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In this paper, we construct a Darboux transformation and the related Bäcklund transformation for the super-
symmetric Sawada-Kotera (SSK) equation. The associated nonlinear superposition formula is also worked out.
We demonstrate that these are natural extensions of the similar results of the Sawada-Kotera equation and may
be applied to produce the solutions of the SSK equation. Also, we present two semi-discrete systems and show
that the continuum limit of one of them goes to the SKK equation.
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1. Introduction

In searching for the Korteweg-de Vries type equations with N−soliton solutions, Sawada and Kotera
[39], also Caudrey, Dodd and Gibbon [5] independently, found the following fifth order evolution
equation

ut +uxxxxx +5uuxxx +5uxuxx +5u2ux = 0. (1.1)

This equation, known as the SK equation or CDGSK equation, has been one of the most important
equations in the soliton theory and a large amount of results have been accumulated for it. Satsuma
and Kaup [40], within the framework of Hirota bilinear method, obtained its Bäcklund transforma-
tions, Lax pair and infinitely many conserved quantities. By means of the prolongation theory, Dodd
and Gibbon worked out the similar results [9]. Fordy and Gibbons [12], independently Hirota and
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Ramani [21], shown that the SK equation is associated with another fifth order evolution equation,
namely Kaup-Kupershmidt equation, and in particular these two systems share a common modifi-
cation [12]. Kaup developed the inverse scattering method to the SK equation [24]. Fuchssteiner
and Oevel brought the SK equation into the bi-Hamiltonian formulation [14]. According to Date
et al, SK equation is a particular flow of the BKP hierarchy [7, 8]. Levi and Ragnisco constructed
the Darboux transformation for SK equation [25] (see also [3, 34]) and a nonlinear superposition
formula was found by Hu and Li [22]. Most recently, Geng, He and Wu constructed the algebro-
geometric solutions for the SK hierarchy [15]. For more results and properties of the SK equation,
one is referred to [2, 11, 13, 19, 20, 30, 33, 35, 37, 44] and the references there.

With Tian, one of the authors proposed a supersymmetric SK equation [41], which reads as

φt +φxxxxx +5φxxxφ
′+5φxxφ

′
x +5φxφ

′2 = 0, (1.2)

where φ = φ(x, t,θ) is a super fermionic function depending on temporal variable t, spatial variable
x and its fermionic counterpart θ . D denotes the super derivative defined by D = ∂θ + θ∂x. For
simplicity, here and in the sequel, we denote super derivative by prime and usual derivative with
respect to x by subscript x. To see the connection with the SK equation (1.1), we assume φ =

θu(x, t)+ ξ (x, t), where u = u(x, t) is a bosonic (even) function while ξ = ξ (x, t) is a fermionic
(odd) one, then the SSK equation (1.2) in components takes the following form

ut +uxxxxx +5uuxxx +5uxuxx +5u2ux−5ξxxxξx = 0, (1.3a)

ξt +ξxxxxx +5uξxxx +5uxξxx +5uξx = 0, (1.3b)

which reduces to (1.1) when the fermionic variable ξ is set to zero. It is mentioned that the SSK
equation also appears in the symmetry classification of supersymmetric integrable systems [42].

As its classical counterpart, the SSK equation is also integrable and its integrability is ensured by
presenting a Lax representation, the existence of infinitely many conserved quantities and a recur-
sion operator [41]. It is interesting to note the SSK equation possesses odd Hamiltonian structures
and is a bi-Hamiltonian system [36]. Subsequent works show that the SSK equation is associated
with supersymmetric Kawamoto equation [29] and passes the Painlevé test [28].

The purpose of this paper is to construct a Darboux transformation and the related Bäcklund
transformation for the SSK equation and study their applications. While Bäcklund transformations
have their origins from differential geometry (see [17,38] and the references there), it is well known
that Darboux and Bäcklund transformations play a vital role in the study of nonlinear systems and
the related theory constitutes an integrated part of the soliton theory (see [6, 10, 17, 32, 38] for
example). Bäcklund transformations have been known to be an effective approach to construction
of solutions for nonlinear systems, furthermore they may be applied to generate new integrable
systems, both continuous and discrete [18, 26, 27]. It is remarked that the applications of Bäcklund
transformations to integrable discretization of super or supersymmetric integrable systems were
developed only recently [4, 16, 31, 45–48].

