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The symmetry reduction algorithm for ordinary differential equations due to Sophus Lie is revisited using the

method of equivariant moving frames. Using the recurrence formulas provided by the theory of equivariant

moving frames, computations are performed symbolically without relying on the coordinate expressions for

the canonical variables and the differential invariants occurring in Lie’s original procedure.
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1. Introduction

Lie group integration techniques are amongst the most effective methods available for obtaining

analytic solutions of nonlinear differential equations. Nowadays, there are many excellent textbooks

surveying the subject, [3, 5–8, 10, 15–17, 27, 35–37]. Following Sophus Lie’s seminal ideas, most

symmetry-based integration methods rely on the infinitesimal symmetry generators of the differ-

ential equation under consideration. For example, given an nth order ordinary differential equation

with one infinitesimal symmetry generator, there is a well known procedure for reducing the order

of the equation by one by introducing canonical variables that rectify the infinitesimal symmetry

generator. More generally, if the differential equation admits an r-dimensional solvable symmetry

group, then the equation can be reduced to an order n− r differential equation, assuming n > r.

Given a solution to the reduced equation, the solution to the original differential equation can then

be recovered by quadrature.

To find the canonical variables (t,s) that rectify an infinitesimal symmetry generator, a system

of first order linear partial differential equations must be solved. Once the canonical variables have

been found, the order of the differential equation is reduced by re-expressing the equation in those

new coordinates and introducing the new dependent variable w = st . For r-dimensional solvable

symmetry groups, this procedure is repeated r times. At each iteration, one must keep track of

the coordinate expressions of the prolonged infinitesimal symmetry generators in the new system

of coordinates in order to compute the subsequent set of canonical variables to be introduced in

the following iterations. For large symmetry groups, these coordinate dependent computations can

become cumbersome and thereby limit the scope of the method. The main goal of the present paper

is to present a symbolic implementation of Lie’s symmetry reduction procedure for ordinary dif-

ferential equations that does not rely on the coordinate expressions of the canonical variables and
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the differential invariants occurring in the standard implementation of the method. The construc-

tions introduced are completely algorithmic and can therefore directly be implemented in symbolic

computer packages such as MAPLE, MATHEMATICA, or SAGE.

This paper is part of recent efforts aimed at developing new symbolic computational tools for

differential equations based on the method of equivariant moving frames. Recent developments have

occurred in the calculus of variations, [19, 38], the computation of conservation laws, [12–14], the

theory of geometric curve flows, [4, 23, 24, 29], the classification of differential invariants and their

syzygies, [9, 33], the symmetry classification problem of differential equations, [21], the general

equivalence problem of differential equations, [25, 41], and the method of group foliation, [22, 39].

For a comprehensive overview of modern applications of the method of equivariant moving frames,

we refer the reader to [22, 31].

For one-dimensional symmetry groups, our symbolic implementation of the symmetry reduction

algorithm is based on the standard implementation of the equivariant moving frame method, [11,22].

For solvable symmetry groups, we use the inductive/recursive moving frame constructions intro-

duced in [18, 30, 34, 40] as group parameters are recursively normalized each time the order of the

differential equation is reduced. As a byproduct, the ideas developed in this paper provide a new

and nontrivial application of the inductive and recursive moving frame implementations introduced

in [18,30,34,40]. When compared to the group foliation method developed in [22,39], where group

parameters are normalized all at once, the recursive approach proposed in this paper offers several

benefits. Firstly, as illustrated in [15], it is possible that one of the intermediate equations obtained

during the reduction process is easier to solve than the final reduced equation. This situation can

occur if, for example, one of the intermediate equations admits (type II) hidden symmetries, [1,20].

In this case, since the group foliation method only computes the final reduced equation, it would

miss the intermediate reduced equation that allows to solve the original differential equation more

easily. Secondly, in the implementation of the group foliation method, it is not clear which nor-

malizations will produce the simplest reduced equation. On the other hand, when group parameters

are normalized recursively, the reduced equation obtained at each stage of the symmetry reduction

process can help make educated normalizations that will lead to the simplest reduced differential

equation. Finally, in contrast to the group foliation method introduced in [22], our approach does

not require the introduction of a “computational variable” when the independent variable is not

an invariant of the group action. Avoiding the introduction of computational variables is generally

desirable as these tend to lead to more complicated differential equations and also require the intro-

duction of a “companion equation”, which leads to the problem of solving a system of differential

equations rather than just the original equation.

