3

2

(
θ j,x2x2

1+θ j,x2

)2

, Cj
(
[θ j],v j

)
=

v j −θ j,t2

1+θ j,x2

(2.36)

respectively. After that the expressions for α , β , γ are trivially derived from (2.26) via the separation

of the variables (x1, t1) and (x2, t2). We have first of all k1,2 = k and v1,2 = v and then

α(x2, t2) = α
(
θ1, [θ2],k

)
=−1

2

{
θ2,x2x2

θ2,x2
+1

+ k(θ2,x2
+1)coth

[
k
2
(θ1 −θ2)

]}
,

β (x2, t2) = β
(
[θ1],θ2,k

)
=−1

2

{
θ1,x2x2

θ1,x2
+1

− k(θ1,x2
+1)coth

[
k
2
(θ1 −θ2)

]}
,

γ(x2, t2) = γ
(
[θ1], [θ2],k

)
=−k2

4
csch2

[
k
2
(θ1 −θ2)

]
(θ1,x2

θ2,x2
+θ1,x2

+θ2,x2
+1)

(2.37)

for the case with (2.35), and for the case (2.36) respectively

α(x2, t2) = α
(
θ1, [θ2]

)
=− θ2,x2x2

2(θ2,x2
+1)

− θ2,x2
+1

θ1 −θ2
,

β (x2, t2) = β
(
[θ1],θ2

)
=− θ1,x2x2

2(θ1,x2
+1)

+
θ1,x2

+1

θ1 −θ2
,

γ(x2, t2) = γ
(
[θ1], [θ2]

)
=−θ1,x2

θ2,x2
+θ1,x2

+θ2,x2
+1

(θ1 −θ2)
2

.

(2.38)

As a result, the expansion (2.30) becomes the SF. Generally, for such a SF there will be two equa-

tions to the functions θ1,2 with one constraint, uSME, j = 0 ( j = 1,3).

Note the limit expressions for the functions T1,2, V1,2 in (2.35) and P1,2, V1,2 in (2.36) associated

with the states of the perturbations before and after the interactions (see (2.9) and (2.12) as the

example)

Tj
(±∞, t1,x2, t2

)
=±1, k > 0, (2.39)

Vj
(±∞, t1,x2, t2

)
=Vj(x2, t2) =±k

(
1+θ j,x2

2

)
− θ j,x2x2

2(1+θ j,x2
)
, j = 1,2 (2.40)

and

Pj
(±∞, t1,x2, t2

)
= 0, (2.41)

Vj
(±∞, t1,x2, t2

)
=Vj(x2, t2) =− θ j,x2x2

2(1+θ j,x2
)
, j = 1,2. (2.42)

As was mentioned before, we can directly transform the final expressions for the SF of the case

(2.35) to the SF with (2.36), because there is the simple enough link between their ingredients

Vj
(
x1, t1, [θ j],v

)
= lim

k→0
V
(
x1, t1, [θ j],k,v(k)

)
, j = 1,2 (2.43)

S
(
[θ j]
)
= lim

k→0
S
(
[θ j],k

)
, C

(
[θ j],v

)
= lim

k→0
C
(
[θ j],v(k)

)
, (2.44)
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and also

α
(
θ1, [θ2]

)
= lim

k→0
α
(
θ1, [θ2],k

)
, (2.45)

β
(
[θ1],θ2

)
= lim

k→0
α
(
[θ1],θ2,k

)
, (2.46)

γ
(
[θ1], [θ2]

)
= lim

k→0
γ
(
[θ1], [θ2],k

)
, (2.47)

so that as a result

uSF

(
P1,P2, [θ1], [θ2],v

)
= lim

k→0
uSF

(
T1,T1, [θ1], [θ2],k,v(k)

)
, (2.48)

uSME,j

(
x1, t1, [θ1], [θ2],k

)
= lim

k→0
uSME,j

(
[θ1], [θ2],k,v(k)

)
. (2.49)

To fulfil correctly the limiting process in (2.43), (2.48), it is necessary to change simultaneously the

phases η1,2 → η1,2 +πi in T1,2 (2.35), so that the relation

T1,2 → 2

k
P1,2 (2.50)

takes place.

For the SFs below it is also useful to mention the following properties of the functions T1,2 and

P1,2 for the case of the complex arguments

T1,2 = T1,2(μ1 ± iμ2), P1,2 = P1,2(μ1 ± iμ2), μ1,μ2 ∈ R (2.51)

(plus for the first index and minus for the second one). Namely, their following combinations are

pure real value

T1 +T2 =
2sinh μ1

cosh μ1 + cos μ2
, T 2

1 +T 2
2 = 2

sinh2 μ1 − sin2 μ2

(cosh μ1 + cos μ2)
2
,

i(T1 −T2) =
−2sin μ2

cosh μ1 + cos μ2
, i(T 2

1 −T 2
2 ) =

−4sinh μ1 sin μ2

(cosh μ1 + cos μ2)
2

(2.52)

and also

P1 +P2 =
2μ1

μ2
1 +μ2

2

, P2
1 +P2

2 = 2
μ2

1 −μ2
2

(μ2
1 +μ2

2 )
2
,

i(P1 −P2) =
2μ2

μ2
1 +μ2

2

, i(P2
1 −P2

2 ) =
4μ1μ2

(μ2
1 +μ2

2 )
2
.

(2.53)

Finally, it is necessary to stress out that although, already having in the hands the above formu-

lae, we can fulfil all the algebra in the terms of the original variables {x, t} avoiding the use of the

variables {x1, t1,x2, t2}, however the success of such a technique is based namely on the existence

of this splitting. Indeed, both the equating to zero the coefficients in (2.31) and the derivation of the

expressions (2.37), (2.38) for α , β , γ is separation of the above variables. In its turn the existence

of the soliton invariant manifolds of the type (2.5), (2.6) provides the compatibility of the system

(2.32)–(2.34).
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3. The Superposition Formulae and Solitons for the MKdV±, KK, and A± Equations

In this section the theory and technique described above are used for finding the SFs for two well-

known nonlinear PDEs, MKdV± and KK equations, and one new soliton equation, a so-called A±
equation. These SFs serve also both the traditional exponential bell-shape solitons and the alge-

braic solitons (and the two noninteracting kink configuration for the last). All the solitons involved

have the physical sense, i.e. are pure real value and without singularities on the real axis. The case

with MKdV± equation is the most simple from the viewpoint of all the derivation, and the detail

exposition is presented for it, although the initial system of the overdetermined differential equa-

tions cannot be presented here anyway because of its huge size. The KK equation is famous by its

anomalous solitons. The special and detail research was fulfilled to try to solve this mystery in the

framework of the Hirota ideas [29], [30]. However, as one will be clear below, the rigourous theory

demands the use of two identical branches regardless of the common viewpoint about their useful-

ness (the use of one branch leads only to the reduced SF with the soliton of the simplest structure

corresponding to the special choice of the soliton parameters). The mentioned A± equation is a new

soliton equation, which was very recently constructed by the author using one of the approaches in

the framework of the MSP itself (slightly more about it will be said below in the related subsection).

It is worth noticing here also that the rigourous investigation gives three different soliton families

for all the above nonlinear PDEs.