The paper is arranged as follows. In next section, we recall the Lax pair for the SSK equation
and construct its Darboux and Bäcklund transformations. As a simple application, 1-soliton solution
to the equation is obtained from the associated Darboux transformation. In section 3, we present a
nonlinear superposition formula for the SSK equation and a 2-soliton solution is worked out. Then
in the last section, we relate the obtained Bäcklund transformation and nonlinear superposition
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formula to super differential-difference integrable systems. In particular, by taking continuum limit
we show that one of the systems gives the SSK equation.

2. Bäcklund-Darboux Transformations

To construct a Darboux transformation for the SKK equation (1.2), we recall its Lax representation
[41]

Lt = [P,L],

where

L = ∂
3
x +φ

′
∂x−φxD +φ

′
x, (2.1)

and

P = 9∂
5
x +15φ

′
∂

3
x −15φxD∂

2
x +30φ

′
x∂

2
x −15φxxD∂x

+(5φ
′2 +25φ

′
xx)∂x−10(φxxx +φxφ

′)D +10φ
′
xxx +10φ

′
φ
′
x.

Thus, the corresponding linear spectral problem is

Lϕ = λϕ. (2.2)

From above Lax pair, we see that it is natural to work with φ ′ rather than φ . Therefore, we
introduce v = φ ′ and rewrite (1.2) as

vt + vxxxxx +5vvxxx +5vxvxx +5vxv2 +5v′v′xx = 0. (2.3)

Our aim now is to find a Darboux transformation for (2.2) and we will take the well adopted
approach, namely gauge transformation approach. To this end, we first reformulate the linear
spectral problem (2.2) into the matrix form and such reformulation is standard. Introducing Φ =

(ϕ,ϕx,ϕxx,ϕ
′,ϕ ′x,ϕ

′
xx)

T , we may rewrite (2.2) in matrix form, that is,

Φ
′ = MΦ, M =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0

λ − vx −v 0 v′ 0 0


. (2.4)

Above matrix M has both bosonic and fermionic variables as its entries, thus a super matrix.
As in [47], we introduce an involution on the algebra of super matrices in the following way: given
any matrix A = (ai j)i, j∈Z, we define A† = (a†

i j)i, j∈Z and a†
i j = (−1)p(ai j)ai j with p(ai j) denoting the

parity of ai j.
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The idea of constructing a Darboux transformation for (2.4) is to seek for a gauge matrix T such
that

Φ[1] = T Φ (2.5)

solves

Φ
′
[1] = M[1]Φ[1], (2.6)

where M[1] is the matrix M but with v replaced by the new field variable v[1]. Now it is easy to see
that (2.5) and (2.6) imply that the gauge matrix T has to satisfy

T ′+T †M−M[1]T = 0, (2.7)

a crucial equation we have to find a proper solution for it. To this end, we take the simplest ansatz,
namely

T = λF +G, F = ( fi j)6×6, G = (gi j)6×6.

A careful analysis and tedious calculations show that the matrices F and G may be taken as

F =



1 0 0 0 0 0
a 1 0 0 0 0

2ax +
1
2 a2 a 1 −a′ 0 0

0 0 0 1 0 0
2a′ 0 0 a 1 0

3a′x +2aa′ 2a′ 0 ax +
1
2 a2 a 1


, (2.8)

and

G =



g11
1
2 a2 a a′x−aa′ −a′ 0

g21 g22 ax +
1
2 a2 g24 −aa′ −a′

g31 g32 g33 g34 g35 −a′x−aa′

g41 −a′x +2aa′ 2a′ g44 −ax +
1
2 a2 a

g51
3
2 a2a′ a′x +2aa′ −3a′xa′ g55

1
2 a2

g61 g62 g63 g64 g65 g66


. (2.9)

where

g11 =−
1
2

axa+
1
4

a3 +av− a′xa′

a
+λ0, (λ0 is a constant),

g21 =−
1
2

a2
x +

1
8

a4 +λ0a+axv+
1
2

a2v−a′xa′+ v′a′,

g22 =
1
2

axa+
1
4

a3− a′xa′

a
+λ0,

g24 =
axa′x

a
+

1
2

aa′x−axa′− 1
2

a2a′+2λ0
a′

a
,

g31 =−
3
2

a2
xa+

3
4

axa3 +3λ0ax−av2 +
7
2

aaxv− 1
4

a3v−2λ0v− 3
2

aa′xa′

− a′xa′v
a

+ v′a′x +av′a′,
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H. Mao et al. / SUSY Sawada-Kotera Equation: Bäcklund-Darboux Transformations & Applications