Given the solution to the fully reduced differential equation, we introduce a recursive recon-

struction procedure for recovering the solution to the original differential equation. As in the reduc-

tion step, the reconstruction computations are performed symbolically without requiring coordinate

expressions for the invariants introduced during the reduction process. To implement the reconstruc-

tion procedure, the main data required is the induced action of the various one-parameter groups

on the invariants at each step of the reduction process. As it will be shown in Section 5.2, these

one-parameter group actions (more precisely their corresponding infinitesimal generatorsa ) can be

aGiven an infinitesimal generator, the corresponding (local) one-parameter group action is obtained by exponentiating

the vector field, see (2.4).
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deduced symbolically using the recurrence relations provided by the theory of equivariant moving

frames, [11, 19, 32].

For completeness, we begin in Section 2 by recalling standard notation and basic definitions

pertaining to ordinary differential equations and symmetry groups. Lie’s symmetry reduction algo-

rithm for ordinary differential equations is then reviewed in Section 3, and the basic equivariant

moving frame constructions are laid out in Section 4.1. In particular, the recurrence formulas for

the normalized differential invariants are introduced. These equations provide a complete charac-

terization of the structure of the algebra of differential invariants and their syzygies. An important

aspect of these equations is that they can be obtained symbolically without relying on the coordinate

formulas of the differential invariants or the moving frame. In Section 4.2, the inductive/recursive

implementation of the moving frame method is introduced. Using the method of moving frames,

Lie’s symmetry reduction algorithm for one-dimensional symmetry groups is revisited in Section

5.1, and the general case for solvable symmetry groups is considered in Section 5.2.

2. Preliminaries

Let J(n) = Jn(R,R) denote the nth order jet bundle of smooth maps u : R → R. In the following,

we allow the domain of the function u(x) to be an open subset of R. Local coordinates on J(n) are

given by (x,u(n)), where x denotes the independent variable and u(n) = (u,ux,uxx, . . . ,un) collects

the derivatives of the dependent variable u, up to order n. A basis of one-forms on the infinite-order

jet bundle J(∞) is given by the horizontal one-form dx and the basic contact forms

θk = duk −uk+1dx, k ≥ 0. (2.1)

This decomposition splits the exterior derivative into horizontal and vertical (or contact) compo-

nents, and endows the space of differential forms on J(∞) with the structure of a variational bicom-

plex, [2, 19, 38]. The contact forms (2.1) play a fundamental role in the calculus of variations, but

for the purpose of this paper these can be omitted. For this reason, all our considerations are done

modulo contact forms.

Definition 2.1. An nth order ordinary differential equation is the zero locus of a differential function

Δ : J(n) → R:

Δ(x,u(n)) = 0. (2.2)

Definition 2.2. An ordinary differential equation Δ(x,u(n)) = 0 is said to be regular if its differential

dΔ �= 0 does not vanish on the domain of definition of the equation. A differential equation is locally
solvable at the point (x0,u

(n)
0 ) if Δ(x0,u

(n)
0 ) = 0 and there exists a smooth solution u = f (x), defined

in the neighborhood of x0, such that u(n)0 = f (n)(x0). An ordinary differential equation which is both

regular and locally solvable is said to be fully regular.

In the following, we only consider fully regular ordinary differential equations. Now, let

v = ξ (x,u)
∂
∂x

+ϕ(x,u)
∂

∂u
(2.3)

be a local vector field on J(0) � R
2. The flow of the vector field (2.3) induces the one-parameter

group of local transformations

(X ,U) = gε · (x,u) = exp[εv] · (x,u), ε ∈ R. (2.4)
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The corresponding one-parameter Lie group is denoted by Gε . We observe that Gε is locally iso-

morphic to the Lie group (R,+). In turn, the one-parameter group action (2.4) induces an action

on the nth order jet bundle J(n), called the nth order prolonged action, [27]. To obtain the coordinate

expressions of the prolonged action, we introduce the implicit derivative operator

DX =
1

DxX
Dx =

1

Xx +Xu ux
Dx, (2.5)

where

Dx =
∂
∂x

+
∞

∑
k=0

uk+1
∂

∂uk

is the total derivative operator with respect to the independent variable x. The nth order prolonged

action is then obtained by successively differentiating U = gε ·u with respect to the implicit deriva-

tive operator (2.5):

UXk = gε ·uxk = Dk
X(U), k = 1, . . . ,n. (2.6)

At the infinitesimal level, the nth order prolongation of the infinitesimal generator (2.3) is given by

the vector field

v(n) = ξ (x,u)+
n

∑
k=0

ϕk(x,u(k))
∂

∂uk
,

where the coefficient ϕk(x,u(k)) is defined recursively by the formula

ϕk+1 = Dxϕk −uk+1 ·Dxξ .

Definition 2.3. A one-parameter Lie group Gε is said to be a symmetry group of the fully regular

ordinary differential equation (2.2) if for every gε ∈ Gε

Δ(gε · (x,u(n))) = 0 whenever Δ(x,u(n)) = 0.