3.1. The MKdV± equation

The MKdV is the classical equation, and usual questions for it are well studied. In particular, it was

investigated via the two singular manifold approach as well [28], although certainly other questions,

not SFs, were considered in doing so. About the recent investigations of the solitons of its simplest

modifications see [15]. The equation has two forms differing by the sign in front of the nonlinear

term

ut ∓6u2ux +uxxx = 0, u = u(x, t), (3.1)

which will be referred as the ‘−’ and ‘+’ equations respectively. The only difference here is that the

pure real solutions for the former are the pure imaginary ones for the latter and vise versa. So, we

will work with the MKdV− to avoid the explicit appearance of the complex numbers in the algebra

and for the MKdV+ rewriting only final formulas using the link uMKdV− = iuMKdV+ everywhere

this is needed. Also, the invariance at the change u → −u takes place and means the existence of

opposite solutions.

First of all, recall that the balance between the dominant addends u2ux and uxxx in (3.1) gives

m1,2 = 1 in (2.30) and simultaneously leads to the existence of two different branches. The related

equations (2.33), (2.34) with the indexes j = M1,M2 give W1,1 = 1 and W2,1 =−1 and respectively

the expansion (2.30) of the type

u(x, t) =V1(x, t)−V2(x, t)+W0(x, t). (3.2)

After that the rest of Eqs. (2.32)–(2.34) leads to the compatible system consisting of Eqs. (2.25) for

S1,2, Eqs. (2.28), (2.29) for α , β , γ , and the equation

W0,t −6W 2
0 W0,x +W0,xxx = 0 (3.3)
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for W0, together with the additional constraints

C1 = S1 +λ , C2 = S2 +λ , λ = const, (3.4)

2W0 −α +β = 0, α +β = 0, 6γ −λ = 0, (3.5)

3S1 −6W0,x +λ +6W 2
0 = 0, 3S2 +6W0,x +λ +6W 2

0 = 0. (3.6)

This type system (2.25), (2.28), (2.29) and (3.3) with the constraints (3.4)–(3.6) is compatible, and

when we transfer to the related equations to the modulation functions θ1, θ2 via the changes (2.35)

with k1,2 = k and (2.37) (or (2.36) and (2.38)), we have the evolution equations for them from (3.4)

taking in consideration (2.35) or (2.36) and the constraint from the equation 6γ −λ = 0 in (3.5)

θ j,t = Θ j (θ j,θ j,x,θ j,xx,θ j,xxx;k,λ ,v) , j = 1,2, (3.7)

G(θ1,θ1,x;θ2,θ2,x;k,λ ) = 0. (3.8)

All other equations and relations appear to be the consequences of (3.7) and (3.8).

Taking into account (2.35), (2.37) or (2.36) and (2.38), the resulting expressions for the SFs

(3.2) and Eqs. (3.7), (3.8) in view of the expression for W0 in (3.5) through α , β are as follows

uI(x, t) =
k
2

[
(θ1,x +1)T1 − (θ2,x +1)T2

]
−1

4

{
θ1,xx

θ1,x +1
− θ2,xx

θ2,x +1
+ k coth

[
k
2
(θ1 −θ2)

]
(θ1,x +θ2,x +2)

}
, θ1,2 = θ1,2(x, t), (3.9)

2θ j,t −
3θ 2

j,xx

θ j,x +1
− k2θ 3

j,x −3k2θ 2
j,x +(2λ −3k2)θ j,x +2θ j,xxx − k2 +2(λ − v) = 0, (3.10)

λ cosh
[
k(θ1 −θ2)

]
+3k2 (θ1,xθ2,x +θ1,x +θ2,x)+3k2 −λ = 0, (3.11)

for the case (2.35) and

uII(x, t) = (θ1,x +1)P1 − (θ2,x +1)P2

−1

4

[
θ1,xx

θ1,x +1
− θ2,xx

θ2,x +1
+

2(θ1,x +θ2,x +2)

θ1 −θ2

]
, θ1,2 = θ1,2(x, t), (3.12)

2θ j,t −
3θ 2

j,xx

θ j,x +1
+2λθ j,x +2θ j,xxx +2(λ − v) = 0, (3.13)

6(θ1,xθ2,x +θ1,x +θ2,x)+λ (θ1 −θ2)
2 +6 = 0 (3.14)

respectively for the case (2.36). The expressions for the perturbation before and after the interactions

corresponds to the degeneration of (3.9) or (3.12) (see (2.39)–(2.42))

uI,p±∞ = uI

∣∣∣
T1,2=±1

, uII,p±∞ = uII

∣∣∣
P1,2=0

.

The last step is to reduce the SFs sought, (3.9) or (3.12), to the form possessing the separation of

the soliton and perturbations, simplify the formulae, and indicate the physically relevant solutions.
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Consider the first case (3.9)–(3.11) in details. First, we will recalibrate θ1,2

θ j(x, t)→ Lnd j

k
+θ j(x, t), d j = const, j = 1,2. (3.15)

The requirement that at θ1,θ2 = 0 only the soliton remains (or in the other words there is no depen-

dence on x2, t2) brings to the following expressions for d1,2, v and λ

d1,2 =−2a± k, v = k2 −6a2, λ =−6a2 +
3

2
k2, k,a = const, (3.16)

see (3.10), (3.11). Note that here and further the new constant a associated with the soliton asymp-

totics was introduced, i.e. us(∞, t) = a. Also, the parameters d1,2 are defined accurate to some mul-

tiplier corresponding to the soliton position. With (3.16) the SF (3.9) gives the soliton sought

us1
(x, t) =

2k2eη[
1+(−2a+ k)eη

][
1+(−2a− k)eη

] +a, η = k
[
x− (k2 −6a2)t +Δ

]
. (3.17)

When a ∈ R and d1,2 are suitable, (3.17) is the real value, nonsingular soliton of the MKdV−. To

obtain the analogous soliton of the MKdV+ equation, it is enough to pass to the imaginary a in

(3.17). After the change a → ia, eη → ieη (i.e. the phase shift), and u → iu, one will have

us2
(x, t) =

2k2eη

(1+2aeη)2 + k2e2η +a, η = k
[
x− (k2 +6a2)t +Δ

]
. (3.18)

For (3.12)–(3.14) the analogous procedure with the slightly other recalibration

θ j(x, t)→ d j +θ j(x, t), (3.19)

gives (here d1,2 are define up to already an additive constant)

d1,2 =∓ 1

2a
, v =−6a2, λ =−6a2, a = const, (3.20)

and (3.12) with (3.19), (3.20) brings us (also after change a → ia and u → iu as it was for (3.18)) to

the real value nonsingular algebraic soliton of the MKdV+

us3
(x, t) =

−4a
4a2η2 +1

+a, η = x−6a2t +Δ. (3.21)

For MKdV− the real value algebraic soliton also exists but has the singularities on the real axis.

The expression (3.21) can also be obtained from (3.18) as the limit at k → 0 with the suitable phase

shift, see (2.50).

Figures 1–3 demonstrate the typical profiles of the solitons obtained. As can be seen, the expo-

nential solitons of the first family (3.17) degenerate to the system of two noninteracting kinks (Fig-

ure 1). In other words, these solitons can be interpreted also as the strong bound kink states, not as

the simple alone soliton. Figure 2 corresponds to the soliton family (3.18), while Figure 3 corre-

sponds to the algebraic solitons (3.21).

