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Certain nonlinearly-coupled systems of N discrete-time evolution equations are identified, which can be solved
by algebraic operations; and some remarkable Diophantine findings are thereby obtained. These results might
be useful to test the accuracy of numerical routines yielding the N roots of polynomials of arbitrary degree N.

1. Introduction and notation

As the reader will easily see, the results of this paper amount to a transfer—from continuous to
discrete time, via the approach introduced in [1]—of the findings reported in [2] and [3] (see also
Chapters 3 and 7 of [4]).

Throughout this paper the following notation is used: N and L are two arbitrary positive integers
(N ≥ 2, L ≥ 2), the indices n and m run from 1 to N, the discrete-time variable ` = 0,1,2, ... takes
all nonnegative integer values, the N dependent variables zn(`) are generally complex numbers and,
being generally defined (see below) as the N zeros of a polynomial of degree N in its (complex)
argument z, they are the elements of an unordered set of N elements identified hereafter with the
notation z̃(`); likewise in the following the notation f̃ denotes the unordered set of N elements fn.

2. Results

Proposition 2.1. Consider the system of N second-order discrete-time evolution equations

2
N

∏
m=1

[zn(`+2)− zm(`+1)]−
N

∏
m=1

[zn(`+2)− zm(`)] = 0 ; (2.1a)

note that this formula provides the unordered set z̃(`+ 2), the elements of which are the N values
zn(`+ 2), as the N zeros of the polynomial of degree N in z defined in terms of the two unordered
sets z̃(`) and z̃(`+1) as follows:

PN (z; z̃(`), z̃(`+1)) = 2
N

∏
m=1

[z− zm(`+1)]−
N

∏
m=1

[z− zm(`)] . (2.1b)

Let this system of second-order discrete-time evolution equations, (2.1a), be complemented by
the following assignments of the two unordered sets z̃(0) respectively z̃(1) of 2N initial data zn(0)
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respectively zn(1): (i) the N data zn(0) are assigned arbitrarily; (ii) the N data zn(1) are defined—in
terms of the parameter L, (L 6= 1), the unordered set z̃(0), and the unordered set f̃ the elements of
which are N arbitrarily assigned (generally complex) numbers fm—by the N algebraic equations

N

∏
m=1

[zn(1)− zm(0)]+
(−1)N

L−1

N

∏
m=1

[zn(1)− fm] = 0 ; (2.2a)

hence these N data zn(1) are the N roots of the polynomial p(1)N

(
z; z̃(0), f̃ ;L

)
, of degree N in z,

defined as follows in terms of the two unordered sets z̃(0) and f̃ :

p(1)N

(
z; z̃(0), f̃ ;L

)
=

N

∏
m=1

[z− zm(0)]+
(−1)N

L−1

N

∏
m=1

[z− fm] . (2.2b)

The solution z(`) of the system of second-order discrete-time evolution equations (2.1a) is then
given by the N roots of the following polynomial of degree N in z:

ψN
(
z; z̃(0), f̃ ;L;`

)
=

(
L− `

L

) N

∏
m=1

[z− zm(0)]+
(
`

L

)
(−1)N

N

∏
m=1

(z− fm) . � (2.3)

Proposition 2.1 is proven in the following Section. In the meantime the reader may immediately
verify the validity of the formula (2.3) at `= 0 and—via (2.2b)—at `= 1.

Remark 2.1. Note that—while in the formulation of this Proposition 2.1 we considered the system
of N equations (2.2) as determining the N elements of the unordered set z̃(1) in terms of the 2N
elements of the two, arbitrarily assigned, unordered sets z̃(0) and f̃ , this system (2.2) of N algebraic
equations might as well be considered to define the N elements fm of the unordered set f̃ in terms
of the 2N elements of the two—both then arbitrarily assigned—unordered sets z̃(0) and z̃(1). �

Corollary 2.1. At `= L the unordered set z̃(L) coincides with the unordered set f̃ :

z̃(L)≡ f̃ . � (2.4)

The validity of this Corollary 2.1 is an immediate consequence of the Proposition 2.1, being
obtained by setting `= L in (2.3). And it has an obvious Diophantine implication if the N, a priori
arbitrary, numbers fm are chosen to be integers or rationals.

