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The results of inverse scattering problem associated with the initial-boundary value problem (IBVP) for the
Korteweg–de Vries (KdV) equation with dominant surface tension are formulated. The necessary and sufficient
conditions for given functions to be the left- and right-reflection coefficients of the scattering problem are
established. The time-dependence t, t > 0 of each element of the scattering matrix s(k, t) is found in respective
sector of the k-spectral plane by expansion formulas which are constructed from the known initial and boundary
conditions of the IBVP. Knowing the right-reflection coefficient calculated from the elements of s(k, t), we
solve the Gelfand–Levitan–Marchenko (GLM) equation in the inverse problem. Then the solution of the IBVP
is expressible through the solution of the GLM equation. The asymptotic behavior at infinity of time of the
solution of the IBVP is shown
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1. Introduction

After a series of papers by Fokas and Its [2], it became clear that under arbitrary boundary conditions
solving the initial-boundary value problem (IBVP) for the nonlinear equations like the Korteweg-de
Vries (KdV) or nonlinear Schrödinger (NLS) equations had not met the same success as solving the
Cauchy problem for the KdV equation on the whole line. But there is a specific class of boundary
conditions that are completely consistent with the integrability property. Under these conditions,
the IBVPs are effectively embedded in the ISM schema. A number of examples of such boundary
conditions were discussed in [1,3,4,11,13]. In the present paper we study inverse scattering problem
(ISP) associated with the IBVP for the KdV equation:

pt − pxxx +6ppx = 0, x > 0, t > 0, (1.1)

p|x=0 = 0, pxx|x=0 = 0, (1.2)

p|t=0 = p(x), p(x)|x→∞→ 0, (1.3)

where the boundary conditions (1.2) are consistent at the corner point, i.e., p(0,0) = pxx(0,0) = 0,
and the function p(x) that determines the initial condition (1.3) is required to satisfy the following
conditions, which will be referred to as Conditions I:
Conditions I: The function p(x) is real-valued infinitely smooth and tends to zero at infinity in the
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Schwartz sense, [10], i.e., p(x) and all its derivatives decrease faster than any positive power of x−1.
At x = 0 p(x) vanishes together with all derivatives, and

∫
∞

0 p(x)dx 6= 0.
In [11] the problem of solving the considered IBVP is reduced to that of solving two ISPs.

The first scattering problem (SP) is associated with the KdV equation (1.1), the second SP is self-
conjugate.
In the present paper we prove the theorem of the necessary and sufficient conditions for given
functions to be the left- and right-reflection coefficients of the first SP. The proof of this principal
theorem is absent in [1,3,4,11]. Further, in Sec. 3 the scattering function of the self-conjugate SP is
expressible through elements of the given scattering matrix s(k) = s(k,0) of the first SP. Knowing
the scattering function, we solve the inverse SP for finding the unknown potential self-conjugate
matrix. In Sec. 4 the time-dependence of elements of the matrix s(k, t) is found in every respective
sector of the k-spectral plane. The solution of the IBVP is expressible through the solution of the
Galfand–Levitan–Marchenko (GLM) equation. The behaviour at infinity of t-time of the solution
of the IBVP is shown. Exact soliton-solutions of the Cauchy problem for the KdV equation are
presented in Sec. 5.

2. The direct and inverse SP

The IBVP (1.1)-(1.2)-(1.3) is associated with the SP on a half-line for a system of equations:

d
dx

(
y
yx

)
=

(
0 1

p(x)−λ 0

)(
y
yx

)
, 0≤ x < ∞ (2.1)

with the boundary conditions as x→ 0:

(y(k,x),yx(k,x)) = (1,−ik)+o(1), λ = k2. (2.2)

The SP for the Schrödinger equation on the whole line is well studied, therefore it is convenient
to reduce the SP (2.1)–(2.2) on the half-line to a problem on the whole line by continuing the
potential p(x) from the positive half-line to the whole line. The potential is continued trivially by
setting p(x)≡ 0 for all x < 0. According to this way, we write system (2.1) in the form:

yx =Uy, U =

(
0 1

p−λ 0

)
, y = (y1(k,x),y2(k,x)), λ = k2, −∞ < x < ∞, (2.3)

where the function p(x) satisfies Condition I, p(x) ≡ 0 for x < 0, y2 = y1x and y1 satisfies the
Schrödinger equation:

−yxx + p(x)y = k2y, −∞ < x < ∞. (2.4)

The formulas (2.5)–(2.23) presented below are deduced from the known facts of the scattering
theory for equation (2.4) (see [5, 7]). We construct the matrix solutions of system (2.1):

E = (E+,E−) =
(

e(k,x) e(−k,x)
ex(k,x) ex(−k,x)

)
, W = (W−,W+) =

(
ω(−k,x) ω(k,x)
ωx(−k,x) ωx(k,x)

)
,
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with the conditions for all real k =
√

λ :

E = T (k)
(

eikx 0
0 e−ikx

)
+o(1) (x→ ∞), (2.5)

W = T (k)+o(1) (x→ 0), T (k) =
(

1 1
ik −ik

)
. (2.6)

The function e(k,x) satisfies the integral equation:

e(k,x) = eikx +
∫

∞

x

sink(s− x)
k

p(s)e(k,s)ds, (2.7)

and can be represented as:

e(k,x) = eikx +
∫

∞

x
K(x,ξ )eikξ dξ , Imk ≥ 0, (2.8)

where the function K(x,ξ ) is the kernel of the transformation operator and is determined from the
integral equation of the Volterra type:

K(x,ξ ) =
1
2

∫
∞

x+ξ

2

p(s)ds+
∫

∞

x+ξ

2

dα

∫ ξ−x
2

0
p(α−β )K(α−β ,α +β )dβ , (2.9)

with K(x,ξ ) = 0 for ξ < x. Consequently, K(x,ξ ) satisfies the estimate:

|K(x,ξ )| ≤C
∫

∞

x+ξ

2

|p(s)|ds, (2.10)

and the conditions:

−2
d
dx

K(x,x) = p(x),
(

d
dx

K(x,x)
)

x=0
=−1

2
p(0) = 0. (2.11)

The function ω(k,x) satisfies the integral equation:

ω(k,x) = e−ikx +
∫ x

0

sink(x− s)
k

p(s)ω(k,s)ds, Imk ≥ 0,

and can be represented as:

ω(k,x) =
{

e−ikx +
∫ x
−∞

K−(x,ξ )e−ikξ dξ for x > 0,
e−ikx for x≤ 0,

(2.12)

where K−(x,ξ )≡ 0 for ξ ≤ x≤ 0, and 2
d
dx

K−(x,x) =
{

p(x) for x > 0,
0 for x≤ 0.

In view of the reality of p(x), the functions K(x,ξ ) and K−(x,ξ ) are real-valued and therefore

e(k,x) = e(−k,x), ex(k,x) = ex(−k,x), ω(k,x) = ω(−k,x), ωx(k,x) = ωx(−k,x). (2.13)

The solutions e(k,x) and ω(k,x) of system (2.3) admit from the real line an analytical continuation
into the upper half-plane Imk > 0. Since the Wronskians of the solutions do not depend on x, then

W {ω(−k,x),ω(k,x)}=W {e(k,x),e(−k,x)}
= e(k,x)ex(−k,x)− ex(k,x)e(−k,x) =−2ik for real k 6= 0.
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Hence, (e(k,x),e(−k,x)) and (ω(−k,x),ω(k,x)) for real k 6= 0 are bases of solutions of system
(2.3), therefore(

e(k,x) e(−k,x)
ex(k,x) ex(−k,x)

)
=

(
ω(−k,x) ω(k,x)
ωx(−k,x) ωx(k,x)

)(
s11(k) s12(k)
s21(k) s22(k)

)
, k 6= 0. (2.14)(

ω(−k,x) ω(k,x)
ωx(−k,x) ωx(k,x)

)
=

(
e(k,x) e(−k,x)
ex(k,x) ex(−k,x)

)(
s11(−k) −s21(−k)
−s21(k) s11(k)

)
, k 6= 0. (2.15)

The matrix s(k) =
(

s11(k) s12(k)
s21(k) s22(k)

)
thus defined is called the scattering matrix of the SP (2.3),

(2.6). Using (2.6), (2.14), we determine the entries si j(k) of s(k) in terms of boundary values (BVs)
(e(k),ex(k)) = (e(k,0),ex(k,0)) for k 6= 0:

s11(k) =
1
2

e(k)+
1

2ik
ex(k), s12(k) =

1
2

e(−k)+
1

2ik
ex(−k),

s21(k) =
1
2

e(k)− 1
2ik

ex(k), s22(k) =
1
2

e(−k)− 1
2ik

ex(−k),
(2.16)

where due to (2.6) and (2.13) the BVs (e(k),ex(k)) are different from zero for all real k 6= 0.

Remark 2.1 ([5,7]). For real values of the parameter k the entries si j(k) of s(k) possess the proper-
ties:

1. The involutions: s11(−k) = s11(k), s21(−k) = s21(k), s22(k) = s11(−k), s12(k) = s21(−k).

2. The constraint: dets(k) = 1 = |s11(k)|2−|s12(k)|2, |t(k)|2 + |r̃(k)|2 = 1, t(k) = s−1
11 (k),

r̃(k) =
s21(k)
s11(k)

, R̃(k) =−s12(k)
s11(k)

=−s11(−k)
s11(k)

r̃(−k), s11(k) 6= 0.

The functions s11(k) and s21(k) are called the refraction and reflection coefficients, respectively.
The functions R̃(k) and r̃(k) are called the right- and left-reflection coefficients, respectively for the
waves incident on the potential p(x) from the right.

Substituting (2.7) for x = 0 into (2.16) with due regard for (2.8), we obtain:

2ik (s11(k)−1) = 2ik (s22(−k)−1) =−
∫

∞

0
e−iks p(s)e(k,s)ds

=−
∫

∞

0
p(ξ )dξ −

∫
∞

0
eikξ dξ

∫
∞

0
p(s)K(s,ξ + s)ds, Imk ≥ 0, (2.17)

2iks21(k) = 2iks12(−k) =
∫

∞

0
eiks p(s)e(k,s)ds

=
1
2

∫
∞

0
eikξ p

(
ξ

2

)
dξ +

∫
∞

0
eikξ dξ

∫ ξ

2

0
p(s)K(s,ξ − s)ds, Imk ≥ 0. (2.18)

Owing to Conditions I and (2.10) the functions si j(k) have the asymptotic behavior:

s11(k)−1 = s22(−k)−1 = O
(

1
|k|

)
as |k| → ∞, (2.19)

s21(k) = s12(−k) = o
(

1
|k|

)
as |k| → ∞. (2.20)
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The integral representations for si j(k) are obtained from (2.17) and (2.18):

2iks12(−k) = 2iks21(k) =
∫

∞

0
eikξ A(ξ )dξ Imk ≥ 0, (2.21)

2ik (s11(k)−1) = 2ik (s22(−k)−1) =−
∫

∞

0
p(ξ )dξ −

∫
∞

0
eikξ B(ξ )dξ Imk ≥ 0, (2.22)

where

A(ξ ) =
1
2

p
(

ξ

2

)
+
∫ ξ

2

0
p(s)K(s,ξ − s)ds, B(ξ ) =

∫
∞

0
p(s)K(s,ξ + s)ds. (2.23)

Lemma 2.1. The coefficients s21(k) and s11(k) of the scattering matrix s(k) of the SP (2.3), (2.6)
are infinitely differentiable for functions k 6= 0, Imk ≥ 0. Their derivatives satisfy the estimates as
k→ ∞:

|s(m)
21 (k)| ≤Cm, j|k|− j, m, j = 0,1,2, . . . (2.24)

|s11(k)−1| ≤C|k|−1, |s(m)
11 (k)| ≤Cm|k|−1, m = 1,2, . . . (2.25)

The functions 2iks11(k) and 2iks21(k) are continuous in the closed half-plane Imk ≥ 0.