The solutions (3.18) and (3.21) by themselves are known. They can be found, e.g., in the

book [2]. While to our knowledge the strong bound state of the kinks (3.17) for the MKdV− has

not attracted the attention of researches. Using the SFs found, two-soliton solutions of the various
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Fig. 1. The typical profiles of the soliton family (3.17) of the MKdV− equation.
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Fig. 2. The typical profiles of the soliton family (3.18) of the MKdV+ equation.
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Fig. 3. The typical profiles of the algebraic solitons (3.21) of the MKdV+ equation.
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Fig. 4. The interaction, see (3.22), between the pure kink solution (2.11) (the mark A, k1 = 1) and the strong bound state

of the kinks (3.17) (the mark B, k2 = 1−10−8) of the MKdV−. The coordinate system is moving together with the kink.

mixture types can be obtained. In particular, the solution describing the interaction between the kink

(2.11) and the just mentioned two-kink strong bounded state (3.17) is as follows

uinteraction, MKdV− =
∂
∂x

ln

(
1+E2

1+νE2
+

1+ν2E2

ν +ν2E2
E1

)
− k1

2
, ν =

k1 − k2

k1 + k2

E1 = ek1x+
k3
1
2 t+Δ1 , E2 = ek2x+( 3

2 k2
1k2−k3

2)t+Δ2 .

(3.22)

The interaction is simple and without any resonance despite the very close wave numbers and dura-

tion, see Figure 4. In our opinion, at the present moment, obtaining of such two-solitons solutions

in itself is not so interesting and important as the analysis of the SFs and general character of the

interactions.

3.2. The KK equation

The KK equation has the following form

ut +180u2ux +75uxuxx +30uuxxx +uxxxxx = 0, u = u(x, t) (3.23)

and is known no less then the MKdV. In order to obtain the full SF for its solitons, it is necessary

to use the expansion (2.30) with two identical branches where m1,2 = 2. As a result, the highest

equations (2.33), (2.34) immediately give the simple expressions W1,2 = W2,2 = −1/2 and W1,1 =

W2,1 = 0, so that (2.30) will be

u(x, t) =−1

2
V 2

1 (x, t)−
1

2
V 2

2 (x, t)+W0(x, t). (3.24)

After that, starting from the remaining equations in (2.32)–(2.34), one arrives at the compatible

systems consisting of Eqs. (2.25) for S1,2, Eqs. (2.28), (2.29) for α , β , γ together with the new
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equation for W0 specific namely for (3.23)

8W0,t +8W0,xxxxx −480W0,xxxW0 +180W0,xxx(α2 +β 2)−840W0,xxW0,x

+3240W0,xxW0(α +β )+180W0,xx(−7α3 −8α2β −8αβ 2 −2αγ −7β 3 −2βγ)
+2160W 2

0,x(α +β )+31680W0,xW 2
0 +4320W0,xW0(−9α2 −7αβ −9β 2 − γ)

+90W0,x(111α4 +140α3β +254α2β 2 +52α2γ +140αβ 3 +80αβγ +111β 4

+52β 2γ −16γ2)−97200W 3
0 (α +β )+3240W 2

0 (41α3 +60α2β +60αβ 2 +12αγ

+41β 3 +12βγ)+270W0(−215α5 −403α4β −652α3β 2 −158α3γ −652α2β 3

−290α2βγ −403αβ 4 −290αβ 2γ +56αγ2 −215β 5 −158β 3γ +56βγ2)

+45(183α7 +412α6β +856α5β 2 +236α5γ +1099α4β 3 +578α4βγ +1099α3β 4

+890α3β 2γ −156α3γ2 +856α2β 5 +890α2β 3γ −172α2βγ2 +412αβ 6 +578αβ 4γ

−172αβ 2γ2 −128αγ3 +183β 7 +236β 5γ −156β 3γ2 −128βγ3) = 0

completed by two additional constraints

S1 −S2 −3(α2 −β 2) = 0, (3.25)

12W0 +S1 +S2 −3(α2 +β 2) = 0. (3.26)

Besides, the following expressions for C1 and C2 take place

C1 =−6W0,xx +18W0,xα +63W 2
0 +27W0(−3α2 −2αβ −2β 2 +2γ)

+
81

4
α4 +27α3β +36α2β 2 −54α2γ +18αβ 3 +

27

2
β 4 −27β 2γ −9γ2, (3.27)

C2 =−6W0,xx +18W0,xβ +63W 2
0 +27W0(−2α2 −2αβ −3β 2 +2γ)

+
27

2
α4 +18α3β +36α2β 2 −27α2γ +27αβ 3 +

81

4
β 4 −54β 2γ −9γ2. (3.28)

Just as in the case of the MKdV before, this system will give two evolution equations to the modu-

lation functions θ1,2 with the only link between them

θ j,t = Θ j (θ1,θ1,x, · · · ,θ1,xxxxx;θ2,θ2,x, · · · ,θ2,xxxxx;k,v) , j = 1,2, (3.29)

G(θ1,θ1,x,θ1,xx,θ1,xxx;θ2,θ2,x,θ2,xx,θ2,xxx;k) = 0. (3.30)

(see (2.35) with k1,2 = k and (2.37) or (2.36) and (2.38)). Firsts of them, (3.29), are obtained from

(3.27), (3.28) with the expression for W0 from (3.26) taking in consideration (2.35) or (2.36). While

(3.30) is obtained from (3.25). Other equations appear to be just their consequences. Unfortunately,

in the case of the KK equation the full form of Eqs. (3.29), (3.30) cannot be presented in the article

because of their size (see, however, their degenerate cases in the next section). For example, Eq.

(3.29) consists from 3767 terms, and (3.30) does from 144. Analogously, we can here adduce only

the form for the SF (3.24) in terms of the functions V1,2, S1,2, α , β from (2.35), (2.37) or (2.36),

(2.38)

u(x, t) =−1

2
V 2

1 +
1

2
V 2

2 − 1

12
(S1 +S2)+

1

4
(α2 +β 2). (3.31)

Now we need to obtain the expression for v and analyse what types of the solitons one deal with.

To do this, for the usual exponential solitons one will recalibrate θ1 and θ2 in (3.29), (3.30) in the
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same manner (3.15) as previously for the MKdV. For d1,2 and v Eqs. (3.29), (3.30) at θ1,θ2 = 0, i.e.

when only the soliton without a perturbation exists, give

d1,2 = 1± s, s2 =
3k2

4(k2 +6a)
, v = k4 +30ak2 +180a2, a = const. (3.32)

The related expression for the soliton is

us1
(x, t) = k2 (1− s2)e3η +2(1− s2)e2η + eη[

1+(1+ s)eη
]2[

1+(1− s)eη
]2

+a, s2 =
3k2

4(k2 +6a)
> 0,

η = k
[
x− (k4 +30ak2 +180a2)t +Δ

]
.

(3.33)

Here the real, nonsingular solution will be obviously if, first, s is real (i.e. s2 > 0 or a >−k2/6 and

suitable d1,2, see (3.32)). But not only. If s is pure imaginary (s2 < 0 or a <−k2/6), then expression

(3.33) can also be rewritten as

us2
(x, t) = k2 (1+ ŝ2)e3η +2(1+ ŝ2)e2η + eη[

(1+ eη)2 + ŝ2e2η
]2

+a, ŝ2 =
−3k2

4(k2 +6a)
> 0,

η = k
[
x− (k4 +30ak2 +180a2)t +Δ

]
,

(3.34)

and this will also be the real, nonsingular solution. The real algebraic soliton in its tern can directly

be obtained based on the SF (3.31) with (2.36) using the recalibration (3.19), in this case

d1,2 =±d, d2 =
1

8a
, v = 180a2, (3.35)

so as a result

us3
(x, t) =−8a

(
1+8aη2

)
(1−8aη2)2

+a, η = x−180a2t +Δ, (3.36)

or again via passing to the limit k → 0 in (3.34). Here a < 0 for the nonsingular case.