At the infinitesimal level, equation (2.2) is invariant if for all infinitesimal generator v in the Lie

algebra g of Gε , we have

v(n)(Δ) = 0 whenever Δ = 0.

Remark 2.1. The above exposition easily extends to systems of ordinary differential equations

involving several dependent variables u = (u1, . . . ,uq). Also, the one-parameter group Gε in Defini-

tion 2.3 can, in general, be replaced by an r-dimensional Lie group G.

3. Symmetry Reduction

We now review Lie’s symmetry reduction algorithm for an ordinary differential equation invariant

under a one-parameter symmetry group, [3,5–8,10,15–17,27,35–37]. Therefore, let Δ(x,u(n)) = 0

be an ordinary differential equation invariant under the infinitesimal symmetry generator (2.3). The
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standard symmetry reduction algorithm is based on the introduction of a set of canonical variables

(t,s) = Φ(x,u) (3.1)

in which the vector field (2.3) takes the rectified form

v =
∂
∂ s

. (3.2)

The canonical coordinates (t,s) are found by solving the system of linear first order partial differ-

ential equations

v(t) = ξ tx +ϕ tu = 0, v(s) = ξ sx +ϕ su = 1, (3.3)

using the method of characteristics. Letting s be the dependent variable and t the independent vari-

able, the differential equation Δ(x,u(n)) = 0 can be rewritten in these new coordinates:

Δ̃(t,s(n)) = Δ(x,u(n)) = 0.

Since equation Δ̃(t,s(n)) = 0 is invariant under the infinitesimal symmetry generator (3.2), the equa-

tion must be independent of s:

Δ̃(t,s(n)) = Δ̃(t,st ,stt , . . . ,stn).

Introducing the new dependent variable w = st , the order of the differential equation is decreased

by one:

Δ̃(t,w,wt , . . . ,wtn−1) = Δ̃(t,w(n−1)) = 0. (3.4)

Assuming w = w(t) is the general solution of the reduced equation (3.4), we have that

s(t) =
∫

w(t)dt,

and that the solution to the original differential equation Δ(x,u(n)) = 0 is obtained by inverting the

change of variables (3.1):

(x(t),u(t)) = Φ−1(t,s(t)).

The latter gives a parametrized solution with parameter t. Expressing t = t(x) as a function of x, the

solution to the original differential equation Δ(x,u(n)) = 0 is u(t(x)).
As it is well known, the above reduction procedure can be iterated for multi-parameter solvable

symmetry groups. Since there are different, yet equivalent, definitions of solvable Lie groups, we

now introduce the definition used in the paper, which can be found in [27].

Definition 3.1. Let G be an r-dimensional Lie group with Lie algebra g. The Lie group G is said to

be solvable if there exists a chain of Lie subgroups

{e}= G(0)�G(1)�G(2)� · · ·�G(r−1)�G(r) = G (3.5)

such that for each � = 1, . . . ,r, G(�) is a �-dimensional subgroup of G and G(�−1) is a normal sub-

group of G(�). At the infinitesimal level, the Lie algebra g is solvable if there exists a chain of Lie
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subalgebras

{0}= g(0) ⊂ g(1) ⊂ g(2) ⊂ ·· · ⊂ g(r−1) ⊂ g(r) = g, (3.6)

such that for each �, dimg(�) = � and g(�−1) is a normal subalgebrab of g(�), which means that

[g(�−1),g(�)]⊂ g(�−1).

Assuming Δ(x,u(n)) = 0 is invariant under an r-dimensional solvable symmetry group G, the

solvable structure of the symmetry group G will dictate the order in which symmetry reduction

should by performed. After the introduction of a convenient basis {v1, . . .vr} for g, assume that

g(�) = span{v1, . . . ,v�}, �= 1, . . . ,r. (3.7)

Such a set of vectors is said to form a canonical basis, [15]. According to this canonical basis,

the differential equation Δ(x,u(n)) = 0 is first reduced using the infinitesimal generator v1. The

resulting equation is then reduced using v2, v3, and so on up to vr. At the �th iteration, the solvable

structure of the symmetry group guarantees that the resulting reduced equation is invariant under

the infinitesimal symmetry generators v�+1, . . . ,vr.

The overall process can be computationally demanding as each time the order is reduced, new

canonical variables are computed and the prolonged infinitesimal symmetry generators have to be

re-expressed in these new coordinates. In Section 5, we will show how these coordinate dependent

computations can be avoided using the method of moving frames. But before doing so, we illustrate

Lie’s symmetry reduction algorithm with a simple example. This will allow us to compare the

standard implementation to the moving frame implementation introduced in Section 5.