g32 =
3
2

axa2− 1
2

a2v−3a′xa′,

g33 = 3axa−av−2
a′xa′

a
−λ0,

g34 = 3axa′x−a′xv−3aaxa′+aa′v+3λ0a′,

g35 =
axa′x

a
− 1

2
aa′x−2axa′− 1

2
a2a′+2λ0

a′

a
+a′v,

g41 =
a′xax

a
− 1

2
aa′x−2axa′+a2a′+2λ0

a′

a
+2a′v+ v′a,

g44 =−2
a′xa′

a
−λ0,

g51 = a′xv− 3
2

aaxa′+
3
4

a3a′+2aa′v+3λ0a′+
1
2

v′a2,

g55 =−
1
2

axa+
1
4

a3− a′xa′

a
+λ0,

g61 =−
3
2

aaxa′x +
3
4

a3a′x +
axa′xv

a
+

7
2

aa′xv+3λ0a′x−
3
2

a2
xa′+

3
8

a4a′

+3λ0aa′+2axa′v+a2a′v+2λ0
a′v
a

+aaxv′−av′v,

g62 =
3
2

a2a′x +
3
2

aaxa′+
3
4

a3a′+3λ0a′− 1
2

v′a2,

g63 =
axa′x

a
+

7
2

aa′x +2axa′+a2a′+2λ0
a′

a
− v′a,

g64 =−3
axa′xa′

a
− 9

2
aa′xa′− v′a′x +av′a′,

g65 =−
1
2

a2
x +

1
8

a4 +λ0a−4a′xa′+ v′a′,

g66 = g22.

It is noticed that all the entries of the Darboux matrix G are represented in term of the field variable v
or φ , an auxiliary (bosonic) variable a and their derivatives. In addition, the single auxiliary variable
a satisfies the following equation

axx =−
1
4

a3 +
3
2

aax−2λ0−av+
a′a′x

a
, (2.10)

and the transformation between field variables reads as

v[1] = v−3ax. (2.11)

The equation (2.11) may be used to eliminate the auxiliary variable a in (2.10) and in this way
a Bäcklund transformation (spatial part) for the SSK equation (1.2) may be obtained.

Remark. For above Bäcklund transformation, we may take its bosonic limit and find

axx =−
1
4

a3 +
3
2

aax−2λ0−au, (2.12)
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H. Mao et al. / SUSY Sawada-Kotera Equation: Bäcklund-Darboux Transformations & Applications

and

u[1] = u−3ax. (2.13)

It is easy to see that this is nothing but the Bäcklund transformation of SK equation (1.1), first
appeared in [9, 40].

While we have worked out a Bäcklund transformation for the SSK equation, the Darboux
matrix T is implicit in the sense that it depends on a and it is desirable to relate it the solu-
tions of the linear spectral problem (2.4) in such way that the Darboux matrix T may take an
explicit form. Thus, we consider the kernel of the Darboux matrix T and take the particular solution
Φ0 = (ϕ0,ϕ0x,ϕ0xx,ϕ

′
0,ϕ

′
0x,ϕ

′
0xx)

T of (2.4) at λ = λ0 such that T Φ0 = 0. Then we find

a =− 2λ0ϕ0

vϕ0 +ϕ0xx
+

2λ0ϕ ′0xϕ ′0
[vϕ0 +ϕ0xx]2

, (2.14)

where ϕ0 is a bosonic function.
Now summarizing above discussions, we have

Proposition 2.1. Let ϕ0 is a bosonic solution of the linear spectral problem (2.2) at λ = λ0. Let the
matrices F and G be given by (2.8) and (2.9) with the quantity a given by (2.14). Then T = λF +G
is a Darboux matrix for the linear spectral problem (2.4). The transformation for the field variables
is given by (2.13).