Figures 5–7 show the typical profiles of all the above soliton families, (3.33), (3.34) and (3.36).

Again, (3.33) can be considered as the strong bound state of the simpler solitons. To the best of our

knowledge the full and exhaustive researches of all three families and all the cases of these solitons

(or the above soliton bound states) are not presented in the literature. Using the SFs, the interactions

between the different families can in particular be investigated.

3.3. The A± equation

As was demonstrated in [8], the one of the powerful features of the MSP along with the transparency

of the phenomenon of soliton interactions themselves is the possibility to find new nonlinear equa-

tions with a prescribed SF structure. The following equation

(
u3
)

t −2
(
u3
)

xxx +3ux

(
18uxxu+u2

x ±3p2 ±3u4
)
, u = u(x, t), p = const (3.37)

was very recently artificially constructed by the author setting the existence of the MKdV type SFs

for it as the initial requirement. Its preliminary investigation (it is planing to report the details and
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Fig. 5. The typical profiles of the soliton family (3.33) of the KK equation.
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Fig. 6. The typical profiles of the soliton family (3.34) of the KK equation.
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technique in a separate article) shows that it accordingly possesses many solutions (the kinks, bell-

shape N-solitons and breathers) analogously to the MKdV, but these classes are more reach. It is

interesting to note here that for its degeneration with p = 0 (this parameter is not trivial, that is

reflected in particular in the SF structures and solutions, see below, without the loss of generality it

can be set p2 = 0,±1 via scaling) directly linked with Eq. (2.10) via the transform ϑx = u−k. In the

paper we tentatively reference to (3.37) as to the A± equation just because it was the first equation

among the sought ones. As well as the MKdV, it exists in two real value versions with the ‘±’ signs

connected via the substitution u → iu and is invariant with respect to u →−u. The algebra will be

presented for the A+ version.

From the leading equations in (2.33), (2.34), one find that there are two opposite branches with

W1,1 = 1 and W2,1 =−1, and the expansion (2.30) is of the form

u(x, t) =V1(x, t)−V2(x, t)+W0(x, t). (3.38)

The system of the remaining equations (2.32)–(2.34) is however not so simple. And not only because

it is huge enough but also because it appears there are two dramatically deferent cases. As the one

solution the following system in the involution takes place: the evolution equations (2.25) for S1 and

S2 with

C1 =
1

2

(
12W 2

0 −24αW0 −S1 −3S2

)
, C2 =

1

2

(
12W 2

0 +24βW0 −3S1 −S2

)
, (3.39)

the pair of the equations to W0

W0x =
S1 −S2

4
, W0t =W0

(
−S1x −S2x +2α2W0 +αS1 +αS2+

2αW 2
0 −2β 2W0 +βS1 +βS2 +2βW 2

0 −2S1W0 +2S2W0

) (3.40)

(remember about the pairs (2.28), (2.29) for α , β , γ) plus two constraints

S1 −S2 −4W0(α +β ) = 0, W 4
0 +2W 3

0 (β −α)+W 2
0

[
(α −β )2 +4γ

]− p2 = 0. (3.41)

Basically, the last ones give the expressions for W0 and γ . In particular, excluding W0 from the

former, we will obtain the expression for u(x, t) (3.38)

u(x, t) =V1 −V2 +
S1 −S2

4(α +β )
(3.42)

with the constraint (the latter)

(S1 −S2)
4 +8(S1 −S2)

3(β 2 −α2)+16(S1 −S2)
2[(α −β )2 +4γ](α +β )2

−256p2(α +β )4 = 0. (3.43)

In other words, now it is possible to proceed to the equations and expressions with respect to the

phase functions θ1 and θ1, because all available functions, namely S1,2, C1,2, α , β , γ are their

expressions (see (2.35) with k1,2 = k and (2.37) or (2.36) and (2.38)). As a result, we will have only
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two evolution equations from (3.39) with the one constraint (3.43)

θ j,t = Θ j (θ1,θ1,x,θ1,xx,θ1,xxx;θ2,θ2,x,θ2,xx,θ2,xxx;k,v; p) , j = 1,2, (3.44)

G(θ1,θ1,x,θ1,xx,θ1,xxx;θ2,θ2,x,θ2,xx,θ2,xxx;k; p) = 0 (3.45)

(Eqs. (2.28), (2.29) and (3.40) are the consequences), and the SF (3.42) is of the form

u(x, t) =U (T1,T2;θ1,θ1,x,θ1,xx,θ1,xxx;θ2,θ2,x,θ2,xx,θ2,xxx;k) . (3.46)

What soliton solutions do they associated with? Again, let us introduce the recalibration (3.15)

and set θ1,2 = 0 to take away any perturbations. The system (3.44), (3.45) gives the expressions for

the unknown d1,2 and the dispersion relations v = v(k)

d1,2 = a4 +a2k2 − p2 ∓2a3k, v =−2k2 +3
(p2 +a4)

a2
(3.47)

After that the SF (3.42) gives the clear soliton solution

us1
(x, t) =

−4k2a3eη[
1+(a4 +a2k2 − p2 −2a3k)eη

][
1+(a4 +a2k2 − p2 +2a3k)eη

] +a,

η = k
{

x−
[
−2k2 +3

(p2 +a4)

a2

]
t +Δ

}
.

(3.48)

This solution is the analogue of the solution (3.17). For real a and suitable d1,2 in (3.47) this is the

real, nonsingular soliton of the A+. But setting a → ia and u → iu, we will obtain real nonsingular

soliton of the A−

us2
(x, t) =

4k2a3eη[
1+(a4 −a2k2 − p2)eη

]2

+4a6k2e2η
+a,

η = k
{

x−
[
−2k2 −3

(p2 +a4)

a2

]
t +Δ

} (3.49)

For the algebraic soliton with the recalibration (3.19) in (2.36), Eqs. (3.44), (3.45) give

d1,2 =± 2a3

(p2 −a4)
, v =−3

(a4 + p2)

a2
.

So, finally after the change a → ia and u → iu we have the real nonsingular algebraic soliton of the

A−

us3
(x, t) = 4a3 (p2 −a4)

(p2 −a4)2η2 +4a6
+a, η = x+3

(a4 + p2)

a2
t +Δ. (3.50)

Figures 8–10 depicts the typical profiles of the above solitons.

Now recall that the system (2.32)–(2.34) with (3.38) for Eq. (3.37) has another solution different

from (3.39)–(3.41). This second solution may seem paradoxical. It shows that if W0 = 0, α , β
and γ can be arbitrary! This means that introduction of the link (2.26) between V1 and V2 is not

essential. After substitution (3.38) into our Eq. (3.37) we can immediately equate the coefficients
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Fig. 8. The typical profiles of the soliton family (3.48) of the A+ equation.

-6 -4 -2 0 2
2

4

6

8

u

x

k=3.5

k=3

k=2.5

k=2

k=1.5

a=2   p=1.5

Fig. 9. The typical profiles of the soliton family (3.49) of the A− equation.

