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Introduction

In electromagnetic theory, magnetic curves represent the trajectories of charged particles moving in

Euclidean 3-space E
3 under a static magnetic field �B. Newton’s second law of motions under the

Lorentz force derived from a static magnetic field implies the law of Lorentz force. More precisely,

a particle of mass m and charge q on position�r(t) in a static magnetic field �B moves with the velocity

�v(t) satisfying the Lorentz equation

m
d�v
dt

(t) = q�v(t)×�B�r(t).

As is well known, in E
3 the motion of the particle is described by a circular helix around �B. Partic-

ularly, magnetic trajectories of the particle can be circles (and hence periodic curves).

The notion of a static magnetic field can be generalized to arbitrary Riemannian manifolds

(see [2,25]). Let (M,g,F) be a Riemannian manifold with a closed 2-form F . Then F is referred to

as a magnetic field on M. A curve γ(t) is called a magnetic curve if it satisfies the Lorentz equation:

∇γ̇ γ̇ = q ϕ γ̇.

Here q is a constant (called the charge), ∇ is the Levi-Civita connection and ϕ is an endomorphism

field metrically related to the magnetic field F via g. Hence geodesics in Riemannian manifolds are

mathematical models of motions of particles without the Lorentz force or charge 0.

On the other hand, according to Thurston, there are eight model spaces in 3-dimensional homo-

geneous geometries.
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• space forms: Euclidean 3-space E
3, 3-sphere S

3, hyperbolic 3-space H
3,

• product spaces: S2 ×R, H2 ×R,

• the Heisenberg group Nil3, the universal covering S̃L2R of SL2R,

• the Sol3 space.

Among these eight model spaces, S3, Nil3, S̃L2R and Sol3 admits a contact structure compatible to

the metric (see [24]). The compatible contact structure naturally induces a magnetic field F (called

a contact magnetic field) on these four model spaces.

The study of magnetic curves in arbitrary Riemannian manifolds was developed in early 1990’s,

even though related works can be found earlier (see [10,25]). The notation used here is very similar

to notation used in [7] and [8].

In 2009 Cabrerizo et al. have looked for periodic orbits of the contact magnetic field on the

unit 3-sphere S
3 in [7]. In addition, Druţă-Romaniuc et al. classified magnetic trajectories in Nil3

and S̃L2R with respect to a contact magnetic field [8]. Magnetic trajectories on the space Sol3 with

respect to a contact magnetic field are not studied, yet.

The purpose of this paper is to study magnetic trajectories in the model space Sol3 of solvege-

ometry with respect to a contact magnetic field.

1. Magnetic curves

Let (M,g) be a Riemannian manifold. We equip a closed 2-form F on M. Thus we get an endomor-

phism field ϕ by

g(ϕX ,Y ) = F(X ,Y ). (1.1)

We regard F as a (mathematical model of) magnetic field (see [2,25]). And the endomorphism field

ϕ is referred to as the Lorentz force derived from F .

Then a magnetic trajectory γ (also called a magnetic curve) is defined as a solution to

∇γ ′γ ′ = qϕ γ ′. (1.2)

Here q is a real constant called the charge of the magnetic trajectory γ(t) under the magnetic field

F .

It is well-known that magnetic trajectories have constant speed. When a magnetic curve γ(s) is

arc length parametrized, it is called a normal magnetic curve.

One can see that the differential equation of magnetic trajectory is a generalization of geodesic

equation. In fact if ϕ = 0, i.e. F = 0 or q = 0, the differential equation coincides with geodesic

equation.

On a Riemannian manifold (M,g,F) equipped with an exact magnetic field F = dA, one can

consider the variational problem for regular curves γ(t) with respect to the following Landau-Hall
functional:

LH(γ) =
�∫

0

1

2
g(γ ′(t),γ ′(t))dt −q

�∫
0

A(γ ′(t))dt.

Here q is a real constant.
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Let p and p′ be distinct points. Denote by C∞[a,b] the space of smooth curves in M defined on

a closed interval [a,b] satisfying the boundary condition

γ(a) = p, γ(b) = p′.