It is interesting to note that the scalar version of the Darboux transformation may be obtained as
follows:

ϕ[1] = aϕxx−a′ϕ ′x +
1
2

a2
ϕx +(a′x−aa′)ϕ ′+

[
λ +

1
4

a3− 1
2

aax +λ0 +av+
a′a′x

a

]
ϕ. (2.15)

As a first application, we now employ the Darboux transformation to build the 1-soliton solution
for the SSK system (1.2). We begin with the vacuum seed v = 0 and consider the corresponding
linear problem

ϕ0xxx = λ0ϕ0, ϕ0t = 9λ0ϕ0xx = 9ϕ0,xxxxx. (2.16)

Assuming λ0 =
i

3
√

3
k3 (i =

√
−1, k ∈ R), we easily find that

ϕ0 = epx+9p5t+
√

3/3iθζ (1+ ekx−k5t−2πi/3+c),

where p = (−1
2 +

√
3

6 i)k, ζ and c are arbitrary fermionic constant and bosonic constant respectively,
solves the system (2.16). Now from (2.14), we obtain

a =−k

(√
3

3
i+ tanhη

)
, η =

1
2
(kx− k5t + c+θζ ),

and substituting them into (2.11) leads to the following 1-soliton solution of the SSK equation

v =
3
2

k2sech2
η .

It is noted that the bosonic part of the solution is just the 1-soliton solution of the SK equation [5,39].
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3. Nonlinear Superposition Formula

In the last section we constructed the Bäcklund transformation and Darboux transformation for the
SSK equation. It was shown that these transformations may be used to build solutions for the SSK
equation. However, Bäcklund transformation itself is a system of differential equations, therefore it
may not be easy to solve for more general seed solutions. The usual way to get over this difficulty
is to derive the corresponding nonlinear superposition formula, which we now look for.

It turns out that a convenient way is to work with the potential form of the equation, so we
introduce φ = 3w′ or v = 3wx and convert the SSK equation (1.2) into

wt +wxxxxx +15wxxxwx +15w3
x +15w′xw′xx = 0. (3.1)

Now we suppose that w is an arbitrary solution of the potential SSK (3.1) and λ j ( j = 1,2) are
arbitrary constants taken as Bäcklund parameters, then we may perform Darboux transformation
Φ[ j] = T |λ=λ j Φ and find new solution w j. Namely, we consider a pair of Darboux transformations

Φ[1] = T[1]Φ, T[1] ≡ T |λ0=λ1,a=a1 , (3.2)

Φ[2] = T[2]Φ, T[2] ≡ T |λ0=λ2,a=a2 , (3.3)

where

a1 = w−w1, a2 = w−w2.

Then with the help of the Bianchi’s permutability theorem, represented schematically by the dia-
gram below

Φ[1]
λ2,T12

((
Φ

λ1,T1

77

λ2,T2 ''

Φ[12]=Φ[21]

Φ[2]

λ1,T21

66

we obtain

T[12]T[1] = T[21]T[2], (3.4)

where

T[12] ≡ T |λ0=λ2,a=a12 , T[21] ≡ T |λ0=λ1,a=a21 , a12 = w1−w12, a21 = w2−w21.

After some cumbersome calculations, we find, from (3.4), the following nonlinear superposition
formula

w12 = w+
4(λ1 +λ2)(a1−a2)

∆1
+

16(λ1 +λ2)

∆2
1

[
(a2−a1)a′1a′2 +a2

1

(
a′1x
a1
−

a′2x
a2

)(
a2

a1

)′]
, (3.5)

where

∆1 = 4(λ2−λ1)+a1a2(a2−a1)+2a2a1x−2a1a2x.
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We now employ above nonlinear superposition formula and build a 2-soliton solution to the SSK
equation. To this end, for arbitrary bosonic constants k j and fermionic constants ζ j ( j = 1,2) we
take

w = 0, λ j =
i

3
√

3
k3

j ,

and

a1 =−k1

(
i√
3
+ tanh(η1−

1
2

ix0)

)
, a2 =−k2

(
i√
3
+ tanh(η2 +

1
2

ix0)

)
,

where

η j =
1
2
(k jx− k5

j t− c j +θζ j), x0 = arctan

(√
3k1k2

k2
2− k2

1

)
.

v12 =
3
[
b1 + k2

2b0 cosh(2η1)+ k2
1b0 cosh(2η2)

][
cosh(η1 +η2)+b0 cosh(η1−η2)

]2
−

b2
[
b3 sinh(η1 +η2)+b0 sinh(η1−η2)

][
cosh(η1 +η2)+b0 cosh(η1−η2)

]3 (ζ1 +θk1)(ζ2 +θk2), (3.6)

where

b0 =

√
(k1 + k2)3

k3
1 + k3

2

(k2
1 + k1k2 + k2

2)

(k1− k2)2 , b1 =
(k1 + k2)

3

k3
1 + k3

2
(k2

1 + k2
2),

b2 =
9k1k2(k1 + k2)

2

k3
1 + k3

2
, b3 =

k1 + k2

k1− k2
.