Example 3.1. To illustrate Lie’s symmetry reduction procedure, we consider the second order ordi-

nary differential equation

x2uxx = F(xux −u), (3.8)

where, for now, F : R→ R is an arbitrary function. Equation (3.8) admits a two-dimensional sym-

metry Lie algebra spanned by the vector fields

v1 = x
∂

∂u
and v2 = x

∂
∂x

. (3.9)

The commutator of these two vector fields is

[v1,v2] =−v1.

The Lie algebra is therefore solvablec with the chain of normal subalgebras

{0} ⊂ g(1) = span{v1} ⊂ span{v1,v2}= g.

We therefore start implementing the symmetry reduction algorithm using the infinitesimal generator

v1. The canonical variables (t,s) are found by requiring that

v1(t) = x
∂ t
∂u

= 0, v1(s) = x
∂ s
∂u

= 1. (3.10)

bThe subalgebra g(�−1) is also called an ideal of g(�), [15].
cAny two-dimensional Lie algebra is solvable.
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Using the method of characteristics, a solution is given by

t = x, s =
u
x
. (3.11)

In these new variables, equation (3.8) becomes

t3stt +2t2st = F(t2st).

Introducing the new dependent variable w = st , we obtain the first order reduced differential equa-

tion

t3wt +2t2w = F(t2w). (3.12)

Expressing the first order prolonged infinitesimal generator

v(1)2 = x
∂
∂x

−ux
∂

∂ux

in the variables

t = x s =
u
x
, w = st =

xux −u
x2

,

we find that

v(1)2 =−s
∂
∂ s

+ t
∂
∂ t

−2w
∂

∂w
.

Therefore, v(1)2 has a well-defined restriction to the invariants (t,w):

v̂2 = v(1)2

∣∣
(t,w) = t

∂
∂ t

−2w
∂

∂w
.

Now let (y,z) be new canonical variables that rectify v̂2 to
∂
∂ z

. These variables are found by solving

the system of linear partial differential equations

v̂2(y) = t
∂y
∂ t

−2w
∂y
∂w

= 0, v̂2(z) = t
∂ z
∂ t

−2w
∂ z
∂w

= 1.

A solution to these equations is given by

y = t2w, z = ln t. (3.13)

In those variables

zy =
1

2t2w+ t3wt
,

and the differential equation (3.12) becomes

zy =
1

F(y)
.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

217



F. Valiquette / Symmetry Reduction of ODE Using Moving Frames

To integrate the latter equation explicitly, one has to consider a particular function F(y). For exam-

ple, if F(y) = y2 then

zy =
1

y2
and z(y) =−1

y
− lnC. (3.14)

Substituting (3.13) into (3.14) we get

ln t =− 1

t2w
− lnC, which implies that w =− 1

t2 ln(Ct)
.

Recalling that w = st , we have

s(t) =
∫

w(t)dt =C E1(ln(Ct))+K,

where E1(x) =−Ei(−x) and Ei(x) is the exponential integral function, [26]. Substituting (3.11) into

the latter result yields

u(x) =CxE1(ln(Cx))+Kx,

which is the general solution to the nonlinear differential equation

x2uxx = (xux −u)2. (3.15)

4. Moving Frames

We now introduce the moving frame constructions that will be used in the symbolic implementation

of the symmetry reduction process introduced in Section 5. In Section 4.1, we first survey the stan-

dard implementation of the equivariant moving frame method as originally introduced in [11]. In

Section 4.2, we review the inductive/recursive implementation of the moving frame method devel-

oped in [18, 30, 34, 40].

4.1. Standard implementation

Let G be an r-dimensional Lie group acting smoothly on the nth order jet space J(n). A right moving
frame is a G-equivariant map ρ : J(n) → G, where G-equivariance means that

ρ(g · (x,u(n))) = ρ(x,u(n))g−1

for all g ∈ G where the prolonged action and the moving frame are defined. To every right moving

frame ρ corresponds a left moving frame ρ given by group inversion:

ρ(x,u(n)) = (ρ(x,u(n)))−1.

The main existence theorem states that a moving frame exists in the neighborhood of a point

(x,u(n)) ∈ J(n) provided the action is (locally) free and regular on that neighborhood. We recall that

the action is free at a point (x,u(n)) if the isotropy group

G(x,u(n)) = {g ∈ G |g · (x,u(n)) = (x,u(n))}= {e}
is trivial, and that the action is locally free at a point if the isotropy group is discrete. The action

is regular if the group orbits have the same dimension and each point (x,u(n)) ∈ J(n) has arbitrary
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small neighborhoods whose intersection with each orbit is a connected subset thereof. A theorem

originally due to Ovsiannikov, [35], and then corrected by Olver, [28], guarantees that any finite-

dimensional Lie group acting locally effectively on subsets of J(0) � R
2 will eventually act locally

freely on an open dense subset of J(n) for a sufficiently large n. Therefore, a moving frame will exist

provided the action is prolonged to a sufficiently high order jet space.