Proof. Owing to Conditions I and (2.10) of the potential p, the function K(x,ξ ) from Eq. (2.9)
is real-valued and infinitely differentiable with respect to each variable of x and ξ . Furthermore,
K(x,ξ ) and all its derivatives decrease faster than any positive power of x−1 and ξ−1. Therefore,
the functions A(ξ ) and B(ξ ) defined by (2.23) are infinitely differentiable and decrease faster than
any positive power of ξ−1:

|A(ξ )| ≤CA|ξ |− j, |B(ξ )| ≤CB|ξ |− j, j = 0,1,2, . . . (2.26)

Using Condition I of p and the smoothness and estimates of K, from (2.23) we get:

|A(m)(ξ )| ≤CAm|ξ |− j, m, j = 0,1,2, . . . (2.27)

Since p(0) = 0, then A(0) = 0. It can be proved by induction that

|A(m)(ξ )|ξ=0 = 0, m = 1,2, . . . (2.28)

Due to (2.26) the functions s21(k) and s11(k) defined by (2.21) and (2.22), respectively are infinitely
differentiable for k 6= 0. Then, from (2.21)–(2.23) it follows that the functions 2iks11(k) and
2iks21(k) are continuous in the closed half-plane Imk ≥ 0. The estimate (2.24) can be proved by
induction with respect to m. Indeed, by using equality (2.26)–(2.28) and integrating the Fourier
integral (2.21) by parts j times, we get:

2ik(ik) js21(k) =
∫

∞

0
eikξ A( j)(ξ )dξ ,

whence it follows that |s21(k)| ≤ C0, j|k|− j, j = 0,1,2, . . . and m = 0. Thus, the estimate (2.24) is
true for j = 0,1,2, . . . and m = 0. Supposing that the estimate (2.24) is proved for m−1:∣∣∣s(m−1)

21 (k)
∣∣∣≤Cm−1, j|k|− j.
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Differentiating (2.21) m times and using the Leibniz’s Rule, we obtain:

(2iks21(k))
(m) = 2iks(m)

21 (k)+2ims(m−1)
21 (k) =

∫
∞

0
eikξ (iξ )mA(ξ )dξ . (2.29)

Integrating the integral in the right-hand side of (2.29) by parts j− 1 times, using (2.20), (2.26)–
(2.28), we calculate:

∞∫
0

eikξ (iξ )mA(ξ )dξ =
1
ik

eikξ [(iξ )mA(ξ )]
ξ=0,∞−

1
ik

∞∫
0

eikξ [(iξ )mA(ξ )]′ dξ = · · ·

=
1

(ik) j−1 eikξ [(iξ )mA(ξ )]( j−2)
ξ=0,∞−

1
(ik) j−1

∞∫
0

eikξ [(iξ )mA(ξ )]( j−1) dξ

=− 1
(ik) j−1

∞∫
0

eikξ [(iξ )mA(ξ )]( j−1) dξ .

Using the right-hand side of the above equality and the induction hypothesis for s(m−1)
21 (k), from

(2.29) we obtain the estimate (2.24) for s(m)
21 (k).

The first inequality of (2.25) is deduced from estimate (2.19). We prove the second inequality
of (2.25). Differentiating (2.22) m times, yield:

(2iks11(k))
(m) = 2iks(m)

11 (k)+2ims(m−1)
11 (k) =−

∫
∞

0
eikξ (iξ )mB(ξ )dξ .

Using (2.26) and the induction hypothesis for s(m−1)
11 (k), from the latest equality we obtain the

second estimate of (2.25). The number B(0) is nonzero. Indeed, using (2.9) and Conditions I of p,
we calculate:

B(0) =
∫

∞

0
p(s)K(s,s)ds =

1
2

∫
∞

0
p(s)ds

∫
∞

s
p(ξ )dξ =

1
2

{∫
∞

0
p(s)ds

}2

−

1
2

∫
∞

0
p(s)ds

∫ s

0
p(ξ )dξ =

1
2

{∫
∞

0
p(s)ds

}2

−B(0).

Hence, B(0) = 1
4 {
∫

∞

0 p(s)ds}2 6= 0. On account of this fact, the function s(m)
11 (k) obeys the estimate

(2.25) as the first power of k−1. Lemma 2.1 is proved. �

The following remark is deduced from Lemma 2.1, Remark 2.1 and properties of the solutions
of problems (2.3), (2.5) and (2.3), (2.6).

Remark 2.2 ([5, 7]).

1. The analytic continuation of the function s11(k) with respect to k from the real axis into the upper
half-plane Imk > 0 can have a finite number of simple zeros on the positive imaginary axis at
k j = iµ j, µ j > 0, j = 1, . . . ,N;

2. There is a one-to-one correspondence between the simple pole iµ j, µ j > 0 of r̃(k) Imk > 0 and
the simple negative eigenvalues −µ2

j , j = 1, . . . ,N of the SP (2.1)–(2.2).
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Suppose that the potential function p(x) is to be subjected to the following restriction, which
will be referred to as the condition II.

Condition II. The potential function p(x) is to be subjected to the condition that Eq. (2.4) must not
have a discrete spectrum. Then by Remark 2.2, s11(k) 6= 0 for all k, Imk > 0.

The scattering matrix s(k) gives complete information about the continuous spectrum of the
Schrödinger operator. By Condition II, Remark 2.2 and the dispersion relation, we can show that
essentially, all information about s(k) is contained in the right-reflection coefficient R̃(k). Denote
by S the class of all real-valued functions satisfying Conditions I and II. From (2.14) and (2.15) it
follows that the functions:

[s11(k)]−1e(k,x) = ω(−k,x)+ r̃(k)ω(k,x), (2.30)

[s11(k)]−1
ω(k,x) = e(−k,x)+ R̃(k)e(k,x), (2.31)

are bounded solutions of system (2.1) with the potential p(x) belonging to the class S . The
behaviour of the function ks11(k) as k → 0 is closely related to that of functions R̃(k) and r̃(k)
as k→ 0. In fact, upon rewriting (2.30) and (2.31) and letting k→ 0, gives:

0 = e(0,x) limk→0 ks11(k)
{

R̃(k)+1
}
= ω(0,x) limk→0 ks11(k){r̃(k)+1} . Consequently,

lim
k→0

ks11(k)
{

R̃(k)+1
}
= lim

k→0
ks11(k){r̃(k)+1}= 0. (2.32)

From condition (2.32) we have the estimate: k{s11(k)+ s21(k)}= o(1) as k→ 0.
To fulfill this estimate, the following condition must be satisfied:

s11(k)+ s21(k) = O(1) as k→ 0, (2.33)

Conversely, if the condition (2.33) is fulfilled, then the condition (2.32) is satisfied.

Lemma 2.2. The left-reflection coefficient r̃(k) of the SP for system (2.1) with the potential p(x)
belonging to the class S and boundary condition (2.2) obeys the following conditions:

1. For all k, Imk ≥ 0, the function r̃(k) is completely continuous and infinitely differentiable. r̃(k)
and all its derivatives decrease faster than any positive power of k−1, and

r̃(k) = r̃(−k), |r̃(k)|< 1 for real k 6= 0. (2.34)

If the residues of the functions s11(k) and s21(k) at k = 0 are different from zero, then r̃(0) =−1.
2. The function r̃(k) admits the Fourier integral representation:

r̃(k) =
∫

∞

0
eikxr(x)dx for all k, Imk ≥ 0, (2.35)

where r(x) is a completely continuous and rapidly decreasing function, which is defined by the
inverse Fourier transform:

r(x) =
1

2π

∫
∞

−∞

e−ikxr̃(k)dk, for x > 0. (2.36)

The function r(x) is infinitely differentiable:

r(m)(x) =
1

2π

∫
∞

−∞

(−ik)me−ikxr̃(k)dk for x > 0, m = 1,2, . . .

In addition r(x) and r(m)(x) are real-valued functions vanishing at x = 0.
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Proof. The validity of assertion 1 for k 6= 0, Imk ≥ 0 follows from Lemma 2.1 and Remarks 2.1,
2.2. We prove the smoothness of r̃(k) and its derivatives at k = 0. From (2.16) we have the relations:

2iks21(k) = ike(k)− ex(k), 2iks11(k) = ike(k)+ ex(k).

These relations make clear that the entries si j(k), i, j = 1,2 of s(k) have generally a simple pole at
k = 0. The residues of functions 2iks11(k) and 2iks21(k) at k = 0 are defined by:

Res[2iks11(k),0] =−Res[2iks21(k),0] = ex(0). (2.37)

If ex(0) 6= 0, then the function r̃(k) and its derivatives are continuous and smooth at k = 0:

lim
k→0

r̃(k) = lim
k→0

2iks21(k)
2iks11(k)

= lim
k→0

−ex(k)
ex(k)

=
−ex(0)
ex(0)

=−1.

If ex(0) = 0, i.e., the residues (2.37) are zero, then the functions s11(k) and s21(k) are continuous
and analytic at k = 0. The constraint condition

∣∣s11(k)
∣∣2− ∣∣s21(k)

∣∣2 = 1 implies that
∣∣s11(k)

∣∣> 1 for
k ∈ R. Therefore, the function r̃(k) and its derivatives are continuous and smooth at k = 0.

By Lemma 2.1 the functions r̃(k) and (−ik)mr̃(k) are analytic in the upper half-plane Imk ≥ 0
and rapidly decrease at infinity for any nonnegative integer m. On account of this fact, the func-
tion r̃(k) admits the Fourier integral representation (2.35) of a function r(x) for x > 0. Since the
Fourier transform (2.35) and its inverse Fourier transform (2.36) maps S onto S mutually contin-
uously one-to-one [10], then r(x) and its derivatives r(m)(x) for x > 0 defined by (2.36) are rapidly
decreasing functions. Due to (2.34) these functions are real-valued. We have from (2.36):

r(m)(0) =
1

2π

∫
∞

−∞

(−ik)mr̃(k)dk; m = 0,1,2, . . .

where the integrand function G(k) = (−ik)mr̃(k) and its derivatives G( j)(k) are analytic in the
upper half-plane Imk ≥ 0 and rapidly decrease at infinity for nonnegative integer m, and G(∞) =

G( j)(∞) = 0, j = 1,2, . . . Hence, the function G(k) is analytic in the closed upper half-plane
Imk ≥ 0, therefore, by the Cauchy’s Theorem the right-hand side of the last formula vanishes,
i.e., r(m)(0) = 0,m = 0,1,2, . . . Lemma 2.2 is proved. �

The further conditions of R̃(k) are deduced from Lemma 2.1, Remarks 2.1 and 2.2.

Lemma 2.3. The right reflection coefficient R̃(k) of the SP for system (2.1) with the potential p(x)
belonging to the class S and boundary condition (2.2) obeys the following conditions:

1. The function R̃(k) is completely continuous and infinitely differentiable for all real k ∈ (−∞,∞).
R̃(k) and all its derivatives decrease faster than any positive power of k−1, and

R̃(k) = R̃(−k), |R̃(k)|= |r̃(k)|< 1 for real k 6= 0; (2.38)

If the residues of the functions s11(k) and s12(k) at k = 0 are different from zero, then R̃(0) =−1;

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

406



P.L. Vu / The description of reflection coefficients of the scattering problems . . .

2. For real k the function R̃(k) admits the Fourier transform:

R̃(k) =
∫

∞

−∞

e−ikxR(x)dx, (2.39)

where R(x) is a real completely continuous and rapidly decreasing function, which is defined by
the inverse Fourier transform:

R(x) =
1

2π

∫
∞

−∞

eikxR̃(k)dk. (2.40)

The function R(x) is infinitely differentiable:

R(m)(x) =
1

2π

∫
∞

−∞

(ik)meikxR̃(k)dk, m = 1,2, . . .

where the Fourier transform (2.39) and its inverse Fourier transform (2.40) maps S onto S
mutually continuously one-to-one, [10]. Due to this fact and (2.38) R(x) and R(m)(x), m= 1,2, . . .
are rapidly decreasing and real-valued functions.