-20 -10 0 10 20

0

-2

-4

-6

u

x

p=2

Fig. 10. The typical profiles of the algebraic solitons (3.50) of the A− equation.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

21



A.A. Alexeyev / A multidimensional superposition principle: IV

at the monoms V n1

1 V n2

2 to zero, and those system will be compatible. Handling in this manner, after

the simple algebra we have just

u(x, t) =V1(x, t)−V2(x, t) (3.51)

with C1(x, t), C2(x, t) and S1(x, t), S2(x, t) such that

C1 = S1 −3S2, C2 = S2 −3S1, S1 −S2 ±2p = 0. (3.52)

In terms of the phase functions θ1, θ2 (3.52) give two evolution equations and the one constraint

θ j,t = Θ j (θ1,x,θ1,xx,θ1,xxx;θ2,x,θ2,xx,θ2,xxx;k,v; p) , j = 1,2, (3.53)

G(θ1,x,θ1,xx,θ1,xxx;θ2,x,θ2,xx,θ2,xxx;k; p) = 0 (3.54)

for the SF (3.51) of the form

u(x, t) =U (T1,T2;θ1,x,θ1,xx,θ1,xxx;θ2,x,θ2,xx,θ2,xxx;k) . (3.55)

In contrast to the analogous expressions (3.44)–(3.46), all the expressions (3.53)–(3.55) do not

depend on θ1, θ2 explicitly, so that they appear to be invariant with respect to the change θ j(x, t)→
θ j(x, t)+Δ j ( j = 1,2). That is both kinks associated with V1, V2 in (3.51) can be positioned indepen-

dently. Simultaneously, the SF says that they do not even interact with each other, their superposition

is just linear. Any interactions take place only with the perturbation field. The related clear two-kink

expression is

uk(x, t) =
k1

2
tanh

[
k1

2
(x− v1t +Δ1)

]
− k2

2
tanh

[
k2

2
(x− v2t +Δ2)

]
,

k1,2 > 0,v1,2,Δ1,2 = const

(3.56)

with the special wave number and dispersion relations in view of (3.53), (3.54)

k2
1 − k2

2 ∓4p = 0, v1 =
1

2
(3k2

2 − k2
1), v2 =

1

2
(3k2

1 − k2
2). (3.57)

For the degenerate case with p = 0 (3.56), (3.57) is just two similar kinks moving with the

identical velocities and identical asymptotics uk(∞, t) = 0. While for p �= 0 this is already the non-

stationary structure. Its kinks have the different velocities |v1 − v2| = 8|p|, and its asymptotics are

also different uk(±∞, t) =±(k1 − k2)/2.

The obtained results shows that for Eq. (3.37) together with the along kink solutions there exist

both their strong bound states, the bell-shape solitons (3.48), and their absolutely noninteracting

configurations (3.56) for the special choice of the wave numbers (3.57). And both complexes elas-

tically interact with perturbations.

4. The Linearization and Parametrization of the SFs and the Soliton Interactions
Analysis

The full SF analysis is not impossible and can gives interesting and important information [6].

However, as a rule, such SFs are huge enough. For our cases with two branches there is one more

difficulty, the full SFs include two linked modulation functions. Fortunately, there are many charac-

teristics of the soliton–perturbations interactions which can easily be obtained from the linearized
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SFs. Moreover, for the SFs generated by two branches there exists the simple procedure allowing

one to introduce the only modulation function or to ‘parameterize’ such two functions SFs. This

section is devoted to these procedures and to such analysis. Add here those linearized SFs are of

their own rights as well. For instance, they can be applied also for describing week interactions [17],

bounded soliton states [23,24], stability [21,22], etc. See in this connection also the works [25,26].

4.1. The MKdV equation

We will consider the formulae for the soliton family (3.17) of the MKdV− equation (3.1) first, and

then these formulae will be extended to other cases, (3.18) and (3.21). One will begin with the

linearization of Eqs. (3.10), (3.11) to the function θ1 and θ2 and introduce the small parameter ε for

this in the following obvious manner

θ j(x, t) = εϕ j(x, t)+o(ε), j = 1,2, |ε| � 1. (4.1)

Remaining the terms up to the first order with respect to ε , one has

ϕ j,t =−ϕ j,xxx +6a2ϕ j,x, j = 1,2, (4.2)

D1ϕ1 = D2ϕ2, D1,2 =± ∂
∂x

+2a. (4.3)

First, we can assume a �= 0 here, because this would lead to the singularity in the solutions (3.17).

The special symmetrical structure of the constraint (4.3) allows one to turn easily to the only modu-

lation function. Indeed, first of all notice that (4.3) is the inhomogeneous linear ordinary differential

equation with respect to ϕ1 or ϕ2, and hence

ϕ j(x, t) = ϕ j,p(x, t)+ϕ j,g(x, t), j = 1,2.

Where ϕ j,p are some particular solutions, while ϕ j,p are the general solutions of the related ODEs

D1ϕ1 = 0, D2ϕ2 = 0. Since (4.3) can always be converted to the identity

D1D2DLϕ(x, t)≡ D2D1DLϕ(x, t)

(DL is any integro-differential operator), ϕ1,p and ϕ2,p can simultaneously be expressed through

some auxiliary function ϕ(x, t) choosing ϕ1,p = D2DLϕ and ϕ2,p = D1DLϕ such that ϕ1,p

∣∣
ϕ=0

=

ϕ1,p

∣∣
ϕ=0

= 0. In doing so, ϕ1,g and ϕ2,g should be set to zero ϕ1,g = ϕ2,g = 0, because according to

our assumption at ϕ = 0 only the clear soliton without any perturbations has to remain. So, for (4.3)

the following simple parametrization takes place

ϕ1,2 = 2aϕ ∓ϕx, ϕt =−ϕxxx +6a2ϕx. (4.4)

The situation with the related expression for u

u(x, t) = u0(x, t)+ εu1(x, t)+o(ε) (4.5)

for the SF (3.9) is more sophisticated. The trick here is to remain the modulated phase of the soliton

as is. And the goal of this is not even to obtain the more compact and clear expression. On the

strength of the asymptotics of T1,2(x1, t1,x2, t2) (2.39) corresponding to the infinite separation of the
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soliton and perturbation this makes the investigation of the interactions more straightforward. And

last but not least, this provides the uniform convergence for such SFs. So, as a result, one has

u0 =
k
2
(T1 −T2)+a, u1 = k

[
a(T1 −T2)+

k
2

]
ϕx − k

2
(T1 +T2)ϕxx +

ϕxxx

2
. (4.6)

Let us now consider how the linearization can be used for analysis of the interactions of the

solitons with linear waves and with other solitons. The function ϕ with the asymptotics ϕ(±∞, t) =
ϕ±∞ = const corresponds to usual elastic soliton–perturbation interactions [6]. While the states of

the soliton before and after the interactions distinguish just by its phases with the shift depending

on the difference ϕ+∞−ϕ−∞, the expressions for the perturbations in view of u1 in (4.6) with (2.39)

are as follows

up±∞(x, t) =
k2

2
ϕx ∓ kϕxx +

ϕxxx

2
,

see the analogous example with the MKdV− kink (2.9)–(2.12). The simplest consequence from

(4.5), (4.6) is the transfer function

T+∞
−∞ (κ) =

σ+∞(kp)

σ−∞(kp)
=

κ −2κ2 +κ3

κ +2κ2 +κ3
, κ =

kp

k

for the Fourier modes of small perturbations before and after interactions [11]

up±∞(x, t) =
+∞i∫

−∞i

σ±∞(kp)e
[kpx+ω(kp)t]dkp.