The construction of a moving frame is based on the introduction of a cross-section K ⊂ J(n) to

the group orbits. By definition, a cross-section K is a submanifold transverse and of complementary

dimension to the group orbits. In general, it is specified by a system of r = dimG equations

K = {F�(x,u(n)) = 0 | �= 1, . . . ,r}.
To simplify the discussion, we assume

K = {z1 = c1, . . . ,zr = cr} ⊂ J(n) (4.1)

is a coordinate cross-section obtained by setting r coordinates of the n-jet (x,u(n)) to constant val-

ues. The right moving frame ρ(x,u(n)) ∈ G at (x,u(n)) is then the unique group element that sends

(x,u(n)) onto the cross-section K :

ρ(x,u(n)) · (x,u(n)) ∈ K .

Coordinate expressions for the moving frame are obtained by solving the normalization equations

Z� = g · z� = c�, �= 1, . . . ,r,

for the group parameters g = (g1, . . . ,gr).

Example 4.1. To illustrate the moving frame construction, we consider the two-parameter group

action

X = eε2x, U = u+ ε1x, ε1,ε2 ∈ R, (4.2)

acting on the right half-plane R
+×R. To compute the induced prolonged action, we introduce the

implicit derivative operator

DX =
1

eε2
Dx. (4.3)

Applying (4.3) to U = u+ ε1x, we obtain, up to order two, the prolonged action

UX = DX(U) =
ux + ε1

eε2
, UXX = DX(UX) =

uxx

e2ε2
.

Choosing the coordinate cross-section

K = {x = 1, u = 0},
and solving the normalization equations

1 = X = eε2x, 0 =U = u+ ε1x, (4.4)

for the group parameters (ε1,ε2), we obtain the right moving frame

ρ(x,u) : ε1 =−u
x
, ε2 = ln

1

x
. (4.5)
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To proceed further, we introduce the nth order lifted bundle B
(n)
G = J(n)×G. The Lie group G

acts on B
(n)
G by the lifted action

g · ((x,u(n)),h) = (g · (x,u(n)),hg−1), (4.6)

also known as the anti-diagonal action of G on B
(n)
G .

Definition 4.1. The lift of a differential function F : J(n) →R to the lifted bundle B
(n)
G is defined as

λ[F(x,u(n))] = F(g · (x,u(n))). (4.7)

We observe that the lifted function (4.7) is invariant under the lifted action (4.6). We therefore

refer to (4.7) as a lifted invariant. In particular, lifting the jet coordinates (x,u(n)):

λ(x,u(n)) = g · (x,u(n)) = (X ,U (n)),

we recover the prolonged action (2.6). The quantities (X ,U (n)) are called fundamental lifted invari-
ants. This terminology is motivated by the fact that any lifted invariant is a function of the funda-

mental lifted invariants:

λ[F(x,u(n))] = F(λ(x,u(n))) = F(X ,U (n)).

Inversely, given a lifted invariant F(X ,U (n)), we introduce the inverse lift

λ−1[F(X ,U (n))] = F(x,u(n)),

which is defined as the function whose lift is F(X ,U (n)).

The lift map λ extends to differential forms, and we refer to [11] for more detail. For the purpose

of this paper, it is enough to know that, modulo the contact forms (2.1), the lift of the horizontal

form dx is

ω = λ(dx) = Dx(X)dx = (Xx +Xu ux)dx.

Given a right moving frame ρ : J(n) → G, we introduce the right moving frame section � : J(n) →
B

(n)
G defined as

� (x,u(n)) = ((x,u(n)),ρ(x,u(n))).

Definition 4.2. Let ρ : J(n) → G be a right moving frame. The invariantization map is defined as

ι =�∗ ◦λ.

Invariantizing a differential function F : J(n) → R, we obtain the differential invariant

ι(F)(x,u(n)) = F(ρ(x,u(n)) · (x,u(n))). (4.8)

The fact that (4.8) is a differential invariant follows from the G-equivariance of the right moving

frame ρ(x,u(n)). Of particular importance is the invariantization of the jet coordinates (x,u(n)). The
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differential invariants

H = ι(x), I(n) = ι(u(n)) (4.9)

are called normalized invariants. By construction of the right moving frame, the invariantization of

the coordinates used to define the cross-section (4.1) are constants, that is

ι(z�) = c�. (4.10)

These normalized invariants are called phantom invariants. By the replacement principle, [11, 22],

the normalized invariants (4.9) form a complete set of differential invariants of order ≤ n. This

means that any differential invariant of order ≤ n can be expressed in terms of the normalized

invariants (4.9). Indeed, since the invariantization of an invariant J(x,u(n)) is the invariant itself,

J(x,u(n)) = ι(J(x,u(n))) = J(ι(x,u(n))) = J(H, I(n)).