To recover the SP (2.1)–(2.2) from the right-reflection coefficient R̃(k), we derive the funda-
mental integral equation connecting the given R̃(k) with the kernels of the transformation operator.
The following equation is derived from (2.31) (see [5, 7]):

R(x+ y)+K(x,y)+
∫

∞

x
R(y+ξ )K(x,ξ )dξ = 0 for y > x, (2.41)

which is the Gelfand–Levitan–Machenko equation in the case of a purely continuous spectrum.
In Eq. (2.41) x is a parameter, R(x+ y) is a known function satisfying conditions enumerated in
Lemma 2.3, and K(x,y) is an unknown function of y for every x ∈ [0,∞). Owing to conditions
(2.38)–(2.40) of the function R(x+ y), Eq. (2.41) has a unique solution K(x,y) either in L1[x,∞) or
L2[x,∞).

Analogously, the following fundamental integral equation is derived from (2.30):

r(x+ y)+K−(x,y)+
∫ x

−∞

r(y+ξ )K−(x,ξ )dξ = 0 for y < x (2.42)

Owing to conditions (2.34)–(2.36) of the known function r(x+ y) Eq. (2.42) has a unique solution
in either L1(−∞,x] or L2(−∞,x].

We use Eq. (2.41) to extract information on the solution K(x,y), y > x from the conditions of the
known function R(x) in this equation. In fact, the function K(x,y),y > x satisfies conditions, which
are analogous to the conditions of the function R(x). As has been proved in [5, 7] that the solution
K(x,y) of Eq. (2.41) is the kernel of the transformation operator and the function constructed from
K(x,y):

e(k,x) = eikx +
∫

∞

x
K(x,ξ )eikξ dξ , Imk ≥ 0 (2.43)

satisfies the Schrödinger equation (2.4):

−e′′(k,x)+ p(x)e(k,x) = k2e(k,x) (2.44)
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with the potential p(x) constructed from the solution of Eq. (2.41) by the formula:

p(x) =−2
d
dx

K(x,x) for x > 0. (2.45)

Substituting (2.43) into (2.7), we obtain integral Eq. (2.9) with the constructed potential (2.45).
Since the solution of (2.9) is unique, then K(x,y) satisfies conditions (2.11).

By an argument analogous to the previous one, we can prove that the function constructed from
the solution K−(x,y) of Eq. (2.42):

ω(k,x) = e−ikx +
∫ x

−∞

K−(x,ξ )e−ikξ dξ , Imk ≥ 0, (2.46)

satisfies the Schrödinger equation (2.4):

−ω
′′(k,x)+ p−(x)ω(k,x) = k2

ω(k,x) (2.47)

with the potential p−(x) constructed by p−(x) = 2
d
dx

K−(x,x) for x > 0.
The principal mathematical problem in inverse problem consists in the proof of the fact that

under conditions (properties) of functions s11(k), s21(k) enumerated in Remark 2.1 and Lemma 2.1,
the procedure actually leads to the same differential equation, i.e., p−(x) ≡ p(x). This leads to
describing the scattering data, i.e., to establishing the necessary and sufficient conditions of func-
tions r̃(k) and R̃(k) to be the left- and right-reflection coefficients of the considered problem.

Theorem 2.1. Suppose that the functions s11(k) and s21(k), −∞ < k < ∞ satisfy the conditions
enumerated in Remark 2.1, Lemma 2.1, condition (2.33) and the function s11(k) admits an analytical
continuation into the upper half-plane Imk > 0 and has no zeros there. Then

1. The functions e(k,x) and ω(k,x) constructed from the solutions K(x,y)∈ L j[x,∞) and K−(x,y)∈
L j(−∞,x], j = 1, 2 of Eqs. (2.41) and (2.42), respectively satisfy the same Shrödinger equation
(2.4) with the constructed potential:

p−(x)≡ p(x) =−2
d
dx

K(x,x), (2.48)

p(0) =−2
d
dx

(
K(x,x)

)
x=0 = 0. (2.49)

2. The conditions of functions s11(k) and s21(k) are both necessary and sufficient for the ratios of
the type:

r̃(k) =
s21(k)
s11(k)

. Imk ≥ 0 and R̃(k) =−s12(k)
s11(k)

, −∞ < k < ∞

to be the left-reflection and right-reflection coefficients of the SP for one and the same system
(2.1) with boundary condition (2.2) and constructed potential (2.48) belonging to the class S .
The Schrödinger equation (2.4) is restored precisely from R̃(k).

Proof. The functions given by (2.43) and (2.46) admit analytic continuations into the upper half-
plane Imk > 0. Extend the domain of the function K−(x,y) by setting: K−(x,y) = 0 for y > x.
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Further, we put:

Φ̃(x,y) = K−(x,y)+ r(x+ y)+
∫ x

−∞

r(y+ξ )K−(x,ξ )dξ for all real y. (2.50)

Due to Eq. (2.42), Φ̃(x,y) = 0 for y < x. For y > x:

Φ̃(x,y) = r(x+ y)+
∫ x

−∞

r(y+ξ )K−(x,ξ )dξ ,
∫

∞

−∞

|Φ̃(x,y)|dy =
∫

∞

x
|Φ̃(x,y)|dy < ∞.

Multiply both sides of equality (2.50) by eiky, then integrate with respect to y and apply the inverse
Fourier formula to r(x+ y):∫

∞

x
Φ̃(x,y)eikydy =

∫ x

−∞

K−(x,y)eikydy+
s21(k)
s11(k)

e−ikx +
s21(k)
s11(k)

∫ x

−∞

K−(x,ξ )e−ikξ dξ .

Adding eikx to the right- and left- hand sides of the last equality and using (2.46), gives:

eikx +
∫

∞

x
Φ̃(x,y)eikydy = ω(−k,x)+

s21(k)
s11(k)

ω(k,x). (2.51)

Multiply (2.51) by s11(k), then

s11(k)ω(−k,x)+ s21(k)ω(k,x) = e∗(k,x), (2.52)

e∗(k,x) = s11(k)
{

eikx +
∫

∞

x
Φ̃(x,y)eikydy

}
. (2.53)

Replacing k by −k in (2.52), yields:

s11(−k)ω(k,x)+ s21(−k)ω(−k,x) = e∗(−k,x). (2.54)

Solving the system (2.52), (2.54) for ω(k,x), using conditions of s11(k) and s21(k), gives:

ω(k,x) = s11(k)e∗(−k,x)− s21(−k)e∗(k,x) (2.55)

In order to prove the identity (2.48), we need to prove that

e∗(k,x)≡ e(k,x). (2.56)

Indeed, if identity (2.56) will be proved, then due to (2.15) and (2.44), it follows from (2.55):

−ω
′′(k,x) =−s11(k)e′′(−k,x)+ s21(−k)e′′(k,x) = [k2− p(x)]ω(k,x),

because of (2.47), we obtain identity (2.48).
To prove identity (2.56), certain properties of the function e∗(k,x) should be established.

a./ The function e∗(k,x) defined by formula (2.53) admits an analytic continuation into the upper
half-plane Imk > 0. Using estimate (2.25) for large k, from (2.53) we obtain the following
estimate:

|e∗(k,x)− eikx|= O
(

e−xImk

|k|

)
as k→ ∞. (2.57)
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b./ The function ke∗(k,x) is continuous in the closed upper half-plane Imk ≥ 0 and in the neigh-
bourhood of the point k = 0, this function satisfies uniformly the estimate:

ke∗(k,x) = o(1) as k→ 0. (2.58)

By the Lemma 2.1, the continuity of function ke∗(k,x) follows from that of function ks11(k). In
proving estimate (2.58) two case may arise.

(1) The function s11(k) is bounded in neighborhood of point k = 0, in which case the function
e∗(k,x) is also bounded in a neighborhood of this point, therefore, ke∗(k,x)→ 0 as k→ 0.
Hence, the estimate (2.58) follows from the continuity of ke∗(k,x).

(2) The function s11(k) is not bounded in a neighborhood of the point k = 0, in which case
there exists a sequence kn→ 0 such that s11(kn)→ ∞. It follows from condition (2.32) that

limn→∞ kns11(kn) = O(1), limn→∞

s21(kn)

s11(kn)
=−1.

Putting k = kn in (2.51), passing to the limit as kn → 0, gives: 1+
∫

∞

x
Φ̃(x,y)dy = ω(0,x)−

ω(0,x) = 0. Therefore, limn→∞ kne∗(kn,x) = 0, which proves estimate (2.58) in this case too,
due to the continuity of the function ke∗(k,x).

c./

e∗(k,x)− eikx ∈ L2(−∞,∞). (2.59)

Since the function s11(k) satisfies the first estimate of (2.25) for large k, therefore it suffices to show
that e∗(k,x) is square integrable in a neighborhood of the point k = 0. We need to show that e∗(k,x)
is a bounded function in a neighborhood of the point k = 0. We write equality (2.52) in the form:

e∗(k,x) = [s11(k)+ s21(k)]ω(−k,x)+ s21(k)[ω(k,x)−ω(−k,x)].

Taking into account that: ks21(k) = o(1) as k→ 0, we get the estimate:

s21(k)[ω(k,x)−ω(−k,x)] =−2is21(k)sinkx−2i
∫ x

−∞

K−(x,ξ )s21(k)sinkξ dξ

=−2i
sinkx

k
[ks21(k)]−2i

∫ x

−∞

K−(x,ξ )
sinkξ

k
[ks21(k)]dξ

= O(x)+O
(∫ x

−∞

|ξ ||K−(x,ξ )||dξ |
)
= O(1) as k→ 0.

From this estimate and assumption (2.33), it follows that the function e∗(k,x) is bounded in a neigh-
borhood of the point k = 0. Thus, the assertion c./ is proved.

Fig. 1. The path of integration.
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Now we can prove identity (2.56). Consider a function [e∗(k,x)− eikx]e−iky for y < x, which is
analytic in the upper half-plane Imk > 0. Integrating this function along the contour represented
in Figure 1. Due to properties a./ and b./ of e∗(k,x), the integrals along the small and large semi-
circles tend to zero as ρ → 0 and R→ ∞. Hence, by also the property c./ and Cauchy’s Theorem:

limR→∞

∫ R

−R
[e∗(k,x)− eikx]e−ikydk = 0 for y < x. Due to the property c./, there exists a function

K∗(x,y):
1

2π

∫
∞

x
[e∗(k,x)− eikx]e−ikydk = K∗(x,y) for y > x. Hence, K∗(x,y), y > x is the inverse

Fourier transformation of the function e∗(k · x)− eikx, which belongs to the space L2(−∞,∞) and

e∗(k,x)− eikx =
∫

∞

x
K∗(x,y)eikydy. (2.60)

The Fourier transform (2.60) and its inverse Fourier transform map L2[x,∞) onto L2[x,∞) mutually
continuously one-to-one, therefore K∗(x,y) ∈ L2(x,∞). Dividing equality (2.55) by s11(k):

1
s11(k)

ω(k,x)− e−ikx =
∫

∞

x
K∗(x,ξ )e−ikξ dξ − s21(−k)

s11(k)

[
eikx +

∫
∞

x
K∗(x,ξ )eikξ dξ

]
. (2.61)

The function s11(k) is analytical in the upper half-planeImk > 0 and has no zero there, then the
function:

h(k,x) =
[

1
s11(k)

ω(k,x)− e−ikx
]

eiky =

[
e∗(−k,x)− s21(−k)

s11(k)
e∗(k,x)−e−ikx

]
eiky

= O

(
e−(y−x)Imk

|k|

)
as |k| → ∞, y > x,

is also analytical in this upper half-plane.

Multiply both sides of identity (2.61) by
1

2π
eiky, and integrate with respect to k, then due to the

analytical property of the function h(k,x) and its estimate, the left-hand side of the obtained equality
vanishes when y > x, while the right-hand side of this equality gives:

R(x+ y)+K∗(x,y)+
∫

∞

x
R(y+ξ )K∗(x,ξ )dξ .

Therefore, the function K∗(x,y) satisfies the integral fundamental equation (2.41). From the unique-
ness of a solution of Eq. (2.41), it follows that K∗(x,y) = K(x,y). Then by (2.43) and (2.60)
e∗(k,x) ≡ e(k,x). Since the solution of equation (2.41) is the kernel of the transformation opera-
tor, then it satisfies Eq. (2.9). Due to the uniqueness of solution of Eq. (2.9), the solution K(x,y)
of Eq. (2.41) is related to the potential by formula (2.48) and satisfies condition (2.49). There-
fore, the restored potential (2.48) belongs to the class S . Thus, the Schrödinger equation (2.4) is
restored with the potential (2.48) satisfying condition (2.49). In addition, the negative spectrum of
the restored equation is absent. Thus, the first assertion is proved.