Such a transfer function can also be used to determine the phase shifts of other solitons after the

interactions. Indeed, the phase shift of the whole soliton is obviously identical to the phase shift of

its exponential fronts, say, the left front, e.g. for (3.17) one has

us1
(x, t) = a+2k2eη +8ak2e2η + · · · , η = k(x− vt +Δ).

Here the constant term is inessential because is already included into u0 (4.6), just the second expo-

nential one is needed. So, this transfer function gives the soliton phase shift dependence on the wave

numbers of both solitons taking part in the colliding

Δp(k,kp) =− 1

kp
lnT+∞

−∞

(
kp

k

)
. (4.7)

As was demonstrated in the previous section, the real value exponential soliton (3.18) for the

MKdV+ is basically the imaginary version of the soliton (3.17) of the MKdV− and can be obtained

from the latter via the simplest transformation a → ia, u → iu. For its perturbed version we should

do the same also for the perturbation function, i.e. ϕ → iϕ . So, we will have the parametrization

ϕ1,2 =−2aϕ ∓ iϕx, ϕt =−ϕxxx −6a2ϕx. (4.8)

together with the expressions for the different components of the SF (4.5)

u0 =−k
2

i(T1 −T2)+a, u1 = k
[

ai(T1 −T2)+
k
2

]
ϕx − k

2
(T1 +T2)ϕxx +

ϕxxx

2
. (4.9)

This case is more interesting than the previous one with the MKdV− solitons. In particular, here the

functions ϕ1,2 appear to be also complex, see (4.8). As a result, T1 and T2 may oscillate even for not
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oscillating ϕ , see (2.51), (2.52) for the ingredients in u0 and u1 (4.9), here

μ1 = kx− k(6a2 + k2)t +Δ+
ln(4a2 + k2)

2
−2εakϕ , μ2 = arg(2a+ ki)− εkϕx. (4.10)

All the above analysis of the SF is also suitable for this case in the whole volume.

Deriving all the above formulae, we assumed that a �= 0 in (4.3). What will we have when a = 0

however? First of all, in this case the MKdV− soliton (3.17) has the singularity on the real axis, so

it is necessary to consider the case with the MKdV+ (3.18). Let us return to Eqs. (4.2), (4.3). Now

instead of (4.4) they will be

ϕ j,t =−ϕ j,xxx ( j = 1,2), ϕ1,x +ϕ2,x = 0. (4.11)

The second equation in (4.11) is very simple, and the parametrization with the new function ϕ(x, t)
is of the form

ϕ1,2 =∓iϕ, ϕt =−ϕxxx. (4.12)

So that for u0, u1 in (4.5) one has

u0 =−k
2

i(T1 −T2) , u1 =
k2

2
ϕ − k

2
(T1 +T2)ϕx +

ϕxx

2
,

μ1 = kx− k3t +Δ+ lnk, μ2 =
π
2
− εkϕ, k > 0.

(4.13)

In contrast to the analogous expression (4.9), here u1 in (4.13) contains the function ϕ itself. This

means that for the small linear perturbations their interactions with the soliton do not result in the

phase shift of the last one. Indeed, for the linear perturbation before and after the interaction one

has from (4.13)

up±∞(x, t) =
k2

2
ϕ ∓ kϕx +

ϕxx

2
. (4.14)

For localized perturbations up(∞, t) = 0 corresponding to asymptotics ϕ(±∞, t) = ϕ± = const this

immediately means ϕ±∞ = 0, and as the consequence the absent of any soliton phase shift. Fig-

ure 11 corresponds to such an interaction, while Figure 12 to the interaction of the type considered

previously (4.9). To be precise, both they depict the computer simulation for the MKdV+ equation

linearized on the soliton backgrounds v0 (3.18)

vt +6(v2
0v)x + vxxx = 0, v = v(x, t) (4.15)

and in the coordinate system moving with the soliton. On the plots we clearly see the result of

interaction for the solitons, namely the related first order Taylor correction to the unperturbed soliton

in the second case and its absence in the first one.

Next, from (4.14) the transfer function is

T+∞
−∞ (κ) =

1−2κ +κ2

1+2κ +κ2
, κ =

kp

k

that also gives the formula for the interacting soliton phase shift analogous to (4.7).

In conclusion let us consider the case (3.12)–(3.14) corresponding to the algebraic soliton (3.21).

It is the most simple one. Here the nonsingular solutions exist only for the MKdV+ and a �= 0. In the
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Fig. 11. The computer simulation of the first order perturbation equation (4.15) corresponding to the interaction with the

SF (4.5), (4.13) of the MKdV+ soliton (3.18) (k = 1, a = 0) and some arbitrary linear wave package. The coordinate

system is moving together with the soliton. The soliton phase shift is totally absent.
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Fig. 12. The computer simulation of the first order perturbation equation (4.15) corresponding to the interaction with the

SF (4.5), (4.9) of the MKdV+ soliton (3.18) for k = 1 and a= 0.5 and some arbitrary linear wave package. The coordinate

system is moving together with the soliton. The powerful soliton phase shift takes place after the interaction.
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view of the limiting relations (2.43)–(2.49) all the formulae sought can be trivially obtained from

the analogous formulae (4.8)–(4.10). The parametrization (4.8) remain the same. While for the SF,

from (4.9) one has

u0(x, t) =−i(P1 −P2)+a, u1(x, t) = 2ia(P1 −P2)ϕx − (P1 +P2)ϕxx +
ϕxxx

2
. (4.16)

Both u0 and u1 are pure real in view of (2.51), (2.53), here

μ1 = x−6a2t +Δ−2εaϕ, μ2 =
1

2a
− εϕx (4.17)

And because of the identical asymptotics of P1,2 (2.41) the expressions being obtaining from u1

(4.16) for the perturbation after and before the interaction are identical

up±∞(x, t) =
ϕxxx

2
, T+∞

−∞ = 1.

So there is no effect of the soliton to it finally, the algebraic soliton is transparent. However, the

soliton itself experiences the phase shift 2εa(ϕ+∞ −ϕ−∞), see (4.17), as usually.

4.2. The KK equation

As was said and demonstrated above, all the relations (3.29), (3.30) to θ1, θ2 and the SF (3.31) itself

for the KK equation (3.23) are huge enough. So, we are obliged to confine ourselves in our narrative

by only the main algebra and results. Fortunately, both the algebra and the ideas basically remains

the same as for the MKdV.