Take a variation γε through γ (i.e., γ0(s) = γ(s)) satisfying the boundary condition

γε(a) = p, γε(b) = p′.

Then the first variation formula of the Landau-Hall functional is given by (see e.g. [11]):

d
dε

∣∣∣∣
ε=0

LH(γε) =−
�∫

0

g(∇γ ′γ ′ −qϕ γ ′,V (s) )ds,

where V is the variational vector field

V (s) =
∂

∂ε

∣∣∣∣
ε=0

γε(s).

Thus the Euler-Lagrange equation of this variational problem is exactly the magnetic equation (1.2).

Note that the magnetic equation (1.2) makes sense even if F is not exact.

Remark 1.1. Magnetic curves with respect to non-standard magnetic fields on Euclidean 3-space

E
3 are used in computer aided geometric design (see [29] and [30]).

2. Contact structures

Let M be a 3-dimensional manifold. A 1-form η is said to be a contact form if it satisfies dη∧η �= 0.

A 3-dimensional manifold M together with a contact form η is called a contact 3-manifold. Luts and

Martinet proved that every compact orientable 3-manifold carries a contact form (see [19, 20, 27]).

On a contact 3-manifold (M,η), there exists a unique vector filed ξ such that η(ξ ) = 1 and

ιξ dη = 0. The vector field ξ is called the Reeb vector field of (M,η). In analytical mechanics, ξ is

traditionally called the characteristic vector field of (M,η).

Moreover, every contact 3-manifold (M,η) admits an endomorphism field ϕ and a Riemannian

metric g such that (see [3]):

ϕ2 =−I+η ⊗ξ , η ◦ϕ = 0, ϕξ = 0,

g(ϕX ,ϕY ) = g(X ,Y )−η(X)η(Y ), X ,Y ∈ X(M), (2.1)

and

dη(X ,Y ) = g(X ,ϕY ), X ,Y ∈ X(M). (2.2)

Here X(M) denotes the Lie algebra of all smooth vector fields on M. The exterior derivative dη of

η is defined by

dη(X ,Y ) =
1

2

(
Xη(Y )−Y η(X)−η([X ,Y ])

)
,

for any X , Y ∈ X(M).
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The structure (ϕ,ξ ,η ,g) is called an almost contact metric structure associated to the contact

form η . The resulting space (M,ϕ,ξ ,η ,g) is called a contact metric 3-manifold. Note that the

volume element of a contact metric 3-manifold M is −η ∧dη/2.

Remark 2.1. On a contact 3-manifold (M,η) equipped with an arbitrary chosen Riemannian met-

ric g, one can take a magnetic field F = k dη (k is a nonzero constant) and consider magnetic

curves with respect to F and g. It seems to be natural to demand that the metric g satisfies some

”compatibility condition” (see e.g. (2.1)) with respect to F . In this paper we restrict our attention to

Riemannian metrics satisfying the condition:

g(X ,ϕY ) = kdη(X ,Y ), X ,Y ∈ X(M).

Remark 2.2. Perrone in [24] classified homogeneous contact metric 3-manifolds. According to

[24], among the simply connected model spaces of Thurston geometry, the following spaces admit

a homogeneous contact form compatible to the metric:

S
3, Nil3, S̃L2R, Sol3.

For more information on contact forms on compact 3-manifolds with universal cover S̃L2R and

Sol3 refer to [22].

3. Invariant contact structure on Sol3

3.1. Model of the Sol3 space

In this subsection we recall relevant facts on Sol3 given in [5, 6, 9, 13–18].

The model space Sol3 of solvegometry in the sense of Thurston (see [26]) is the Cartesian 3-

space R
3(x,y,z) equipped with a homogeneous Riemannian metric

g = e2zdx2 + e−2zdy2 +dz2. (3.1)

The Sol3 space is a Lie group G with respect to the multiplication law:

(x,y,z)∗ (a,b,c) = (x+ e−za,y+ ezb,z+ c).