We proceed to prove the second assertion. Let s11(k) and s21(k), −∞ < k < ∞ be any given
functions satisfying the sufficient conditions enumerated in Theorem 2.1. We prove that these given
functions are the scattering data of the SP (2.1)–(2.2) with the restored potential belonging to the
class S . In fact, consider the SP with the restored potential (2.48) satisfying condition (2.49). Let
s̃11(k) and s̃21(k) be scattering data, and let K̃(x,y), y> x be the kernel of the transformation operator
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of this considered SP. Then the function K̃(x,y) satisfies the equation for y > x:

R̂(x+ y)+ K̃(x,y)+
∫

∞

x
R̂(y+ξ )K̃(x,ξ )dξ = 0, R̂(x+ y) =− 1

2π

∫
∞

−∞

s̃21(−k)
s̃11(k)

eik(x+y)dk. (2.62)

Since the solutions K(x,y) and K̃(x,y) of Eqs. (2.41) and (2.62), respectively, satisfy the same inte-
gral equation (2.9) with the potential (2.48), then owing to the uniqueness of solution of Eq. (2.9),
we obtain the identity: K(x,y)≡ K̃(x,y) for y > x. Taking this identity into account and subtracting
Eq. (2.62) from Eq. (2.41), we have:

R(x+ y)− R̂(x+ y)+
∫

∞

x
[R(y+ξ )− R̂(y+ξ )]K(x,ξ )dξ = 0 for y > x, (2.63)

For a sufficiently large positive x = x0, the integral operator in homogeneous equation (2.63) is a
contracting operator in the space of functions bounded on the interval (x0,∞). Hence, for x≥ x0 and
y≥ x: R̂(x+ y)≡ R(x+ y), from which it follows that, R̂(x) = R(x) for x≥ 2x0. Therefore:

R(x+ y)− R̂(x+ y)+
∫ 2x0−y

x
[R(y+ξ )− R̂(y+ξ )]K(x,ξ )dξ = 0 for y > x. (2.64)

For fixed x0 and y, Eq. (2.64) is a Volterra homogeneous, therefore
R(x+ y)− R̂(x+ y)≡ 0 for any x and y≥ x, i.e., R̂(x) is identical to R(x), or, in expanded form:

1
2π

∫
∞

−∞

−s21(−k)
s11(k)

eikxdk =
1

2π

∫
∞

−∞

− s̃21(−k)
s̃11(k)

eikxdk, (2.65)

Then owing to uniqueness of expansion of a function in the Fourier integral:
s̃21(−k)
s̃11(k)

≡ s21(−k)
s11(k)

.

Since the functions s11(k) and s̃11(k) have no zeros in the upper half-plane Imk > 0, then s11(k) and

s̃11(k) are uniquely restorable from |R̃(k)|=
∣∣∣∣s21(−k)

s11(k)

∣∣∣∣, whence it follows that:

s11(k)≡ s̃11(k), s21(−k)≡ s̃21(−k), s12(k) =−R̃(k)s11(k), r̃(k) =−s11(−k)
s11(k)

R̃(−k).

Thus, the ratios: R̃(k) = −s12(k)
s11(k)

and r̃(k) =
s21(k)
s11(k)

satisfy conditions enumerated in Lemmas 2.2

and 2.3, respectively. Therefore, they are right- and left-reflection coefficients of the considered SP,
and Eq. (2.4) is restored precisely from R̃(k). Thus, the sufficiency of conditions of right-reflection
and left-reflection coefficients R̃(k) and r̃(k) is proved. The necessity of conditions of these coeffi-
cients has been established by Lemmas 2.1, 2.2 and 2.3. The proof of Theorem 2.1 is completed.
�

The KdV equation (1.1) is derived from the Lax condition for compatibility of two systems:

Yx =UY, Y = (y1,y2), (2.66)

Yt =VY, (2.67)

where U and V are the given matrices having the form:

U =

(
0 1

p−λ 0

)
, V =

(
px −4λ −2p

pxx− (4λ +2p)(p−λ ) −px

)
, k2 = λ .
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The potential p(x, t) for every t > 0 belongs to the class S , therefore the systems (2.66) and (2.67)
are compatible, i.e.,

y2xt = y2tx or y1xxt = y1xtx.

The above equality will be referred to as the compatibility condition for systems (2.66) and (2.67).
It is easy to verify that this compatibility condition is equivalent to the KdV equation (1.1). The
boundary conditions (1.2) are satisfied if and only if the system (2.67) along the line x = 0 takes the
form:

Yt =V0Y, V0 =

(
px(0, t) −4λ

4λ 2 −px(0, t)

)
, λ = k2. (2.68)

Upon differentiating equality (2.14) with respect to t, we have the equality:

Et(k,x, t) =Wt(k,x, t)s(k, t)+W (k,x, t)st(k, t), (2.69)

Substituting matrix expressions Et and Wt into equality (2.69), using conditions (1.2), we derive the
system of linear differential equations governing the time-dependence of s(k, t):

st(k, t) = 4ik3[s,σ3]+ px(0, t)σ1s(k, t), σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
. (2.70)

The time-dependence of the scattering matrix s(k, t) defined by system (2.70) implicitly depends on
the time t. This is the main difference between the IBVP (1.1)–(1.2)–(1.3) and the Cauchy problem,
therein lies the difficulty in passing from the Cauchy problem to this IBVP. The system (2.70)
is undetermined, because the function px(0, t) entering coefficients of this system is unknown. In
Sec. 3 we shall prove that the unknown object px(0, t) can be expressed through entries of the given
s(k).

3. The self-conjugate problem

The system (2.68) describes the time-evolution of the eigenfunction for the boundary point x = 0.
Using the linear change of dependent variables: Y (k, t) = J(k)ỹ(µ, t), we reduce (2.68) to the form:

ỹt(k, t) =
(
J−1V J

)
ỹ(k, t), (3.1)

where J is a matrix, which is to be taken so that J−1σ3J = σ1. From the equality: Jσ1 = σ3J, it

follows that the matrix J takes the form: J =

(
α α

−β β

)
, α and β are arbitrary constants and α 6= 0,

β 6= 0. Taking α = 1 and β =±ik, which are the roots of the equation: β +k2 = 0, we reduce system
(3.1) to the form:

ỹt(µ, t) =
(
±4iµσ3 + px(0, t)σ1

)
ỹ(µ, t), µ = k3. (3.2)

Let β =−ik, then the matrix J in (3.1) coincides with the matrix T (k) defined by:

J(k) =
(

1 1
ik −ik

)
= T (k), Y (k, t) = T (k)ỹ(µ, t), µ = k3, 0≤ t < ∞. (3.3)
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Thus, by virtue of the linear change of dependent variables given by (3.3), we lead system (3.2) into
the system of first-order ordinary differential equations on the half-line:

iσ3ỹt(µ, t)+C(t)ỹ(µ, t) = 4µ ỹ(µ, t), µ = k3, 0≤ t < ∞, (3.4)

where the potential matrix C(t) is self-conjugate:

C(t) =
(

0 c1(t)
c2(t) 0

)
=C(t), (3.5)

c1(t) =−ipx(0, t), c2(t) = ipx(0, t), the potential px(0, t) is a real-valued function.
Denote ỹ(µ, t) by y(µ, t) and consider the self-conjugate SP generated by system (3.4):

iσ3yt(µ, t)+C(t)y(µ, t) = 4µy(µ, t), µ = k3, 0≤ t < ∞ (3.6)

with the boundary condition at the origin t = 0:

y1(µ,0) = y2(µ,0). (3.7)

We also consider the problem for system (3.6) for real µ with boundary conditions at infinity:

y1(µ, t) = A(µ)e−4iµt +o(1), y2(µ, t) = B(µ)e4iµt +o(1), (t→ ∞). (3.8)

Assume that the potential function px(0, t) in (3.5) satisfies the estimate:

|px(0, t)| ≤
Const.

1+ t1+ε
, t > 0, ε > 0. (3.9)

The problems (3.6), (3.8) and (3.6)–(3.7) with the potential satisfying estimate (3.9) have been
solved in [14]. Since the potential matrix (3.5) is a particular case of the potential self-conjugate
matrix of the problem investigated in [14], then the following Propositions are deduced from corre-
sponding assertions proved in [14] without proving.

Proposition 3.1. The problem (3.6)–(3.7) has a unique bounded solution (y1(µ, t),y2(µ, t)) for real
µ such that for any given number A(µ) there exists a unique number B(µ) defined from A(µ) so
that the asymptotics (3.8) are satisfied. This solution has the representation:

y1(µ, t)=A(µ)e−4iµt
(

1+
∫

∞

0
H11(t, t+ξ)e−4iµξ dξ

)
+B(µ)e4iµt

∫
∞

0
H21(t, t+ξ )e4iµξ dξ ,

y2(µ, t)=A(µ)e−4iµt
∫

∞

0
H21(t, t+ξ )e−4iµξ dξ+B(µ)e4iµt

(
1+
∫

∞

0
H11(t, t +ξ )e4iµξ

)
,

(3.10)

where the matrix H(t,s) =
(

H11(t,s) H21(t,s)
H21(t,s) H11(t,s)

)
, 0≤ t ≤ s is an analog of kernel of the transfor-

mation operator. The functions H11(t,s) and H21(t,s) satisfy the estimate:∣∣H j1(t,s)
∣∣≤ Const.

1+(t + s)1+ε
, 0≤ t ≤ s, j = 1,2. (3.11)

Using condition (3.5), wherein the functions c1(t), c2(t) are pure imaginary functions, from the
integral equations for kernels we obtain that the solutions H jk(t,s), j, k = 1, 2 of these equations
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are real-valued functions, and

H11(t,s) = H22(t,s), H21(t,s) = H12(t,s), 0≤ t ≤ s.

The kernel function H21(t, t +ξ ) is related to the potential px(0, t) by the formula:

−2H21(t, t) = px(0, t) for t > 0. (3.12)

Proposition 3.2. There exist the bounded Jost solutions e(1)(µ, t) =
(

e(1)1 (µ, t),e(1)2 (µ, t)
)

and

e(2)(µ, t) = (e(2)1 (µ, t), e(2)2 (µ, t)) of system problem (3.6) with the boundary conditions at infin-
ity:

e(1)(µ, t)e4iµt = (1+o(1),o(1)), Im µ ≤ 0 (t→ ∞),

e(2)(µ, t)e−4iµt = (o(1),1+o(1)), Im µ ≥ 0 (t→ ∞).

By an argument analogous to problem (3.6)–(3.7) on the half-line 0 ≤ t < ∞, for any t ≥ 0 we
consider the problem generated by system (3.6) on a half-line t ≤ τ <∞ with the boundary condition
at τ = t:

z1(µ, t, t) = z2(µ, t, t), (3.13)

and the problem for this system with the boundary condition at infinity:

z1(µ,τ, t) = A(µ, t)e−4iµ(τ−t)+o(1), z2(µ,τ, t) = B(µ, t)e4iµ(τ−t)+o(1), (τ → ∞), t ≤ τ < ∞.

Definition 3.1. The one-to-one correspondence between numbers A(µ, t) and B(µ, t) determines
the scattering function S(µ, t): S(µ, t)A(µ, t) =B(µ, t),−∞< µ <∞ for the SP generated by system
(3.6) on the half-line: t ≤ τ < ∞ with condition (3.13).