We also note that the normalized invariants (4.9) provide a local parametrization of the cross-section

(4.1) used to construct the moving frame ρ:

K = {(H, I(n))}.
The invariantization of the horizontal form dx is the contact-invariantd horizontal one-form

ϖ = ι(dx) =�∗ ◦λ(dx) =�∗ (ω) =�∗ (Xx +Xu ux)dx. (4.11)

Example 4.2. Continuing Example 4.1, the invariantization of the jet coordinates ux and uxx yields

the differential invariants

I1 = ι(ux) =
ux + ε1

eε2

∣∣∣∣
(4.5)

= xux −u, I2 = ι(uxx) =
uxx

e2ε2

∣∣∣∣
(4.5)

= x2uxx. (4.12)

The contact-invariant horizontal one-form (4.11) is given by

ϖ = ι(dx) =
1

x
dx. (4.13)

One of the most important results from the theory of equivariant moving frames is the intro-

duction of the universal recurrence relations for the lift map and the invariantization map. These

equations can be used to perform many computations symbolically without requiring coordinate

expressions for the lifted or normalized invariants. The universal recurrence relations have played a

fundamental role in the development of the group foliation method, [22,39], the theory of invariant

variational bicomplexes, [19, 38], the study of invariant geometric curve flows, [24], the characteri-

zation of the algebra of differential invariants, [33], the development of the recursive moving frame

construction, [30,34], and many other problems in applied mathematics, [31]. In order to introduce

these recurrence formulas, let

v� = ξ�(x,u)
∂
∂x

+ϕ�(x,u)
∂
∂u

∈ g, �= 1, . . . ,r,

be a basis of infinitesimal generators of the Lie group action. Dually, let μ1, . . ., μr ∈ g∗, be a basis

of Maurer–Cartan forms. Modulo the contact forms (2.1), the universal recurrence formula for the

dA differential one-form Ω on J(n) is contact-invariant if and only if, for every g ∈ G, g∗Ω = Ω +θg for some contact

form θg.
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lift map is

d[λ(F)] = λ[Dx(F)]ω +
r

∑
�=1

λ[v(∞)
� (F)]μ�, (4.14)

where F : J(n) → R is an arbitrary differential functione . In particular, substituting the function

F in (4.14) with the jet coordinate functions (x,u(∞)), we obtain the recurrence relations for the

fundamental lifted invariants X , U (∞):

dX = ω +
r

∑
�=1

λ(ξ�)μ�,

dUk =Uk+1 ω +
r

∑
�=1

λ(ϕk
� )μ�, k ≥ 0.

(4.15)

Pulling back the universal recurrence relation (4.14) by the right moving frame section �, we obtain

the universal recurrence relation for the invariantization map

d[ι(F)] = ι [Dx(F)]ϖ +
r

∑
�=1

ι [v(∞)
� (F)]ν�,

where ν�= ρ∗(μ�) denotes the moving frame pull-back of the Maurer–Cartan form μ�. In particular,

pulling back (4.15) by the right moving frame section �, we obtain the recurrence relations for the

normalized invariants H = ι(x), I(∞) = ι(u(∞)):

dH = ϖ +
r

∑
�=1

ι(ξ�)ν�,

dIk = Ik+1 ϖ +
r

∑
�=1

ι(ϕk
� )ν�, k ≥ 0.

(4.16)

Remark 4.1. The lifted recurrence relations (4.15) can be computed symbolically without relying

on the coordinate expressions of the lifted invariants, the lifted horizontal form ω , and the Maurer–

Cartan forms μ1, . . ., μr. The only data required are the expressions for the infinitesimal genera-

tors v1, . . ., vr, and their prolongation. Similarly, the invariantized recurrence relations (4.16) can

be computed symbolically without knowing the coordinate expressions of the right moving frame

ρ(x,u(n)). Indeed, using the recurrence relations for the phantom invariants (4.10), one can solve for

the normalized Maurer–Cartan forms ν1, . . ., νr. Substituting these expressions into the remaining

recurrence relations provides symbolic expressions for the differential of the non-phantom normal-

ized invariants.