The unit element is (0,0,0) and the inverse element of (x,y,z) is (−ezx,−e−zy,−z). The left trans-

lated vector fields associated to the orthonormal basis Ê1 = (1,0,0), Ê2 = (0,1,0), Ê3 = (0,0,1)

are

ê1 = e−z ∂
∂x

, ê2 = ez ∂
∂y

, ê3 =
∂
∂ z

. (3.2)

The space Sol3 can be realized as the closed subgroup⎧⎨⎩
⎛⎝ e−z 0 x

0 ez y
0 0 1

⎞⎠ ∣∣∣∣∣ x,y,z ∈ R

⎫⎬⎭
Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

201



Z. Erjavec and J. Inoguchi / Magnetic curves in Sol3

of SL3R. The corresponding Lie algebra sol3 is⎧⎨⎩
⎛⎝−w 0 u

0 w v
0 0 0

⎞⎠ ∣∣∣∣∣ u,v,w ∈ R

⎫⎬⎭ .

The orthonormal basis {Ê1, Ê2, Ê3} of sol3 is identified with

Ê1 =

⎛⎝0 0 1

0 0 0

0 0 0

⎞⎠ , Ê2 =

⎛⎝0 0 0

0 0 1

0 0 0

⎞⎠ , Ê3 =

⎛⎝−1 0 0

0 1 0

0 0 0

⎞⎠ .

The dual coframe field ϑ = (θ 1,θ 2,θ 3) of E = {ê1, ê2, ê3} is

θ 1 = ezdx, θ 2 = e−zdy, θ 3 = dz. (3.3)

The connection 1-forms {ω i
j } defined by dθ i +∑3

k=1 ω i
j ∧θ j = 0 relative to ϑ are

(ω i
j ) =

⎛⎝ 0 0 θ 1

0 0 −θ 2

−θ 1 θ 2 0

⎞⎠ .

The curvature 2-forms {Ω i
j } defined by Ω i

j = dω i
j +∑3

k=1 ω i
k ∧ω k

j relative to ϑ are

(Ω i
j ) =

⎛⎝ 0 θ 1 ∧θ 2 −θ 1 ∧θ 3

−θ 1 ∧θ 2 0 −θ 2 ∧θ 3

θ 1 ∧θ 3 θ 2 ∧θ 3 0

⎞⎠
In covariant derivative fashion, the Levi-Civita connection ∇ of Sol3 is described as follows

∇ê1
ê1 =−ê3, ∇ê1

ê2 = 0, ∇ê1
ê3 = ê1,

∇ê2
ê1 = 0, ∇ê2

ê2 = ê3, ∇ê2
ê3 =−ê2, (3.4)

∇ê3
ê1 = 0, ∇ê3

ê2 = 0, ∇ê3
ê3 = 0.

The Riemannian curvature R is defined by

R(X ,Y )Z = ∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z, X ,Y,Z ∈ X(M).

The Riemannian curvature R is expressed in components R �
ki j by

R(êi, ê j)êk =
3

∑
�=1

R �
ki jê�

is computed as

R1
212 = 1, R1

313 =−1, R2
323 =−1.

The Ricci tensor field Ric is defined by

Ric(X ,Y ) = tr(Z 	−→ R(Z,X)Y ).

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

202



Z. Erjavec and J. Inoguchi / Magnetic curves in Sol3

The components Ri j = Ric(êi, ê j) = ∑3
l=1 Rl

il j is given by

R11 = 0, R22 = 0, R33 =−2.

The scalar curvature ρ := tr Ric = ∑3
i=1 Rii is −2.

3.2. Invariant contact structure on Sol3

In this subsection, we introduce a left invariant contact structure on Sol3.

For more about a left invariant contact structures see [4, 14, 24].

On the solvable Lie group Sol3, we may take the following left invariant orthonormal frame

field:

e1 :=
1√
2
(ê1 − ê2),

e2 := ê3, (3.5)

e3 :=
1√
2
(ê1 + ê2).

Here the orthonormal frame field {ê1, ê2, ê3} is defined by (3.2).

We choose ξ := e3 and denote by η the metrical dual 1-form of ξ . Namely η is given by

η =
1√
2

(
ezdx+ e−zdy

)
.