By Definition 3.1 and using (3.10), (3.13), we derive the factorization of S(µ, t):

S(µ, t) = (1+H−(µ, t))(1+H+(µ, t))
−1 , −∞ < µ < ∞, (3.14)

where H−(µ, t) =
∫

∞

0 H(t,ξ )e−4iµξ dξ , H+(µ, t) =
∫

∞

0 H(t,ξ )e4iµξ dξ , H(t,ξ ) = H11(t, t + ξ )−
H21(t, t +ξ ) and H j1(t, t +ξ ), j = 1,2 satisfies estimate (3.11).
By virtue of estimate (3.11) and the self-conjugate property of matrix (3.5), the function H(t,ξ ) is
absolutely integrable with respect to ξ , the numerator 1+H−(µ, t) and denominator 1+H+(µ, t)
of ratio (3.14) are different from zero and analytic in the half-planes Im µ ≤ 0 andIm µ ≥ 0, respec-
tively. There exists an absolutely integrable with respect to ξ function K(t,ξ ) such that(

1+
∫

∞

0
H(t,ξ )e4iµξ dξ

)−1

= 1+
∫

∞

0
K(t,ξ )e4iµξ dξ .

Furthermore, for any t ≥ 0 the scattering function S(µ, t) possesses the property:

S(µ, t) = S−1(µ, t) = S(−µ, t), −∞ < µ < ∞. (3.15)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

415



P.L. Vu / The description of reflection coefficients of the scattering problems . . .

Proposition 3.3. For any t ≥ 0 the scattering functions S(µ, t)− 1 and S−1(µ, t)− 1 for the SP
(3.6), (3.13) are the Fourier transformations:

S(µ, t) = 1+F(µ, t) = 1+
∫

∞

−∞

f (t,ξ )e4iµξ dξ , (3.16)

S−1(µ, t) = 1+G(µ, t) = 1+
∫

∞

−∞

g(t,ξ )e4iµξ dξ , (3.17)

where f (t,ξ ) and g(t,ξ ) are real-valued functions defined by the formulas:

f (t,ξ ) = H(t,−ξ )+K(t,ξ )+
∫

∞

0
K(t,ζ )H(t,ζ −ξ )dζ , (3.18)

g(t,ξ ) = H(t,ξ )+K(t,−ξ )+
∫ 0

−∞

K(t,−ζ )H(t,ξ −ζ )dζ . (3.19)

Proposition 3.4. There exists uniquely a solution ϕ(µ, t) = (ϕ1(µ, t),ϕ2(µ, t)) of (3.6) with the
initial condition: ϕ1(µ,0) = ϕ2(µ,0) = 1. The function ϕ(µ, t) is entire analytic of µ , and:

D−1(µ)ϕ(µ, t) = e(1)(µ, t)+S(µ)e(2)(µ, t), Im µ ≥ 0,

N−1(µ)ϕ(µ, t) = S−1(µ)e(1)(µ, t)+ e(2)(µ, t), Im µ ≤ 0,
(3.20)

where N(µ) = e(1)1 (µ,0)− e(1)2 (µ,0) = 1+H−(µ,0) 6= 0 for Im µ ≤ 0,

D(µ) = e(2)2 (µ,0)− e(2)1 (µ,0) = N(µ) 6= 0 for Im µ ≥ 0,

N(µ) = 1+o(1) (|µ| → ∞), D(µ) = 1+o(1) (|µ| → ∞), (3.21)

S(µ) =
N(µ)

D(µ)
, S−1(µ) = S(µ) = S(−µ), −∞ < µ < ∞,

Proposition 3.5. For any t ≥ 0 the functions f (t,ξ ) and g(t,ξ ) defined by (3.18) and (3.19) are
closely related to f (ξ ) and g(ξ ), respectively by the formula:

f (t,ξ ) = f (ξ −2t) for ξ < 0, g(t,ξ ) = g(ξ +2t) for ξ > 0,

f (−ξ −2t) = g(ξ +2t) for ξ > 0. (3.22)

The functions f (−ξ ) and g(ξ ), ξ > 0 satisfy the estimate of the type (3.9):

| f (−ξ )| ≤ const
1+ξ 1+ε

, |g(ξ )| ≤ const
1+ξ 1+ε

, ξ > 0, ε > 0.

Proposition 3.6. For every fixed t ≥ 0 the following Fredholm system:{
H22(t, t +ξ )+

∫
∞

0 H21(t, t +ζ )g(2t +ξ +ζ )dζ = 0,
g(2t +ξ )+H21(t, t +ξ )+

∫
∞

0 H22(t, t +ζ )g(2t +ξ +ζ )dζ = 0
(3.23)

has a unique solution H22(t, t +ξ ), H21(t, t +ξ ) in the space L1[0,∞).

Proposition 3.7. For the given function S(µ) to be the scattering function for the self-conjugate
problem (3.6)–(3.7), it is necessary and sufficient that there exists a function S(µ, t) such that S(µ)=
S(µ,0) and

1. the function S(µ, t) admits the factorization of the form (3.14);
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2. for any t ≥ 0 the functions S(µ, t)− 1 and S−1(µ, t)− 1 are the Fourier transformations (3.16)
and (3.17) of the functions (3.18) and (3.19), respectively;

3. for any t ≥ 0 the functions f (t,ξ ) and g(t,ξ ) are closely related to f (−ξ ) and g(ξ ) by formula
(3.22), respectively. f (−ξ ) and g(ξ ) are real-valued functions satisfying the estimate of type
(3.9).

To solve the inverse SP (3.6)–(3.7) for finding the unknown object px(0, t), we need to find the
unknown scattering function S(µ) of this problem first. To find S(µ), we express the function S(µ)
through known elements of the scattering matrix s(k) of the SP (2.1)–(2.2). This is the key step to
recover the potential matrix (3.5), i.e., the system (3.6).

n1

n2n3

n4

n5 n6

N1

N2

N3

N4

N5

N6

Fig. 2. The conjugation contour.

The matter is that the first SP (2.1), (2.2) and the second SP (3.6)–(3.7) are formulated on
two different spectral planes. The first SP is considered on the k-plane, whereas the second SP is
considered on the µ-plane, (µ = k3). To compare functions on the k-plane with those on the µ-
plane, we use the conjugation contour. The contour Im µ = Imk3 = 0 splits into a system of rays
{n j}6

j=1 coming from the origin of the k-plane with the slope angles γ j = ( j− 1)π/3 with respect
to the positive direction of the line Imk = 0. We denote by N j the interior sector confined between
the rays n j+1 and n j (see the Figure 2). Taking into account that arg µ = argk3 = 3argk, we have:

If k ∈ N1∪N3∪N5, then Im µ > 0. (3.24)

If k ∈ N2∪N4∪N6, then Im µ < 0. (3.25)

We compose the matrix functions ψ+(µ, t) and ψ−(µ, t) according to the rule:

ψ
+(µ, t) =

(
ϕ(µ, t)
D(µ)

,e(2)(µ, t)
)

e4iµtσ3 for k ∈ N1∪N3∪N5, (3.26)

ψ
−(µ, t) =

(
e(1)(µ, t),

ϕ(µ, t)
N(µ)

)
e4iµtσ3 for k ∈ N2∪N4∪N6. (3.27)

Since the matrix functions
(

ϕ(µ,t)
D(µ) ,e

(2)(µ, t)
)

and
(

e(1)(µ, t), ϕ(µ,t)
N(µ)

)
satisfy system (3.6), then the

matrix functions ψ+(µ, t) and ψ−(µ, t) satisfy system (2.70). Hence, all the matrix functions s(k, t),
ψ+(µ, t) and ψ−(µ, t) satisfy the same system (2.70). It is easily persuaded that the functions
ψ+(µ, t) and ψ−(µ, t) are the fundamental solutions of system (2.70). Denote the columns of s(k, t)
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by s1(k, t) = (s11(k, t),s21(k, t)), s2(k, t) = (s12(k, t),s22(k, t)). Both columns are solutions of sys-
tem (2.70), but they are defined in different half-planes, therefore we consider them separately for
convenience. Every column solution s j(k, t), j = 1, 2 can be represented in a form:

s1(k, t) = ψ
+(µ, t)

(
α(k, t)
β (k, t)

)
for k ∈ N1∪N3, (3.28)

s1(k, t) = ψ
−(µ, t)

(
α(k, t)
β (k, t)

)
for k ∈ N2, (3.29)

s2(k, t) = ψ
−(µ, t)

(
α(k, t)
β (k, t)

)
for k ∈ N4∪N6, (3.30)

s2(k, t) = ψ
+(µ, t)

(
α(k, t)
β (k, t)

)
for k ∈ N5, (3.31)

where the coefficients α(k, t) and β (k, t) are unknown, which will be defined below.
The functions s1(k, t) and s2(k, t) are defined in the half-planes Imk ≥ 0 and Imk ≤ 0, respectively.
We compose the matrix functions Φ+ and Φ− by columns of matrices (2.5) and (2.6) at x = 0
according to the rule:

Φ
+(k,0, t) =

(
s−1

11 (k, t)E
+(k,0, t),W+(k,0, t)

)
Imk > 0,

Φ
−(k,0, t) =

(
W−(k,0, t),s−1

22 (k, t)E
−(k,0, t)

)
Imk < 0.

Using the consistency condition for systems (2.66) and (2.67) in the quarter of the plane x ≥ 0,
t ≥ 0, we calculate α(k,0) and β (k,0). In view of system (2.68) for the eigenfunction along the line
x = 0 and the change of variables (3.3), this consistency condition means that the matrix functions
T (k)ψ+(µ, t), T (k)ψ−(µ, t) defined on µ-plane and Φ+(k,0, t), Φ−(k,0, t) defined on k-plane must
be consistent at the corner point (x, t) = (0,0) for all values of k. Making use of this fact, we
calculate α(k,0) and β (k,0) for k ∈ N j, j = 1,2, . . . ,6, [11]:

α(k,0) = s11(k,0)− r12(ω
2k)s21(k,0), β (k,0) = s21(k,0) for k ∈ N1, (3.32)

α(k,0) = s11(k,0), β (k,0) = 0 for k ∈ N2, (3.33)

α(k,0) = s11(k,0)− r12(ωk)s21(k,0), β (k,0) = s21(k,0) for k ∈ N3, (3.34)

α(k,0) = s12(k,0), β (k,0) = s22(k,0)− r21(ω
2k)s12(k,0) for k ∈ N4, (3.35)

α(k,0) = 0, β (k,0) = s22(k,0) for k ∈ N5, (3.36)

α(k,0) = s12(k,0), β (k,0) = s22(k,0)− r21(ωk)s12(k,0) for k ∈ N6. (3.37)

Using formula (3.21), (3.26) and (3.27), from (3.28)–(3.31) for t = 0, we get:

D(µ)β (k,0) =
{

s21(k,0)− s11(k,0) for k ∈ N1∪N3

s22(k,0)− s12(k,0) for k ∈ N5
(3.38)

N(µ)α(k,0) =
{

s12(k,0)− s22(k,0) for k ∈ N4∪N6

s11(k,0)− s21(k,0) for k ∈ N2.
(3.39)

Here the coefficients α(k,0), β (k,0) are calculated by formulas (3.32)–(3.37):

β (k,0) = s21(k,0) for k ∈ N1∪N3, α(k,0) = s12(k,0) for k ∈ N4∪N6, (3.40)

β (k,0) = s22(k,0) for k ∈ N5, α(k,0) = s11(k,0) for k ∈ N2. (3.41)
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Due to (2.20), from (3.40) we have the asymptotics as |k| → ∞:

β (k,0) = s21(k,0)→ 0 for k ∈ N1∪N3, α(k,0) = s12(k,0)→ 0 for k ∈ N4∪N6,

but the equalities (3.38) for k ∈N1∪N3 and (3.39) for k ∈N4∪N6 do not tend to zero when |k| →∞.
Thus, the sought coefficients β (k,0)and α(k,0) in (3.38) and (3.39) are determined by formulas
(3.41). The equalities (3.38) for all k ∈ N5 and (3.39) for all k ∈ N2 are derived for establishing
relationship between the sought quantities N(µ), D(µ) and entries si j(k) of the known scattering
matrix s(k). From these derived equalities, using Lemma 2.1, we obtain the formulas for calculating
the sought quantities expressed through given entries of s(k):

D(µ) = 1− s12(k,0)
s22(k,0)

for k ∈ N5, Im µ > 0, (3.42)

N(µ) = D(µ) = 1− s21(k,0)
s11(k,0)

for k ∈ N2, Im µ < 0. (3.43)

Using the self-conjugate property of the SP (3.6)–(3.7) and (2.16), (2.19), (2.20) we get:

D(µ) = 1− ike(−k)+ ex(−k)
ike(−k)− ex(−k)

= 2+o(1) as k→ 0, D(µ) = 1+o(1) as |µ| → ∞,

N(µ) = 1− ike(k)− ex(k)
ike(k)+ ex(k)

= 2+o(1) as k→ 0, N(µ) = 1+o(1) as |µ| → ∞,

S(µ) =
N(µ)

D(µ)
, S(µ) = S−1(µ) = S(−µ) −∞ < µ < ∞. (3.44)

Hence, the found quantities D(µ), N(µ) and S(µ) satisfy all properties assembled in Proposi-
tion 3.4.