Instead of the original equations (3.29), (3.30) to the modulation functions θ1 and θ2 in the SF

(3.31) the linearization procedure with (4.1) θ j(x, t) = εϕ j(x, t)+ o(ε) ( j = 1,2) gives two linear

evolution equations

ϕ1,t = A1ϕ1 +A2ϕ1,x +A4ϕ1,2x +A6ϕ1,3x +A8ϕ1,4x − 1

2
ϕ1,5x −A1ϕ2

+A3ϕ2,x +A5ϕ2,2x +A7ϕ2,3x − 1

2
ϕ2,5x,

ϕ2,t = A1ϕ1 +A3ϕ1,x −A5ϕ1,2x +A7ϕ1,3x − 1

2
ϕ1,5x −A1ϕ2 +A2ϕ2,x

−A4ϕ2,2x +A6ϕ2,3x −A8ϕ2,4x − 1

2
ϕ2,5x,

(4.18)

where the coefficients A j are as follows

A1 = 5s
(
k6 +42k4a+504k2a2 +1728a3

)
/(3k),

A2 =−9
(
k4 +22k2a+120a2

)
/2, A3 =−(k4 +102k2a+720a2

)
/2,

A4 = 14s
(
k4 +12k2a+36a2

)
/(3k), A5 = 2s

(
5k4 −12k2a−252a2

)
/(3k),

A6 =−15a, A7 = 3
(
k2 +a

)
, A8 =−2s

(
k2 +6a

)
/k,

with the linear constraint (note k2 +12a �= 0 and k2 +6a �= 0 for the relevant cases)

D1ϕ1 = D2ϕ2, D1,2 = k
∂ 3

∂x3
∓2s(k2 +6a)

∂ 2

∂x2
+ k(k2 +12a)

∂
∂x

. (4.19)

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

27



A.A. Alexeyev / A multidimensional superposition principle: IV

Then introducing into (4.18), (4.19) the parametrization with the new function ϕ(x, t)

ϕ1,2 = (k2 +12a)ϕ ±2
s
k
(k2 +6a)ϕx +ϕ2x, ϕt =−ϕ5x −30aϕ3x −180a2ϕx (4.20)

in view of the structure of the constraint (4.19), we arrive at the linearized SF

u(x, t) = u0(x, t)+ εu1(x, t), u0 =−k2

8

(
T 2

1 +T 2
2

)
+

k2

4
+a,

u1 =

[(
k2

3
+3a

)
−
(

k2

4
+3a

)(
T 2

1 +T 2
2

)]
k2ϕx +

[(
k2

4
+3a

)
×

(T1 +T2)− s
(

k2

2
+3a

)(
T 2

1 −T 2
2

)]
kϕ2x +

[
s
(

k2

2
+3a

)
(T1 −T2)−

k2

4

(
T 2

1 +T 2
2

)− (k2

6
+3a

)]
ϕ3x +(T1 +T2)

k
4

ϕ4x − 1

6
ϕ5x.

(4.21)

Having in the hands the formulae (4.21), we can study the interactions features. The limited

values of the functions T1,2 (2.39) are directly associated with the asymptotical states of the pertur-

bations before and after the interaction (in the infinity in the left or in the right of the soliton). As a

result, for the perturbation before and after the interaction the expression u1 in (4.21) gives

up±∞(x, t) =−k3

6
(k2 +18a)ϕx ± k2

2
(k2 +12a)ϕ2x − k

3
(2k2 +9a)ϕ3x ± k2

2
ϕ4x − k

6
ϕ5x. (4.22)

As a consequence, for the transfer function T+∞
−∞ one obtains the following expressions

T+∞
−∞ (κ) =

(18ρ +1)−3κ(12ρ +1)+2κ2(9ρ +2)−3κ3 +κ4

(18ρ +1)+3κ(12ρ +1)+2κ2(9ρ +2)+3κ3 +κ4
, κ =

kp

k
, ρ =

a
k2
. (4.23)

The formulae (4.20)–(4.23) themselves are right both for the soliton (3.33) and for (3.34) with-

out any changes. However, for the latter, the parameters s will be purer imaginary. The expressions

for u0, u1 (4.21) will be real in any case (see (2.51), (2.52) for their ingredients), but ϕ1,2 in (4.20)

appear to be complex. So, the SF will include sine and cosine functions. For μ1, μ2 we will have

μ1 = kx− (k4 +30ak2 +180a2)kt +
ln(1+ ŝ2)

2
+ ε
[
(k2 +12a)ϕ +ϕxx

]
,

μ2 = arg(1+ ŝi)+2ε
ŝ
k
(k2 +6a)ϕx.

For the nonsingular algebraic soliton (3.36) (a< 0) all analogous formulae can be obtained from

the above formulae for the exponential solitons as the limit at k → 0 (see (2.48), (2.50)). Instead of

(4.20), the following expressions take place, see (3.35),

ϕ1,2 = 12aϕ ±12id̂aϕx +ϕ2x, ϕt =−ϕ5x −30aϕ3x −180a2ϕx, d̂2 =− 1

8a
.

While (4.21) gives

u(x, t) = u0(x, t)+ εu1(x, t)+o(ε), u0 =−1

2

(
P2

1 +P2
2

)
+a,

u1 =−12a
(
P2

1 +P2
2

)
ϕx +6a

[
(P1 +P2)−2id̂

(
P2

1 −P2
2

)]
ϕ2x+[

6id̂a(P1 −P2)−
(
P2

1 +P2
2

)−3a
]
ϕ3x +

(P1 +P2)

2
ϕ4x − 1

6
ϕ5x

(4.24)
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where, see (2.51),

μ1 = x−180a2t + ε(12aϕ +ϕxx), μ2 = d̂ +12ε d̂aϕx.

As well as the soliton (3.36) itself, u0, u1 (4.24) in the SF are real in view of (2.53). Also, the

expressions

up±∞(x, t) =−3aϕ3x − ϕ5x

6
, T+∞

−∞ = 1

for the perturbations take place.

4.3. The A± equations

The algebra and formulaes of the linearization of the A± equations (3.37) principally remain the

same as in the cases with the MKdV and KK equations. So, only their main points and final results

are given here.

4.3.1. The bell-shape exponential and algebraic soliton cases

The transition to the linearized versions of the determining equations (3.44), (3.45) via the substitu-

tion (4.1) θ j(x, t) = εϕ j(x, t)+o(ε) ( j = 1,2) gives the pair of the linear evolution equations

ϕ1,t = A1ϕ1 +A2ϕ1,x +A3ϕ1,xx −A1ϕ2 +A4ϕ2,x +A5ϕ2,xx +ϕ1,xxx +3ϕ2,xxx,

ϕ2,t = A1ϕ1 +A4ϕ1,x −A5ϕ1,xx −A1ϕ2 +A2ϕ2,x −A3ϕ2,xx +3ϕ1,xxx +ϕ2,xxx
(4.25)

where

A0 = 2a5
(
k2a2 −3p2 −a4

)
,

A1 = 3
(
k4a8 − k4 p2a4 +2k2 p4a2 −2k2a10 − p6 +3p4a4 −3p2a8 +a12

)
/A0,

A2 = a3
(
2k4a4 −5k2 p2a2 −7k2a6 +5p4 +6p2a4 +15a8

)
/A0,

A3 = 3a2
(
k4a4 −2k2 p2a2 −4k2a6 + p4 +4p2a4 +3a8

)
/A0,

A4 = 3a3
(
2k4a4 −5k2 p2a2 −3k2a6 +5p4 −6p2a4 +a8

)
/A0,

A5 = 3a2
(−k4a4 +2k2 p2a2 − p4 +8p2a4 +a8

)
/A0

with the linkage between ϕ1 and ϕ2

D1ϕ1 = D2ϕ2, D1,2 = a2 ∂ 3

∂x3
±2a3 ∂ 2

∂x2
+(a4 − p2)

∂
∂x

.