Thus, v12 given by (3.6) is a 2-soliton solution of the SSK equation. It is easy to check that the
bosonic limit of the above solution is nothing but the 2-soliton solution of the SK equation.

We remark that our nonlinear superposition formula is of differential-algebraic type which may
serve as an effective way to build more solutions. Also, by taking the bosonic limit we may have
the following nonlinear superposition formula for the SK equation

w12 = w+
4(λ1 +λ2)(a1−a2)

∆1
,

which should be compared with [22] (see also [33]).

4. Discretizations and continuous limits

It is well known that in addition to allowing one to construct solutions of nonlinear systems,
Bäcklund transformations and the associated nonlinear superposition formulae often supply new
integrable systems of both continuous and discrete types. Next, we will show that this is the case
for our Bäcklund transformation and nonlinear superposition formula derived above.
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4.1. Discrete systems

We first consider Bäcklund transformation. To do so, we write out (2.10), using the potential vari-
ables wx, w1x, and λ0 = λ1, as follows:

(w−w1)xx =−
1
4
(w−w1)

3 +
3
2
(w1−w)(w1 +w)x−2λ1 +

(w′−w′1)(w
′−w′1)x

w−w1
. (4.1)

Let λ1 =−1
8 p3

1, w→ w+ p1, we have

(w1−w)xx =−
3
2
(w1−w− p1)(w1 +w)x−

1
4
(w1−w)3

+
3
4
(w1−w)2 p1−

3
4
(w1−w)p2

1 +
(w′1−w′)(w′1−w′)x

w1−w− p1
. (4.2)

Define

w≡ wn(x), w1 ≡ wn+1(x).

We finally get

(wn+1−wn)xx =−
3
2
(wn+1−wn− p1)(wn+1−wn)x−

1
4
(wn+1−wn)

3

+
3
4
(wn+1−wn)

2 p1−
3
4
(wn+1−wn)p2

1 +
(w′n+1−w′n)(w

′
n+1−w′n)x

wn+1−wn− p1
. (4.3)

It is a differential-difference system.
For the nonlinear superposition formula, let λ1 =−1

8 p3
1, define for any field variable w

w≡ wn,m, w1 ≡ wn+1,m, w2 ≡ wn,m+1, w12 ≡ wn+1,m+1,

and replace wn,m by wn,m−np1−mp2, from (3.5) we obtain

wn+1,m+1−wn,m− p1− p2

p3
1 + p3

2
=

S1−S2

∆2
− 8

∆2
2

[
(S1−S2)S′1S′2 +(S2S′1,x−S1S′2,x)

(
ln

S2

S1

)′]
, (4.4)

where S1 = wn+1,m−wn,m− p1,S2 = wn,m+1−wn,m− p2 and

∆2 = p3
1− p3

2 +2S1S2

[
(S1−S2)+2

(
ln

S1

S2

)
x

]
.

It is noted that (4.4) is a differential-partial difference system.
Taking the bosonic limits of (4.3) and (4.4), we find two differential-difference systems as fol-

lows:

(wn+1−wn)xx =−
3
2
(wn+1−wn− p1)(wn+1−wn)x−

1
4
(wn+1−wn)

3

+
3
4
(wn+1−wn)

2 p1−
3
4
(wn+1−wn)p2

1,

and

wn+1,m+1 = wn,m + p1 + p2 +
(p3

1 + p3
2)(S1−S2)

∆2
,

they are different from the known semi-discrete versions of the SK equation (cf. [43], [1], [23])
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4.2. Continuum limits

As a final part, we relate the semi-discrete systems obtained last subsection to the SSK equation.
We will show that by taking proper continuum limits both (4.3) and (4.4) go to the potential SSK
equation (3.1).

For the differential-difference system (4.3), we introduce the new continuous variable τ as

wn(x)≡ w(x,τ),

then

wn+1(x)≡ w
(

x,τ +
1
p1

)
may be expanded in 1

p1
, and defining a new independent variable t in term of τ and x such that

∂τ = 4∂x +
64

45p14 ∂t ,

in the continuous limit up to terms of order 1
p3

1
, we find

wt +wxxxxx +15wxxxwx +15w3
x +15w′xw′xx = 0, (4.5)

which is the potential form of the SSK equation (3.1).
For the differential-partial difference system (4.4), we consider the so-called straight continuum

limit [18]. Thus, we assume

wn,m ≡ wn(x)≡ wn(
4m
p2

).