4. The time-evolution of s(k, t) and solution of the IBVP

The differential equations for functions s1(k, t) and s2(k, t) are derived from system (2.70) for
columns of the matrix s(k, t):

d
dt

(
s11(k, t)
s21(k, t)

)
= 8ik3

(
0

s21(k, t)

)
+ px(0, t)

(
s21(k, t)
s11(k, t)

)
, Imk ≥ 0, (4.1)

d
dt

(
s12(k, t)
s22(k, t)

)
=−8ik3

(
s12(k, t)

0

)
+ px(0, t)

(
s22(k, t)
s12(k, t)

)
, Imk ≤ 0. (4.2)

Further, differentiating equality (3.28) with respect to t and taking into account that the matrix
functions s(k, t) and ψ+(µ, t) =

[
ψ

+
i j (µ, t)

]
satisfy the same system (2.70), gives:

d
dt

(
s11(k, t)
s21(k, t)

)
=

{
8ik3

(
0 −ψ

+
12(µ, t)

ψ
+
21(µ, t) 0

)
+ px(0, t)σ1ψ

+(µ, t)
}
×(

α(k, t)
β (k, t)

)
+ψ

+(µ, t)
d
dt

(
α(k, t)
β (k, t)

)
, k ∈ N1.
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By comparison of the last equality with equality (4.1), using (3.28) for k ∈ N1 we derive the evolu-
tion equation:

d
dt

(
α(k, t)
β (k, t)

)
= 8ik3

β (k, t)
(
ψ

+(µ, t)
)−1
(

ψ
+
12(µ, t)

ψ
+
22(µ, t)

)
=

8ik3
β (k, t)(ψ+(µ, t)−1(ψ+(µ, t))

(
0
1

)
= 8ik3

β (k, t)
(

0
1

)
, k ∈ N1. (4.3)

Using (3.32), from (4.3) we obtain the explicit formulas for the coefficient
(
α(k, t),β (k, t)

)
:

α(k, t) = α(k,0) = s11(k,0)− r12(ω
2k)s21(k,0), β (k, t) = s21(k,0)e8ik3t for k ∈ N1.

Thus, the evolution in time t, t > 0 of s1(k, t) for k ∈ N1 is derived from (3.28) with this coefficient:

s1(k, t) = ψ
+(µ, t)

(
s11(k,0)− r12(ω

2k)s21(k,0)
s21(k,0)e8ik3t

)
for k ∈ N1. (4.4)

In the same way as in the previous case, by using (4.1), (4.2), (3.28)–(3.31) and (3.33)–(3.37),
analogously derive:

s1(k, t) = ψ
−(µ, t)

(
s11(k,0)

0

)
for k ∈ N2, (4.5)

s1(k, t) = ψ
+(µ, t)

(
s11(k,0)− r12(ωk)s21(k,0)

s21(k,0)e8ik3t

)
for k ∈ N3. (4.6)

s2(k, t) = ψ
−(µ, t)

(
s12(k,0)e−8ik3t

s22(k,0)− r21(ω
2k)s12(k,0)

)
for k ∈ N4, (4.7)

s2(k, t) = ψ
+(µ, t)

(
0

s22(k,0)

)
for k ∈ N5, (4.8)

s2(k, t) = ψ
−(µ, t)

(
s12(k,0)e−8ik3t

s22(k,0)− r21(ωk)s12(k,0)

)
for k ∈ N6 (4.9)

Hence, the obtained columns s1(k, t) and s2(k, t) are expressible by expansion formulas (4.4)–(4.6)
and (4.7)–(4.9), respectively in their sectors in terms of entries of s(k,0) and fundamental solutions
ψ±(µ, t) of system (2.70). The solutions Ψ±(µ, t) are calculated from known conditions (1.2) and
(1.3). The condition t ≥ 0 is important precisely here. Indeed, for t < 0 the functions s1(k, t) and
s2(k, t) are therefore, no longer bounded at infinity of t.

We are now to solve the IBVP (1.1)–(1.3). By Theorems 2.1 and results presented in Secs. 3 and
4, this problem is reduced to that of solving the GLM time-dependent equation (2.41):

R(x+ y, t)+K(x,y, t)+
∫

∞

x
R(y+ξ , t)K(x,ξ , t)dξ = 0 for y > x, t ≥ 0, (4.10)

where x and t enter Eq. (4.10) as parameters, K(x,y, t), y > x is an unknown function of y for every
(x, t) ∈ [0,∞)× [0,∞), and R(x+ y, t) is the function defined by (2.40) for y > x, t > 0:

R(x+ y, t) =
1

2π

∫
∞

−∞

eik(x+y)R̃(k, t)dk, R̃(k, t) =−s12(k, t)
s11(k, t)

, s12(k, t) = s21(−k, t), (4.11)

and for every t > 0 the functions s11(k, t) and s21(k, t) satisfy the sufficient conditions of Theorem
2.1.
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From the unique solvability of Eq. (2.41), it follows that for every t ≥ 0 the Eq. (4.10) has a unique
solution in either L2[x,∞) or L1[x,∞). By condition (2.38) and Parseval’s relation, we find that
‖R‖L2 < 1 in L2[x,∞). Consequently, Eq. (4.10) can be solved by the method of successive approx-
imations. The solution of Eq. (4.10) may be represented as a convergent Neumann series:

K(x,y; t) =−R(x+ y, t)+
∫

∞

x
R(y+ξ1; t)R(x+ξ1, t)dξ1

−
∫

∞

x
R(ξ2 + y, t)dξ2

∫
∞

x
R(ξ1 +ξ2, t)R(x+ξ1, t)dξ1 + · · · (4.12)

The solution p(x, t) of the IBVP (1.1)–(1.3) is constructed by formula (2.11) expressed through the
solution (4.12) of Eq. (4.10):

p(x, t) =−2
d
dx

K(x,x; t). (4.13)

Hence, the solution (4.13) of Eq. (1.1) corresponding to solution (4.12) of Eq. (4.10) is determined
by:

p(x, t) = 2
d
dx

R(2x, t)+2R2(2x, t)−4
{∫

∞

x
R(x+ξ , t)Rx(x+ξ , t)dξ+

R(2x, t)
∫

∞

x
R2(x+ξ , t)dξ −

∫
∞

x
Rx(x+ξ2, t)dξ2

∫
∞

x
R(ξ1 +ξ2, t)R(x+ξ1, t)dξ1

}
+ · · · (4.14)

One can verify directly that the solution (4.14) satisfies Eq. (1.1) to any desired order in powers of
R. The presentation (4.14) in formality is similar to that of the solution of the KdV equation with the
positive coefficient of the dispersive term on the whole-line, that evolves from a purely continuous
spectrum, [9].
By Theorem 2.1 the solution of Eq. (4.10) coincides with the kernel of the transformation operator
of the SP (2.1)–(2.2) with potential (4.14). Hence, p(x, t) determined by (4.14) belongs to the class
S , and therefore it satisfies condition (2.49).

Consider the asymptotic behaviour of s1(k, t) and s2(k, t) at infinity of time (t). Substituting
(3.26) into (4.4), (4.6) and (4.8), using Propositions 3.2, and 3.4 gives:(

s11(k, t)
s21(k, t)

)
=

(
s11(k,0)− r12s21(k,0)+o(1)

o(1)

)
as t→ ∞ for k ∈ N1∪N3, Imk3 > 0,(

s12(k, t)
s22(k, t)

)
=

(
o(1)

s22(k,0)+o(1)

)
as t→ ∞ for k ∈ N5, Imk3 < 0,

where r12 = r12(ω
2k) for k ∈ N1 and r12 = r12(ωk) for k ∈ N3.

Substituting (3.27) into (4.5), (4.7) and (4.9), using Propositions 3.2, and 3.4, gives:(
s11(k, t)
s21(k, t)

)
=

(
s11(k,0)+o(1)

o(1)

)
as t→ ∞ for k ∈ N2, Imk3 > 0,(

s12(k, t)
s22(k, t)

)
=

(
o(1)

s22(k,0)− r21s12(k,0)+o(1)

)
as t→ ∞ for k ∈ N4∪N6, Imk3 < 0,

where r21 = r21(ω
2k) for k ∈ N4 and r21 = r21(ωk) for k ∈ N6.
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From the obtained asymptotics it follows that R̃(k, t) = o(1), r̃(k, t) = o(1) as t→ ∞. Hence, R(x+
y, t) = o(1) as t→ ∞ and for any x > 0:

p(x, t) = o(1) as t→ ∞. (4.15)

It is known that if the spectrum of Eq. (2.4) is purely continuous, then the asymptotic solution p as
t → ∞ of the KdV equation on the whole line is still slowly varying wave train, oscillating about
p = 0, (see [9]). Hence, the asymptotic solution (4.15) at infinity of t of the IBVP (1.1)–(1.3) is
different from that of the KdV equation on the whole line.

5. Exact soliton-solutions of the Cauchy problem for the KdV equation

We consider the Cauchy problem for the KdV equation:

pt −6ppx + pxxx = 0, (x, t) ∈ [0,∞)× (−∞,∞), (5.1)

with the known initial condition:

p(x,0) = p(x), (5.2)

where p(x, t) is a real-valued function satisfying the condition for any t ∈ (−∞,∞) and some ε > 0:∫
∞

0
eεx|p(x, t)|dx < ∞. (5.3)

The Cauchy problem (5.1)–(5.2) is associated with the SP for the Schrödinger equation:

−yxx + p(x, t)y = ρ
2y, (x, t) ∈ [0,∞)× (−∞,∞) (5.4)

with the boundary condition:

y(ρ,0; t) = 0, (5.5)

where the potential p(x, t) is a real-valued function satisfying the condition (5.3).