Then η is a left invariant contact form on Sol3. Next we define an endomorphism field ϕ by

ϕe1 =−e2, ϕe2 = e1, ϕe3 = 0. (3.6)

Then ϕ and ξ are also left invariant on Sol3. Direct calculations show that

dη(X ,Y ) =
1

2
g(ϕX ,Y ), X ,Y ∈ X(Sol3). (3.7)

Remark 3.1. Precisely speaking, to adapt to contact metric geometry, we need to perform the

following normalization procedure:

ϕ 	−→ −ϕ, ξ 	−→ 2ξ , η 	−→ 1

2
η , g 	−→ 1

4
g.

Then the resulting quintet (Sol3,−ϕ,2ξ ,η/2,g/4) is a contact metric manifold (in the sense of [3])

as explained in Section 2.

However, in the study of magnetic curves, this normalization is not essential. So we do not use

this normalization hereafter (cf. Remark 2.1).
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According to (3.4) and (3.5), the Levi-Civita connection ∇ of Sol3 is rewritten as

∇e1
e1 = 0, ∇e1

e2 = e3, ∇e1
e3 =−e2,

∇e2
e1 = 0, ∇e2

e2 = 0, ∇e2
e3 = 0, (3.8)

∇e3
e1 =−e2, ∇e3

e2 = e1, ∇e3
e3 = 0.

The commutation relations are

[e1,e2] = e3, [e2,e3] =−e1, [e3,e1] = 0.

Thus {e1,e2,e3} is a unimodular basis of sol3 [21].

The sectional curvature K is determined by

K(e1 ∧ e2) =−1, K(e2 ∧ e3) =−1, K(e1 ∧ e3) = 1.

4. Magnetic curves in Sol3

4.1. Contact magnetic fields

Let M = (M,ϕ,ξ ,η ,g) be a contact metric 3-manifold. Then for a constant k, F = k dη is a mag-

netic field on M. The magnetic field F = k dη is called the contact magnetic field on a contact metric

3-manifold M. Magnetic trajectories with respect to contact magnetic fields are called contact mag-
netic trajectories.

Contact magnetic trajectories on the 3-sphere are investigated in [7]. Munteanu and Nistor stud-

ied periodicity of contact magnetic fields on 3-tori [23].

In the case of Sol3 equipped with the structure (ϕ,ξ ,η ,g) defined in Section 3.2, we take the

contact magnetic field F given by (see (3.7)).

F(X ,Y ) = 2dη(X ,Y ), X ,Y ∈ X(Sol3). (4.1)

Then the corresponding Lorentz force coincides with ϕ .

The magnetic curve equation on Sol3 with respect to F = 2dη with charge q is

∇γ ′γ ′ = qϕ γ ′. (4.2)

Note that contact magnetic equation (4.2) is the Euler-Lagrange equation of the Landau-Hall

functional

LH(γ) =
�∫

0

1

2
g(γ ′(s),γ ′(s))ds−2q

�∫
0

η(γ ′(s))ds.

4.2. Magnetic curve equation

First task is to deduce the magnetic curve equation (4.2) for a regular curve γ(s) = (x(s),y(s),z(s))
in Sol3. We have

γ ′(s) = x′(s)
∂
∂x

+ y′(s)
∂
∂y

+ z′(s)
∂
∂ z

,

and from (3.2) and (3.5) it follows

γ ′(s) = x′(s)
ez
√

2
(e1 + e3)− y′(s)

e−z
√

2
(e1 − e3)+ z′(s) e2
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and hence

γ ′(s) =
1√
2

(
ezx′(s)− e−zy′(s)

)
e1 + z′(s)e2 +

1√
2

(
ezx′(s)+ e−zy′(s)

)
e3. (4.3)

Next we compute the covariant derivative ∇γ ′γ ′.

∇γ ′γ ′ =
1√
2

(
ezx′′ − e−zy′′+2z′

(
ezx′+ e−zy′

))
e1

+

(
z′′+ e−2z(y′)2 − e2z(x′)2

)
e2

+
1√
2

(
ezx′′+ e−zy′′+2z′

(
ezx′ − e−zy′

))
e3.