For 1
p2

small, we take the following Taylor series expansions

wn,m+1 = wn

(
x+

4
p2

)
= wn +

4
p2

wn,x +
8
p2

2
wn,xx +O

(
1

p23

)
,

wn+1,m+1 = wn+1

(
x+

4
p2

)
= wn+1 +

4
p2

wn+1,x +
8
p2

2
wn+1,xx +O

(
1

p23

)
,

plugging above equations into (4.4), then the leading terms yield the system (4.3). Therefore, we
may say that the (semi-)discrete system (4.4) is a discrete version of the potential SSK system.

Of course, we may follow [18] and study other continuum limits such as skew continuum limit
or full continuum limit for the system (4.4), but such calculations will not be given here since they
are somewhat cumbersome.
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[6] J.L. Cieśliński, Algebraic construction of the Darboux matrix revisited, J. Phys. A: Math. Theor. 42
(2009) 404003.

[7] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. Euclidean
Lie algebras and reduction of the KP hierarchy, Publ. Res. Inst. Math. Sci. 18 (1982) 1077–1110.

[8] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. IV. A new
hierarchy of soliton equations of KP-type, Physica. D 4 (1981/82) 343–365.

[9] R.K. Dodd and J.D. Gibbon, The prolongation structure of a higher order Korteweg-de Vries equation,
Proc. R. Soc. London A 358 (1977) 287–296.

[10] E.V. Doktorov and S.B. Leble, A Dressing Method in Mathematical Physics (Springer, Berlin, 2007).
[11] M. Euler, N. Euler and E.G. Reyes. Multipotentializations and nonlocal symmetries: Kupershmidt,

Kaup-Kupershmidt and Sawada-Kotera equations, J. Nonlinear Math. Phys. 24 (2017) 303–314.
[12] A.P. Fordy and J. Gibbons, Some remarkable nonlinear transformations, Phys. Lett. A 75 (1980) 325.
[13] A.P. Fordy, The Hénon-Heiles system revisited, Physica D 52 (1991) 204–210.
[14] B. Fuchssteiner and W. Oevel, The bi-Hamiltonian structure of some fifth- and seventh-order differential

equations and recursion formulas for their symmetries and conserved covariants. J. Math. Phys. 23
(1982) 358–363.

[15] X.G. Geng, G.L. He and L.H. Wu, Riemann surface and Riemann theta function solutions of the
Sawada-Kotera hierarchy, preprint.

[16] G.G. Grahovski and A.V. Mikhailov, Integrable discretisations for a class of nonlinear Schrödinger
equations on Grassmann algebras Phys. Lett. A 377 (2013) 3254–3259.

[17] C.H. Gu, H.S. Hu and Z.X. Zhou, Darboux Transformations in Integrable Systems: Theory and Their
Applications to Geometry (Springer, Berlin, 2005).

[18] J. Hietarinta, N. Joshi and F. W. Nijhoff, Discrete Systems and Integrability (Cambridge University
Press, 2016).

[19] R. Hirota, Soliton solutions to the BKP equations. I. The Pfaffian technique, J. Phys. Soc. Japan 58
(1989) 2285–2296.

[20] R. Hirota, Soliton solutions to the BKP equations. II. The integral equation, J. Phys. Soc. Japan 58
(1989) 2705–2712.

[21] R. Hirota and A. Ramani, The Miura transformations of Kaup’s equation and of Mikhailov’s equation,
Phys. Lett. A 76 (1980) 95–96.

[22] X.B. Hu and Y. Li, Some results on the Caudrey-Dodd-Gibbon-Sawada-Kotera equation, J. Phys. A:
Math. Gen. 24 (1991) 3205–3212.

[23] X.B. Hu, Z.N. Zhu and D.L. Wang, A differential-difference Caudrey-Dodd-Gibbon-Kotera-Sawada
equation, J. Phys. Soc. Japan 69 (2000) 1042–1049

[24] D.J. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the class ψxxx +6Qψx +
6Rψ = λψ , Stud. Appl. Math. 62 (1980) 189–216.

[25] D. Levi and O. Ragnisco, Nonisospectral deformations and Darboux transformations for the third-order
spectral problem, Inverse Problems 4 (1988) 815–828.
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