5.1. The direct and inverse SP (5.4)–(5.5)

The SP (5.4)–(5.5) with the potential p(x) satisfying condition (5.3) has been investigated in the
works [6,7]. In the subsection 5.1 we recall the known results of this SP from these works and omit
the proof.
Eq. (5.4) with the potential p(x) satisfying condition (5.3) has a solution e(ρ,x), which for each
x ≥ 0 is a holomorphic function of ρ when Imρ > − ε

2 and satisfies the asymptotic condition as
x→ ∞:

e(ρ,x) = eiρx[1+o(1)], e′x(ρ,x) = eiρx[iρ +o(1)]. (5.6)

For each ρ0 > 0 Eq. (5.4) has a solution e1(ρ,x), which for each x ≥ 0 is holomorphic function of
ρ in the domain |ρ|> ρ0,Imρ > 0, and satisfies the asymptotic condition as x→ ∞:

e1(ρ,x) = e−iρx[1+o(1)], e′1x(ρ,x) = e−iρx[−iρ +o(1)]. (5.7)

uniformly in ρ in the domain |ρ|> ρ0 > 0.
The functions e(ρ,x),e(−ρ,x) and e(ρ,x),e1(ρ,x) form the fundamental systems of solutions of
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Eq. (5.4) and their Wronskians are equal to:

W [e(ρ,x),e(−ρ,x)] =−2iρ for |Imρ|< ε

2
, (5.8)

W [e(ρ,x),e1(ρ,x)] =−2iρ for |ρ|> ρ0, Imρ > 0, ρ0 > 0. (5.9)

The solutions of Eq. (5.4) can be represented in the form:

e(ρ,x) = eiρx +
∫

∞

x
K(x,ξ )eiρξ dξ , (5.10)

where the kernel K(x,ξ ) has first-order continuous partial derivatives with respect to x and ξ .
Denote by ω(ρ,x) the solution of the eigenvalue problem generated by Eq. (5.4):

−ωxx(ρ,x)+ p(x)ω(ρ,x) = ρ
2
ω(ρ,x), x ∈ [0,∞) (5.11)

with the initial conditions:

ω(ρ,0) = 0, ωx(ρ,0) = 1. (5.12)

By virtue of (5.8) and (5.9), the solution of the problem (5.11)–(5.12) is represented in the form:

ω(ρ,x) =
e(−ρ)e(ρ,x)− e(ρ)e(−ρ,x)

2iρ
for |Imρ|< ε

2
, (5.13)

ω(ρ,x) =
e1(ρ)e(ρ,x)− e(ρ)e1(ρ,x)

2iρ
for |ρ|> ρ0, ρ > 0, (5.14)

where e(ρ) = e(ρ,0) and e1(ρ) = e1(ρ,0).
Differentiating the equality (5.14) with respect to x, using the initial condition (5.12), we have:

e1(ρ) =
2iρ + e(ρ)e′1x(ρ)

e′x(ρ)
for |ρ|> ρ0, ρ > 0. (5.15)

By L we mean the operator generated in the space L2[0,∞) by Eq. (5.4) and boundary condition
(5.5). The potential p(x) in the operator L is a real-valued function. Consider an eigenfunction
Ω(ρ,x) of the operator L normalized in the following way:

Ω(ρ,x) =
2iρω(ρ,x)

e(ρ)
, Imρ >−ε

2
. (5.16)

By (5.13) and (5.14), the normalized eigenfunction Ω(ρ,x) is represented in the form:

Ω(ρ,x) = S(ρ)e(ρ,x)− e(−ρ,x) for |Imρ|< ε

2
,

Ω(ρ,x) = S1(ρ)e(ρ,x)− e1(ρ,x) for |ρ|> ρ0,

where

S(ρ) =
e(−ρ)

e(ρ)
for |Imρ|< ε

2
,

S1(ρ) =
e1(ρ)

e(ρ)
for |ρ|> ρ0, Imρ > 0.

(5.17)

The functions S(ρ) and S1(ρ) are called the scattering function and the reflection coefficient of the
operator L, respectively.
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Since the potential in Eq. (5.11) is a real-valued function satisfying estimate (5.3), then all the zeros
ρ j of the function e(ρ) are simple and lie on the imaginary axis, i.e., ρ j = iµ j, µ j > ε0 > 0, j =
1, . . . ,N. By virtue of this fact, using the expression (5.15), we calculate:

f j(x) = iRes|ρ=iµ j

{
e1(ρ)

e(ρ)
eiρx
}

= iRes|ρ=iµ j

{
2iρ + e(ρ)e′1x(ρ)

e(ρ)e′x(ρ)
eiρx
}

= iRes|iµ j

{
2iρeiρx

e(ρ)e′x(ρ)

}
= i

2i(iµ j)e−µ jx

e′ρ(iµ j)e′x(iµ j)
, (5.18)

where eµ jx f j(x) is expressed through the square of norm m−62
j of the Jost solution e(iµ j,x) in

L2[0,∞), [7]:

eµ jx f j(x) =−
2iµ j

e′ρ(iµ j)e′x(iµ j)
=

(∫
∞

0
|e(iµ j,x)|2dx

)−1

= m2
j > 0, j = 1, . . . ,N. (5.19)

We introduce the function:

FS(x) =
1

2π

∫ +∞+iη

−∞+iη
[S(ρ)−1]eiρxdρ, (5.20)

where η is a number satisfying the equality: 0 < η < ε0.
The integral (5.20) is applied to analytic function S(ρ)−1 in the strip 0 < |Imρ|< ε0, therefore its
value will not depend on η .
The function FS(x) like the scattering function S(ρ), is a spectral characteristic of the operator L on
its continuous spectrum. While the functions f j(x) defined by (5.18) characterize the operator L on
its point spectrum.
The scattering function S(ρ), the nonsingular numbers iµ j, . . . , iµN and the normalization multipli-
ers m2

1, . . . ,m
2
N are called the scattering data of the operator L. The scattering data are not indepen-

dent of each other. The scattering data uniquely determine the self-adjoint operator L. To reconstruct
this operator from the scattering data, we construct the function [7]:

F(x) = FS(x)+
N

∑
j=1

f j(x) = FS(x)+
N

∑
j=1

m2
je
−µ jx. (5.21)

The kernel K(x,y) from (5.10) satisfies the GLM equation:

F(x+ y)+K(x,y)+
∫

∞

x
K(x,ξ )F(y+ξ )dξ = 0, 0≤ x < y < ∞. (5.22)

Eq. (5.22) has a unique solution K(x,y), and the potential p(x) is recovered through the found
solution by the equality [7]:

p(x) =−2
d
dx

K(x,x), x≥ 0. (5.23)

where the reconstructed function (5.23) is real-valued and satisfies the same estimate (5.3), as the
estimate for the potential in the Schrödinger equation (5.4).
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5.2. Non-scattering potentials

There exists a remarkable class of potentials, for which Eq. (5.22) can be solved exactly. These
are non-scattering potentials on the half-line, for which the inverse Fourier transform FS(x) defined
by (5.20) in the sense of generalized functions is equal to zero, [12]. Hence, in the class of non-
scattering potentials the functions FS(x) and F(x) defined by (5.20) and (5.21), respectively, are

FS(x) = 0, F(x) =
N

∑
j=1

m2
je
−µ jx. (5.24)

Our definition of non-scattering potential is similar to the definition of reflectionless of potentials,
for which the reflection coefficient is identically zero [8].
Under the condition (5.24) Eq. (5.22) can be solved exactly. Indeed, the solution K(x,y) of this
equation is to be sought in the form:

K(x,y) =
N

∑
j=1

K j(x)e−µ jy, 0≤ x≤ y, µ j > ε0, j = 1, . . . ,N. (5.25)

Substituting (5.25) into Eq. (5.22), after some simple transformations, we obtain a system of linear
algebraic equations for K j(x):

K j(x)+ f j(x)
N

∑
n=1

e−µnx

µn +µ j
Kn(x) =− f j(x), j = 1, . . . ,N (5.26)

Let D(x) denote an N×N square matrix consisting of the elements:

D jn(x) = δ jn + f j(x)
e−µnx

µn +µ j
, j, n = 1, . . . ,N. (5.27)

From linear algebra, we know that the solution of the system (5.26) is

K j(x) =
detD( j)(x)
detD(x)

, j = 1, . . . ,N.

where D( j)(x) stands for the matrix obtained from the matrix D(x) on substituting the elements in
its j-th column by the elements − fn(x):

D( j)
n j (x) =− fn(x) =−m2

ne−µnx, n = 1, . . . ,N.

Since the potential p(x) is determined by K(x,x), then we calculate it with the help of (5.25):

K(x,x) =
(

detD(x)
)−1 N

∑
j=1

detD( j)(x)e−µ jx, x≥ 0.

Using the rule of differentiation of determinants, we find that the numerator in this expression is

equal to the derivative of detD(x), because K(x,x) =
d
dx

lndetD(x). Hence, the formula (5.23) for

the potential p(x) in the class of non-scattering potentials is written in a compact form:

p(x) =−2
d2

dx2 lndetD(x), x≥ 0. (5.28)

The expression (5.28) completely describes the whole family of non-scattering potentials.
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5.3. The time-dependence of the reflection coefficient

It is known that the KdV equation (5.1) is identical to the equation defined by the Lax representation
[8]:

L̇ = [L,A] = LA−AL, (5.29)

where L = − d2

dx2 + p, A = 4 d3

dx3 − 3px− 6p d
dx − γ , L̇ is derivative of L(t) with respect to t, and γ is

some constant, which will be determined below.
The potential p(x, t) in the operator L(t) is called isospectral if the spectrum of L(t) is invariant with
t, i.e., λ̇ = 0. The Lax pair for the KdV equation (5.1) consists of the operator L(t) for the spectral
problem and the operator A governing the time-dependence of eigenfunctions. Namely,

LΩ = λΩ, λ = ρ
2, Imρ >−ε

2
, (5.30)

Ω̇ =−AΩ, (x, t) ∈ [0,∞)× (−∞,∞), (5.31)

where Ω is the normalized eigenfunction defined by (5.16).
Differentiating Eq. (5.30) with respect to t and using (5.31), we have:

L̇Ω+LΩ̇ = L̇Ω−LAΩ = λ̇Ω+λ Ω̇ = λ̇Ω−λAΩ,
{

L̇− (LA−AL)
}

Ω = λ̇Ω. (5.32)

It follows from (5.32) that the Lax representation (5.29) for the nontrivial eigenfunction Ω holds if
and only if λ̇ = 0.

Lemma 5.1. If the potential p(x, t) in the operator L(t) satisfies the KdV equation (5.1), then the
time-dependence of the normalization eigenfunction (5.16) is defined by the evolution equation:

Ω̇ =

(
4iρ3−4

d3

dx3 +6p
d
dx

+3px

)
Ω, Imρ >−ε

2
, (x, t) ∈ [0,∞)× (−∞,∞) (5.33)

and the reflection coefficient S1(ρ; t) evolves according to the equation:

S1(ρ; t) =
e1(ρ; t)
e(ρ; t)

=
e1(ρ)

e(ρ)
e8iρ3t for |ρ|> ρ0, Imρ > 0, t ∈ (−∞,∞). (5.34)

Proof. Let the potential p(x, t) in L(t) satisfy the KdV equation (5.1), then the time-dependence
of the normalized eigenfunction (5.16) is given by the evolution equation (5.31). Using (5.29), we
write Eq. (5.31) in the form:

Ω̇ = (γ− px)Ω+(4λ +2p)Ωx, λ = ρ
2. (5.35)

Due to (5.6) and (5.7) the normalization eigenfunction (5.16) obeys the asymptotic condition as
x→ ∞:

Ω(ρ,x; t) =
e1(ρ; t)
e(ρ; t)

eiρx− e−iρx +o(1) for |ρ|> ρ0 > 0, Imρ > 0. (5.36)

Since p(x, t) is a solution of the KdV equation (5.1), then the potential p(x, t) is a isospectral poten-
tial. Using this fact and (5.3), (5.36), in (5.35) letting x tend to ∞, we find

d
dt

(
e1(ρ; t)
e(ρ; t)

)
eiρx = γ

(
e1(ρ; t)
e(ρ; t)

eiρx− e−iρx
)
+4iρ3

(
e1(ρ; t)
e(ρ; t)

eiρx + e−iρx
)
,
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whence, it follows that for |ρ|> ρ0 > 0, Imρ > 0:

−γe−iρx +4iρ3e−iρx = 0,

d
dt

(
e1(ρ; t)
e(ρ; t)

)
eiρx =

(
γ +4iρ3)e1(ρ; t)

e(ρ; t)
eiρx. (5.37)

Hence, γ = 4iρ3, and the time-dependence of the functions Ω and S1 defined by evolution equations
(5.33) and (5.34) are deduced from (5.31) and (5.37), respectively. The lemma is proved. �

The Lemma 5.1 enables us to find the time-dependent potential p(x, t) in the class of non-
scattering potentials. In fact, the time-dependent matrix D(x; t) is obtained from the matrix D(x)
given by (5.27) with the help of the following substitution:

D jn(x) = δ jn + f j(x)
e−µnx

µn +µ j
→ D jn(x; t) = δ jn + f j(x; t)

e−µnx

µn +µ j
,

where f j(x, t) is calculated by the formulas (5.34), (5.18) and (5.19):

f j(x; t) = iRes|ρ=iµ j

{
S1(ρ; t)eiρx

}
= iRes|ρ=iµ j

{
S1(ρ)e8iρ3t+iρx

}
=

2µ j

ie′ρ(iµ j)e′x(iµ j)
e−µ jx+8µ3

j t = m2
je
−µ jx+8µ3

j t = f j(x)e8µ3
j t , (5.38)

in addition f j(x,0) = f j(x), j = 1, . . . ,N, S1(ρ;0) = S1(ρ), (x, t) ∈ [0,∞)× (−∞,∞).
The formulas (5.28) and (5.38) give exact soliton-solutions of the KdV equation (5.1) in the class
of non-scattering potentials:

p(x, t) =−2
d2

dx2 lndetD(x; t), (5.39)

where

D jn(x, t) = δ jn +
2µ j

i(µ j +µn)e′ρ(iµ j)e′x(iµ j)
e−(µ j+µn)x+8µ3

j t , j, n = 1, . . . ,N. (5.40)

The soliton-solution (5.39) of the KdV equation (5.1) is constructed from the non-scattering data s
of the associated scattering problem (5.4)–(5.5):

s =
{

S(ρ; t)≡ 1 for |Imρ|< ε0

2
, ρ j = iµ j, µ j > ε0 > 0, m2

j > 0, j = 1, . . . ,N
}
. (5.41)

The non-scattering data (5.41) are formulated from the known initial condition p(x) = p(x,0) of the
Cauchy problem for the KdV equation (5.1) considered in the class of non-scattering potentials.