Taking in account relations (4.3) and (3.6) we have

ϕγ ′ = z′e1 − 1√
2

(
ezx′ − e−zy′

)
e2.

Hence from the magnetic curve equation (4.2) we obtain system of differential equations

ezx′′ − e−zy′′+2z′
(
ezx′+ e−zy′

)
=
√

2 q z′,

z′′+ e−2z(y′)2 − e2z(x′)2 =
−1√

2
q
(
ezx′ − e−zy′

)
, (4.4)

ezx′′+ e−zy′′+2z′
(
ezx′ − e−zy′

)
= 0,

Remark 4.1. Notice that the system of differential equations (4.4) for q = 0 coincides with the

system of differential equations (4.4) in [6] which determines geodesics in Sol3 (cf. [5, 28]).

Without loss of generality, we can restrict our attention to magnetic trajectories under the initial

conditions:

x(0) = 0, y(0) = 0, z(0) = 0, x′(0) = a, y′(0) = b, and z′(0) = c,

since Sol3 is a homogeneous Riemannian space.

After the summing of the first and the third equation of the system (4.4) we obtain

x′′+2x′z′ =
√

2

2
q e−z z′. (4.5)

Solving this ODE in the first step we get

x′(s) =
(

a− q√
2

)
e−2z(s) +

q√
2

e−z(s) (4.6)

and finally

x(s) =
(

a− q√
2

) s∫
0

e−2z(τ)dτ +
q√
2

s∫
0

e−z(τ)dτ. (4.7)

Analogously for y-coordinate, after subtracting the first from the third equation of the system

(4.4) we obtain following equation

y′′ −2y′z′ =−
√

2

2
q ez z′. (4.8)
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Hence

y′(s) =
(

b− q√
2

)
e2z(s) +

q√
2

ez(s) (4.9)

and

y(s) =
(

b− q√
2

) s∫
0

e2z(τ)dτ +
q√
2

s∫
0

ez(τ)dτ. (4.10)

Substituting (4.6) and (4.9) in the second equation of the system (4.4) we get

z′′+
(

b− q√
2

)2

e2z −
(

a− q√
2

)2

e−2z +
q√
2

((
b− q√

2

)
ez −

(
a− q√

2

)
e−z
)
= 0 (4.11)

Now we assume that s is an arc length parameter of γ . If we multiply this equation by 2z′(�= 0),

after integrating and using z′(0) = c =
√

1−a2 −b2, we obtain

(z′)2 +

[(
a− q√

2

)
e−z +

q√
2

]2

+

[(
b− q√

2

)
ez +

q√
2

]2

= 1 (4.12)

After separation of variables, the solution of this equation is given by the following elliptic integral

dz

±
√

1−
[(

a− q√
2

)
e−z + q√

2

]2

−
[(

b− q√
2

)
ez + q√

2

]2
= ds (4.13)

Hence, the following theorem is proved.

Theorem 4.1. The normal magnetic curves of the space Sol3 with respect to the contact magnetic
field F = 2dη with charge q �= 0 is given by the following equations :

x(s) =
(

a− q√
2

) s∫
0

e−2z(τ)dτ +
q√
2

s∫
0

e−z(τ)dτ,

y(s) =
(

b− q√
2

) s∫
0

e2z(τ)dτ +
q√
2

s∫
0

ez(τ)dτ,

ds =
dz

±
√

1−
[(

a− q√
2

)
e−z + q√

2

]2

−
[(

b− q√
2

)
ez + q√

2

]2
,

where a, b, c ∈ R and a2 +b2 + c2 = 1.

In the sequel we consider particular cases of magnetic curves in Sol3.