Example 4.3. To illustrate the above considerations, we consider the group action (4.2) with

infinitesimal generators (3.9). First, the recurrence relations for the lifted invariants are

dX = ω +Xμ2,

dU =UX ω +Xμ1,

dUX =UXX ω +μ1 −UX μ2,

dUk =Uk+1ω − kUk μ2, k ≥ 2.

(4.17)

eIn its most general formulation, the universal recurrence formula is stated for a differential form defined on J(∞).
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Pulling back (4.17) by the moving frame section induced by (4.5), we obtain the invariantized

recurrence relations

0 = ϖ +ν2,

0 = I1ϖ +ν1,

dI1 = I2ϖ +ν1 − I1ν2,

dIk = Ik+1ϖ − kIk ν2, k ≥ 2.

(4.18)

As observed in Remark 4.1, the moving frame expressions (4.5) are not needed to deduce (4.18).

Indeed, the recurrence relations (4.18) are obtained symbolically by substituting the normalizations

(4.4) into (4.17) and making the substitutions Uk → Ik, ω → ϖ , and μ� → ν�.

Solving for the normalized Maurer–Cartan forms ν1, ν2 using the first two equations in (4.18),

we find that

ν1 =−I1ϖ , ν2 =−ϖ .

Substituting these expressions into the remaining equations, we obtain the recurrence relations for

the non-phantom normalized invariants:

dI1 = I2ϖ , dIk = (Ik+1 + kIk)ϖ , k ≥ 2. (4.19)

4.2. Inductive/recursive implementation

We now review the inductive/recursive implementation of the moving frame method as introduced

in [18, 30, 34, 40]. The idea behind the inductive/recursive implementation is to take into account

the existence of a smaller subgroup N ⊂ G for which a moving frame and its normalized differential

invariants have already been constructed, and use this information to streamline the construction of

a moving frame for the larger group G and the computation of its normalized differential invariants.

To this end, let N �G be an s-dimensional normal Lie subgroup of the r-dimensional Lie group

G. In general N does not have to be normal to implement the inductive/recursive moving frame

algorithm. We make this assumption here, as this is the geometric setting in which we will apply

the constructions in Section 5.

For convenience, let

g = (g1, . . . ,gs,gs+1, . . . ,gr) = (h, ĝ) (4.20)

be local coordinates of the Lie group G such that the first s components h = (g1, . . . ,gs) parametrize

the subgroup N. Since N is normal, the quotient group G/N is well-defined and

G/N � {ĝ = (gs+1, . . . ,gr)}.
In the following we will make us of this isomorphism and use ĝ as local coordinates on G/N.

Assuming the prolonged action of N on the nth order jet space J(n) is free and regular, let

ρN : J(n) → N be the right moving frame induced by the coordinate cross-section

KN = {z1 = c1, . . . ,zs = cs} ⊂ J(n).

Also, let ιN be the induced invariantization map. With the moving frame ρN and the normalized

invariants (H, I(n)) = (ιN(x), ιN(u(n))) in hand, we seek to construct the normalized invariants of
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the larger group G inductively. To guarantee the existence of a moving frame, we assume that the

prolonged action of G on J(n) is also free and regular. Now, for any h ∈ N, we observe that

λG(x,u(n)) = g · (x,u(n)) = (gh−1) ·h · (x,u(n)) = g̃ · (X ,U (n)) = λG(X ,U (n)), (4.21)

where g̃ ∈ G and (X ,U (n)) = λN(x,u(n)) = h · (x,u(n)) denotes the N-lifted invariants. Equation

(4.21) shows that the lift of the jet coordinates (x,u(n)) with respect to the group G, which we refer

to as the G-lift of (x,u(n)), is equal to the G-lift of the N-lifted invariants. Replacing the group

parameter h ∈ N in (4.21) by the right moving frame ρN : J(n) → N, we conclude that

λG(x,u(n)) = λG(H, I(n)). (4.22)

That is, the G-lift of the jet coordinates (x,u(n)) is equal to the G-lift of the N-normalized invariants

(H, I(n)). We note that in applications, since the N-phantom invariants ιN(z1) = c1, . . ., ιN(zs) =

cs are typically set equal to 0 or ±1, the formulas on the right-hand side of (4.22) are usually

simpler than those appearing on the left-hand side. The inductive construction of the G-normalized

invariants is achieved by first considering the partial normalizations

λG[ιN(z�)] = λG(c�) = c�, �= 1, . . . ,s, (4.23)

obtained by requiring that the N-phantom invariants remain unchanged under the prolonged action

of G. Solving the normalization equations (4.23) for the group parameters h ∈ N, we can write h in

terms of ĝ and the N-normalized invariants (H, I(n)):

h = h(H, I(n), ĝ).