Eqs. (4.25) allow the parametrization with the new function ϕ(x, t)

ϕ1,2 = (a4 − p2)ϕ ∓2a3ϕx +a2ϕxx, ϕt = 2ϕxxx −3
(p2 +a4)

a2
ϕx. (4.26)

In terms of this new function the linearized SF will be of the form

u(x, t) = u0(x, t)+ εu1(x, t)+o(ε),

u0 =
k
2

(
T1 −T2

)
+a, u1 =

[
(T1 −T2)(a4 − p2)+2ka3

]
k

ϕx

2

−a3
(
T1 +T2

)
kϕxx +

a2

2

[
2a+ k(T1 −T2)

]
ϕxxx.

(4.27)
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The related expressions for small, linear perturbations from (4.27) are as follows

up±∞(x, t) = a3
(
k2ϕx ∓2kϕxx +ϕxxx

)
, T+∞

−∞ (κ) =
κ −2κ2 +κ3

κ +2κ2 +κ3
, κ =

kp

k
. (4.28)

For the exponential soliton (3.49) of the A− equation it is enough to use the change a → ia and

u → iu. Instead of the formulae (4.26) and (4.27), one will have

ϕ1,2 = (a4 − p2)ϕ ±2ia3ϕx −a2ϕxx, ϕt = 2ϕxxx +3
(p2 +a4)

a2
ϕx (4.29)

and respectively

u0 =−k
2

i
(
T1 −T2

)
+a, u1 =

[
−i(T1 −T2)(a4 − p2)−2ka3

]
k

ϕx

2

+a3
(
T1 +T2

)
kϕxx +

a2

2

[
−2a+ ik(T1 −T2)

]
ϕxxx

(4.30)

As seen from (4.29), ϕ1,2 are complex here, so it is needed to take into account the relations (2.51)

and (2.52) with

μ1 = kx+ k
(

2k2 +3
p2 +a4

a2

)
t +Δ+

ln
[
(a4 −a2k2 − p2)2 +a2k2

]
2

+

εk
[
(a4 − p2)ϕ −a2ϕxx

]
, μ2 = arg

(
a4 −a2k2 − p2 + iak

)
+2εka3ϕx.

The expressions for up±∞ and T+∞
−∞ (4.28) save their form. In its turn for the algebraic soliton (3.50)

of the A− equation their analogs can be obtained in the same manner as before

u0 =−i
(
P1 −P2

)
+a,

u1 =−i
(
P1 −P2

)(
a4 − p2

)
ϕx +2a3

(
P1 +P2

)
ϕxx +a2

[
i(P1 −P2)−a

]
ϕxxx

(4.31)

and

μ1 = x+3
(p2 +a4)

a2
t +Δ+ εk

[
(a4 − p2)ϕ −a2ϕxx

]
, μ2 =

−2a3

p2 −a4
+2εka3ϕx,

up±∞(x, t) = a3ϕxxx, T+∞
−∞ = 1,

i.e. as the degenerations at k → 0.

As the comment note that at a4 − p2 = 0 for the SFs (4.27), (4.30), (4.31) of all three soliton

families there take place their degeneration. Indeed, in this case all formulae (4.26), (4.27) and

(4.29), (4.30), (4.31) stop to depend on ϕ explicitly, only its derivatives remain. First, this means

that in this case there are only three modulation parameters {ϕx,ϕxx,ϕxxx} instead fore. Second, we

here have the same situation as with the MKdV degeneration (4.12), (4.13) (it is possibly to pass

to another function ϕx → ϕ in the above formulae for the clearness), when any soliton phase shift

after the interactions is absent. This effect takes place for both exponential soliton families (3.48)

and (3.49), in contrast to the MKdV case with the family (3.18) only.

4.3.2. The configuration from the two noninteracting kinks

From the viewpoint of the formulae the case of the noninteracting kinks (3.56) in contrast to the

alone bell-shaped soliton case has the only deference, namely the additional arbitrary constant Δ1,2
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in the kink phases (3.56), that makes them independent on each other. The system of the linearized

determining equations (3.53) after the change θ1,2 → Δ1,2 + εϕ1,2 +o(ε), are fully similar and is

ϕ1,t =−ϕ1,xxx +
3

2
(k2

1 − k2
2)ϕ1,x +3ϕ2,xxx −3k2

2ϕ2,x,

ϕ2,t = 3ϕ1,xxx −3k2
1ϕ1,x −ϕ2,xxx +

3

2
(k2

2 − k2
1)ϕ2,x, ϕ1,2 = ϕ1,2(x, t)

(4.32)

with the constraint (3.54)

D1ϕ1 = D2ϕ2, D1 =
∂ 3

∂x3
− k2

1

∂
∂x

, D2 =
∂ 3

∂x3
− k2

2

∂
∂x

. (4.33)

After the parametrization of (4.32) in view of (4.33) with the function ϕ(x, t)

ϕ1 = k2
2ϕ −ϕxx, ϕ2 = k2

1ϕ −ϕxx, ϕt = 2ϕxxx − 3

2
(k2

1 + k2
2)ϕx,

the linearized SF (3.55) will be

u(x, t) = u0(x, t)+ εu1(x, t)+o(ε), u0(x, t) =
k1

2
T1 − k2

2
T2,

u1(x, t) =
k1

2

(
k2

2ϕx −ϕxxx
)

T1 − k2

2

(
k2

1ϕx −ϕxxx
)

T2 +
(k2

1 − k2
2)

2
ϕxx

(4.34)

with the expressions for the perturbation asymptotics from u1 in (4.34)

up±∞(x, t) =
(

k1 − k2

2

)[
∓k1k2ϕx +(k1 + k2)ϕxx ∓ϕxxx

]
. (4.35)

Notice that the transfer function from (4.35) for these two-kink configuration

T+∞
−∞ (κ1,κ2) =−

(
1−κ1

1+κ1

)(
1−κ2

1+κ2

)
, κ1 =

kp

k1
,κ2 =

kp

k2

basically is the composition of the transfer functions of the separate kinks.

5. Conclusion

The paper develops further the general theory of solitons and soliton interactions proposed by the

author [3]– [11]. Theoretically, the article generalises the direct technique for constructing SFs

[10]. And as its applications, the SFs for the MKdV, KK and A∓ equations are considered. The

results have been obtained for them concern both the fuller and deeper description of the known

soliton solutions and the principally new results concerning their superposition properties and their

interactions with other waves. The main points can be formulated in the following manner:

1. The above technique is generalized to the case of multibranches with constraints.

2. The formulae for the limit passage from the SFs for exponential solitons to algebraic ones

are introduced.

3. The proposed generalization is used to derive the SFs for the solitons of the MKdV, KK and

A∓ nonlinear PDEs in the cases when one branch technique does not work.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

31



A.A. Alexeyev / A multidimensional superposition principle: IV

4. For all three equations the SFs for the bell-shape exponential and algebraic solitons are

derived. It is shown these solitons can be considered as the strong bound states of two

identical kinks (MKdV, A±) or two simpler bell-shape solitons (KK). For the A± the two

noninteracting kinks configuration is also found and studied.

5. Aside from the full SFs, their much more simple linearized versions are also investigated,

and the parametrization procedure is introduced into the approach.

6. The linearized SFs are used for investigation of some interaction properties of the above

solitons.

7. Based on the structure of the SFs constructed, the possible difference in the interactions

(smooth and oscillating character) are indicated for the various SFs.

8. Based on the form of the SFs, the degenerated cases (i.e. with no soliton phase shift) are

indicated for the MKdV and A∓ and confirmed by the computer simulation.

9. On the example with the KK equation solitons the common viewpoint about the uselessness

of the use of identical branches is disproved.
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