Theorem 5.1. Let the function p(x) in the operator L be an isospectral non-scattering potential
which is a real-valued continuous function satisfying the estimate (5.3). Then the normalization
multipliers m2

j are defined by formula (5.19), and the time-dependence of the normalization eigen-
function and the reflection coefficient is defined by formulas (5.33) and (5.34), respectively. By these
formulas, the non-scattering potential (5.39) constructed from the given non-scattering data (5.41)
describes the whole family of non-scattering potentials which are soliton-solutions of the Cauchy
problem for the KdV equation (5.1) with the known initial condition p(x).
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5.4. An example

Example. Let the non-scattering data (5.41) consist of two simple poles ρ1 = iµ1 and ρ2 = iµ2,
µ1 > µ2 > 0. In this case the elements D jn(x, t) of the matrix D(x, t) are calculated by (5.39) and
(5.40):

D11(x, t) = 1+
m2

1
2µ1

e−2µ1x+8µ3
1 t , D12(x, t) =

m2
1

µ1 +µ2
e−(µ1+µ2)x+8µ3

1 t ,

D21(x, t) =
m2

2
µ1 +µ2

e−(µ1+µ2)x+8µ3
2 t , D22(x, t) = 1+

m2
2

2µ2
e−2µ2x+8µ3

2 t
(5.42)

where m2
1 and m2

2 are defined by the formula (5.19).
Putting

ξ = µ1x−4µ
3
1 t +ξ0, η = µ2x−4µ

3
2 t +η0, (5.43)

ξ0 =
1
2

ln
(

2µ1

m2
1

µ1 +µ2

µ1−µ2

)
, η0 =

1
2

ln
(

2µ2

m2
2

µ1 +µ2

µ1−µ2

)
. (5.44)

and using (5.42), we calculate the determinant D of the matrix D(x, t):

D = detD(x, t) = 1+
µ1 +µ2

µ1−µ2
e1 +

µ1 +µ2

µ1−µ2
e2 + e1e2, (5.45)

where

e1 = e−2ξ =
m2

1
2µ1
· µ1−µ2

µ1 +µ2
e−2µ1x+8µ3

1 t ,

e2 = e−2η =
m2

2
2µ2
· µ1−µ2

µ1 +µ2
e−2µ2x+8µ3

2 t
(5.46)

The non-scattering real-valued potential p(x, t) is calculated by formulas (5.39)–(5.40)

p(x, t) =−2
d2

dx2 detD(x, t) =−2
DDxx− (Dx)

2

D2 , (x, t) ∈ [0,∞)× (−∞,∞) (5.47)

where the first and the second partial derivatives Dx and Dxx of the determinant D are found from
(5.45), using (5.46):

Dx =−2µ1A12e1−2µ2A12e2−2(µ1 +µ2)e1e2,

Dxx = 4µ
2
1 A12e1 +4µ

2
2 A12e2 +4(µ1 +µ2)

2e1e2,

A12 =
µ1 +µ2

µ1−µ2
. (5.48)
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It is easy to verify that

D = 1+A12e−2ξ +A12e−2η + e−2ξ−2η

=
e−ξ−η

µ1−µ2

{
(µ1−µ2)eξ+η +(µ1 +µ2)e−ξ+η +(µ1 +µ2)eξ−η +(µ1−µ2)e−ξ−η

}
=

e−ξ−η

µ1−µ2

{
µ1(eξ + e−ξ )(eη + e−η)−µ2(eξ − e−ξ )(eη − e−η)

}
=

e−η(eη + e−η)e−ξ (eξ − e−ξ )

µ1−µ2

{
µ1

(eξ + e−ξ )

(eξ − e−ξ )
−µ2

(eη − e−η)

(eη + e−η)

}
=

(1+ e−2η)(1− e−2ξ )

µ1−µ2

(
µ1 cthξ −µ2 thη

)
.

Hence,

D2 =
(1+ e2)

2(1− e1)
2

(µ1−µ2)2

(
µ1 cthξ −µ2 thη

)2
. (5.49)

Using (5.45), (5.46) and (5.48), we calculate:

DDxx−D2
x =

(
1+A12e1 +A12e2 + e1e2

)
×
(
4µ

2
1 A12e1 +4µ

2
2 A12e2 +4(µ1 +µ2)

2e1e2
)
−

4µ
2
1 A2

12e2
1−4µ

2
2 A2

12e2
2−4(µ1 +µ2)

2e2
1e2

2−8µ1(µ1 +µ2)A12e2
1e2

−8µ2(µ1 +µ2)A12e1e2
2−8µ1µ2A2

12e1e2

= 4µ
2
1 A12e1 +4µ

2
2 A12e2 +

[
4(µ1 +µ2)

2 +4(µ2
1 +µ

2
2 −2µ1µ2)A2

12

]
e1e2+[

4(µ1 +µ2)
2 +4µ

2
1 −8µ1(µ1 +µ2)

]
A12e2

1e2 +
[
4(µ1 +µ2)

2 +4µ
2
2 −8µ2(µ1 +µ2)

]
A12e1e2

2

= 4µ
2
1 A12e1 +4µ

2
2 A12e2 +8(µ1 +µ2)

2e1e2 +4µ
2
2 A12e2

1e2 +4µ
2
1 A12e1e2

2

= 4µ
2
1 A12e1 +4µ

2
2 A12e2 +8(µ2

1 −µ
2
2 )A12e1e2 +4µ

2
2 A12e2

1e2 +4µ
2
1 A12e1e2

2

= 4µ
2
1 A12e1(1+2e2 + e2

2)+4µ
2
2 A12e2(1−2e1 + e2

1)

= 4µ
2
1 A12e1(1+ e2)

2 +4µ
2
2 A12e2(1− e1)

2

= A12(1+ e2)
2(1− e1)

2
{

µ
2
1

4e1

(1− e1)2 +µ
2
2

4e2

(1+ e2)2

}
=

µ1 +µ2

µ1−µ2
(1+ e2)

2(1− e1)
2
{

µ
2
1

4
(eξ − e−ξ )2

+µ
2
2

4
(eη + e−η)2

}
. (5.50)

The explicit soliton-solution p(x, t) of the KdV equation (5.1) with two bound states is obtained
from (5.47), using (5.48), (5.49) and (5.50):

p(x, t) =−2(µ2
1 −µ

2
2 )

µ2
1 cosech2

ξ +µ2
2 sech2

η(
µ1cthξ −µ2 thη

)2 ,(x, t) ∈ [0,∞)× (−∞,∞), (5.51)

where ξ and η are determined by (5.43) and (5.44), µ1 > µ2 > 0.
Thus, p(x, t) represents the nonlinear superposition of two forms, one traveling with speed 4µ2

1 , the
other traveling with speed 4µ2

2 . If t is very large negative, then using (5.45), (5.46) and (5.48) from

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

429



P.L. Vu / The description of reflection coefficients of the scattering problems . . .

(5.47) we have:

p(x, t) = o(1) as t→−∞.

We suppose that µ1 > µ2, then from (5.43)–(5.44) it follows that for every x:

ξ −η = (µ1−µ2)
[
x−4(µ2

1 +µ1µ2 +µ
2
2 )t
]
+ξ0−η0→ ∞ as t→−∞,

i.e., for t much less than zero and for those valued of x, where ξ is about one and η is very negative,
we have

sechη → 0, and thη →−1, therefore

p(x, t)→−2(µ2
1 −µ

2
2 )

µ2
1 cosech2

ξ

(µ1cthξ +µ2)2 =−2µ
2
1 sech2(ξ +∆)

where ∆ = 1
2 ln

(
µ1+µ2
µ1−µ2

)
.

While in the region of x, where η is about one and ξ is very positive, we obtain:

ξ −η → ∞ as t→−∞, and cosechξ → 0, cthξ → 1,

p(x, t)→−2(µ2
1 −µ

2
2 )

µ2
2 sech2

η

(µ1−µ2thη)2 =−2µ
2
2 sech2(η−∆).

That is, for very large negative t the solution looks like two solitary pulses, the large one to the left
of the small one.

After a long time, when t is large positive, it follows from (5.43)–(5.44) that for every x:

η−ξ = (µ2−µ1)[x−4(µ2
1 +µ1µ2 +µ

2
2 )t]+η0−ξ0→ ∞ as t→ ∞,

i.e., for large positive t and for those values of x, where η is order one and ξ very large negative,
then

cosechξ → 0, and cthξ →−1 as ξ →−∞, therefore,

p(x, t)→−2(µ2
1 −µ

2
2 )

µ2
2 sech2

η

(µ1 +µ2thη)2 =−2µ
2
2 sech2(η +∆).

While if ξ is order one, and η very large positive, then

sechη → 0, and thη → 1, as η → ∞, therefore,

p(x, t)→−2(µ2
1 −µ

2
2 )

µ2
1 cosech2

ξ

(µ1cthξ −µ2)2 =−2µ
2
1 sech2(ξ −∆)

That is after a long time the large solitary pulse is to the right of the small solitary pulse. They
have coalesced and reemerged with their shaped unscathed. The only remnant of the interaction is
the phase shift ∆ = 1

2 ln
(

µ1+µ2
µ1−µ2

)
. That is the large pulse is moved forward by an amount 2∆/µ1

relative to where it would have been in the absence of an interaction, and the small pulse is retarded
by an amount 2∆/µ2 relative to where it would have been in an unperturbed situation. In Figure 3
we show a sketch of this soliton-solution of the KdV equation (5.1) with two bound states at four
successive times.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

430



P.L. Vu / The description of reflection coefficients of the scattering problems . . .

Fig. 3. Two soliton-solution of the KdV equation (5.1) with two bound states at the four successive moments of time
t = t0, t1, t2 and t3.

In general, the non-scattering solution with N bound states has a similar behavior. In this case the
non-scattering data (5.41) consist of N simple poles: ρ j = iµ j, µ j > 0, j = 1, . . . ,N. With N bound
states the solution resembles the superposition of N solitary pulses whose speeds and amplitudes
are determined by the positive values µ j, j = 1, . . . ,N. The solitary pulses emerge unscathed from
interaction except for a phase shift given by the sum of phase shifts from all possible pairwise
interactions.

6. Conclusions

By Propositions 3.6, 3.7 and formulas (3.42)–(3.44), the self-conjugate matrix (3.5) is found
uniquely from the known conditions (1.2) and (1.3). Then the time-dependence of s(k, t) is derived
by (4.4)–(4.9). The known function R̃(k, t) in Eq. (4.10) is defined by ratio (4.11), in which s11(k; t)
and s12(k; t) for every t ≥ 0 are any given complex-valued functions satisfying the sufficient condi-
tions of Theorem 2.1. Thus, the application of obtained results to solving the IBVP (1.1)-(1.2)-(1.3)
is consistent and is effectively embedded in the ISM schema.
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By Theorem 5.1 the non-scattering potential (5.39) constructed from the non-scattering data (5.41)
of the scattering problem (5.4)–(5.5) describes the whole family of non-scattering potentials which
are soliton-solutions of the Cauchy problem for the KdV equation (5.1).
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