3. Proof

The starting point of the proof of Proposition 2.1 is the definition (2.3) of the polynomial ψN(z;`).
The consistency of this definition with the assignment of the initial data z̃(0) and z̃(1) has already
been noted above. What remains to be proven is that the formula

ψN(z;`) =
N

∏
n=1

[z− zn(`)] (3.1)

—which, with ψN(z;`) defined by (2.3), clearly coincides with the statement of Proposition 2.1—
implies that the N zeros zn(`) satisfy the evolution equation (2.1a). To this end we note that since by
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definition (see (2.3)) the dependence of ψN(z;`) on the discrete-time variable ` is linear, ψN(z;`)
satisfies identically the linear second-order difference equation

ψN(z;`+2)−2ψN(z;`+1)+ψN(z;`) = 0 . (3.2)

For z = zn(`+2), via (3.1), this formula implies (2.1a). Q. E. D.

4. Envoy

The result reported in the above Proposition 2.1 is likely to look, at least at first sight, somewhat
remarkable, especially in view of the arbitrariness of the assignment of the 2N numbers zn(0) and
fn (or, equivalently, zn(0) and zn(1); see the above Remark 2.1). But of course, after its validity
has been proven, it shall be considered obvious—as all valid mathematical results in some sense
are. A potential application of this finding is as a tool to test the accuracy of numerical routines to
compute the zeros of polynomials of arbitrary degree N: by comparing, with the simple explicit
outcome detailed in the above Corollary 2.1, the results yielded by the application of such routines
in order to solve numerically—from the initial data detailed in Proposition 2.1, up to ` = L—the
discrete-time evolution (2.1); which indeed requires finding the zeros of appropriate polynomials of
degree N at every step of this discrete-time evolution. In this context the flexibility implied by the
possibility to assign arbitrarily the two integers N and L and the 2N, generally complex, numbers
zn(0) and fn might be quite useful. Specialists in numerical analysis might be interested to explore
in detail the vistas implied by such possibilities: note for instance that, for N = 20 and fm = m,
Corollary 2.1—for any arbitrary assignment of the parameters L and xn(0)—yields the 20 zeros of
the perfidious Wilkinson polynomial [5].

An extension of the findings reported in this paper to the case in which the finite positive integer
N is replaced by ∞ is of course possible, see [2].

A (perhaps less elegant) variant of the approach described in this paper—characterized by the
replacement of the system of second-order discrete-time evolution equations (2.1a) by systems of
first-order discrete-time evolution equations—is of course possible, in analogy to the treatments of
the continuous-time cases, see [1], [2] and Chapter 3 of [4].

References
[1] O. Bihun and F. Calogero, “Generations of solvable discrete-time dynamical systems”, J. Math. Phys.

58, 052701 (21 pages) (2017); DOI: 10.1063/1.4982959.
[2] F. Calogero, “Finite and infinite systems of nonlinearly coupled ordinary differential equations the solu-

tions of which feature remarkable Diophantine findings”, J. Nonlinear Math. Phys. 25 (3) (2018) 433–
441.

[3] F. Calogero, “Novel differential algorithm to evaluate all the zeros of any generic polynomial”, J. Non-
linear Math. Phys. 24, 469–472 (2017). DOI: 10.1080/14029251.2017.1375685.

[4] F. Calogero, Zeros of Polynomials and Solvable Nonlinear Evolution Equations, Cambridge University
Press, Cambridge, U.K., 2018 (in press).

[5] J.H. Wilkinson, “The perfidious polynomial”, in Studies in Numerical Analysis, vol. 24, pp. 1–28, 1984;
G.H. Golub (editor), Mathematical Association of America, Washington DC, USA.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

517