Example 1

First we examine case z′ = 0. Then (4.12) implies z = 0 and from (4.7) and (4.10) it follows

γ(s) = (as,bs,0) (4.14)

where a, b ∈ R. It is a (geodesic) line in the plane z = 0.
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Example 2

If we assume that a = b = q√
2
, then from (4.12), (4.7) and (4.10) it follows

γ(s) =

(
−q · e−(

√
1−q2·s)√

2(1−q2)
,

q · e(
√

1−q2·s)√
2(1−q2)

,
√

1−q2 · s
)
. (4.15)

Particularly, for q = 0 we have the z-axis, which is a geodesic line in Sol3 space.

Figure 1 shows the magnetic curve for a = b = q√
2
, q = 1

2
, s ∈ [−10,10].

Fig. 1. γ(s) =
(
−1√

6
e−

√
3

2
s, 1√

6
e

√
3

2
s,

√
3

2 s
)

Example 3

If we assume a = q√
2
, then from (4.11) we have

z′′+
(

b− q√
2

)2

e2z +
q√
2

(
b− q√

2

)
ez = 0 (4.16)

The solution of this equation is

z(s) =− ln

[(
b− q√

2

)(√
1+

q2

2
coshs+

q√
2

)]
.

Further, from (4.7) and (4.10) it follows

x(s) =
q · (2b−√

2q)
4

(
q · s+

√
2+q2 · sinhs

)
,

y(s) =
2

(2b−√
2q)

√
2+q2 · sinhs(

q+
√

2+q2 · coshs
) .

Particularly, for q = 0 we obtain geodesic line in yz-plane.

Figure 2 shows the magnetic curve for b = 1,q = 1
2
,s ∈ [−10,10].
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Fig. 2. γ(s) =
(

4−√
2

32 (s+3sinhs), 6(4+
√

2)sinhs
7(1+3coshs) , ln

(
8

(2
√

2−1)(1+3coshs)

))

Example 4

If we assume b = q√
2
, then from (4.11) we have

z′′ −
(

a− q√
2

)2

e−2z − q√
2

(
a− q√

2

)
e−z = 0. (4.17)

The solution of this equation is

z(s) = ln

[(
a− q√

2

)(√
1+

q2

2
coshs+

q√
2

)]
.

Further, from (4.7) and (4.10) it follows

x(s) =
2

(2a−√
2q)

√
2+q2 · sinhs(

q+
√

2+q2 · coshs
) ,

y(s) =
q · (2a−√

2q)
4

(
q · s+

√
2+q2 · sinhs

)
.

Particularly, for q = 0 we obtain geodesic line in xz-plane.

Figure 3 shows the magnetic curve for a = 1, q = 1
2
, s ∈ [−10,10].

Remark 4.2 (Magnetic Jacobi fields). Adachi [1] and Gouda [11] obtained the second variational

formula of the Landau-Hall functional:

d2

dε2

∣∣∣∣
ε=0

LH(γε) =−
�∫

0

g(Jq,F(V ),V (s))ds,

where Jq,F is an operator acting on the space Γ (γ∗T M) of all vector fields along γ defined by

Jq,F(W ) = ∇γ ′∇γ ′W +R(W,γ ′)γ ′ −qϕ(∇γ ′W )−q(∇W ϕ)γ ′.

A vector field W (s) along γ is said to be a magnetic Jacobi field if it satisfies Jq,F(W ) = 0. Detailed

study on magnetic Jacobi fields gives us insight on how small variations in the initial conditions
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Fig. 3. γ(s) =
(

6(4+
√

2)sinhs
7(1+3coshs) ,

4−√
2

32 (s+3sinhs), ln
(

1
8 (2

√
2−1)(1+3coshs)

))

affect the evolution of magnetic curves. In this direction, Adachi obtained the comparison theorem

for magnetic curves on Kähler manifold whose Lorentz force is a complex structure [1]. Gouda [11,

12] studied magnetic Jacobi fields on Riemannian 2-manifolds equipped with compatible Kähler

structure. The parallelism of the complex structure (the Lorentz force) is crucial in these works.

In case (M,g) = Sol3, the sectional curvature function can have both signs. In addition the

Lorentz force ϕ is non-parallel. Thus the behavior of magnetic Jacobi fields along contact magnetic

curves in Sol3 appears complicated. This will be addressed in future work.
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