This produces the partial moving frame ρ̂N : J(n)×G/N → G defined by

ρ̂N((x,u(n)), ĝ) = (h(H, I(n), ĝ), ĝ).

The partial moving frame is used to construct the partially normalized invariants

Ĥ = ρ̂N ·H, Î(n) = ρ̂N · I(n). (4.24)

Equation (4.24) provides expressions for the induced action of the quotient group G/N on the N-

normalized invariants. Said differently, the quantities in (4.24) are equal to the G/N-lift of the

N-normalized invariants:

Ĥ = λG/N(H), Î(n) = λG/N(I
(n)).

For later use, we also introduce the partially normalized horizontal form

ω̂ = �̂∗N(λG(ϖ)),

where

�̂N = (id, ρ̂N) : J(n)×G/N → J(n)×G (4.25)

and ϖ = ιN(dx).
Since G is assume to act freely and regularly on J(n), the quotient group G/N acts freely and

regularly on the cross-section KN . Using the N-normalized invariants (H, I(n)) to parametrize

KN , we conclude that G/N acts freely and regularly on the space of N-normalized invariants
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(H, I(n)). Implementing the constructions introduced in Section 4.1, we can construct a moving

frame ρG/N : KN → G/N. We extend ρG/N to a section �G/H : J(n) → J(n)×G/N by defining

�G/N (x,u(n)) = ((x,u(n)),ρG/N(H, I(n))).

The G-normalized differential invariants of order ≤ n are then given by

ιG(x) = ιG/N(H) =�∗G/N (Ĥ), ιG(u(n)) = ιG/N(I
(n)) =�∗G/H (Î(n)),

where ιG/N denotes the invariantization map induced by the moving frame ρG/N .

Example 4.4. As a simple example of the above considerations, we reconsider Examples 4.1 and

4.2, and recover the invariants (4.12) inductively. The one-parameter group N = Gε1
with group

action

X = x, U = u+ ε1 x, (4.26)

is a normal Lie subgroup of the 2-parameter group G = G(ε1,ε2) with group action (4.2). The pro-

longed action of (4.26) to J(2) is

UX = ux + ε1, UXX = uxx.

Choosing the cross-section

KGε1
= {u = 0}, (4.27)

we obtain the moving frame

ρGε1
= ε1 =−u

x
. (4.28)

Up to order two, the Gε1
-normalized differential invariants are

H = ιGε1
(x) = x, I0 = ιGε1

(u) = 0,

I1 = ιGε1
(ux) =

xux −u
x

, I2 = ιGε1
(uxx) = uxx,

(4.29)

and the invariant horizontal form is ϖ = dx.

Now, the 2-parameter group G = G(ε1,ε2) acts on the Gε1
-normalized invariants (4.29) according

to

λG(H) = eε2H, λG(I) = I + ε1 H, λG(I1) =
I1 + ε1

eε2
, λG(I2) =

I2

e2ε2
,

where I = 0. Imposing the partial normalization

0 = ε1 H,

and solving for the group parameter ε1, we obtain the partial moving frame

ρ̂Gε1
= ε1 = 0. (4.30)
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The partially normalized invariants are then given by

Ĥ = λGε2
(H) = ρ̂Gε1

·H = eε2H,

Î1 = λGε2
(I1) = ρ̂Gε1

· I1 =
I1

eε2
,

Î2 = λGε2
(I2) = ρ̂Gε1

· I2 =
I2

e2ε2
,

(4.31)

and the partially normalized horizontal form is

ω̂ = �̂∗Gε1
(λG(ϖ)) = �̂∗Gε1

(eε2dx) = eε2dx.

The expressions in (4.31) provide the induced action of the quotient group G/Gε1
� Gε2

on the

Gε1
-normalized invariants H, I1, and I2. Choosing the cross-section KGε2

= {H = 1} ⊂ KGε1
=

{(H,0, I1, I2)} we obtain the moving frame

ρGε2
= ε2 = ln

1

H
.

Up to order two, the G-normalized invariants are

J1 = ιG(ux) =�∗Gε2
(Î1) = H I1, J2 = ιG(uxx) =�∗Gε2

(Î2) = H2I2,

which, as it should, coincide with the invariants obtained in (4.12). Finally, the contact-invariant

horizontal one-form is

ιG(dx) =�∗Gε2
(ω̂) =

1

H
dx,

which is identical to (4.13).

To perform the computations symbolically, we now apply the above inductive con-

structions to the recurrence formulas (4.15). Following the decomposition (4.20), let g =

span{v1, . . . ,vs,vs+1, . . . ,vr} be a basis of infinitesimal generators such that the first s vector fields

provide a basis of infinitesimal generators for the Lie algebra n of N, i.e.

n= span{v1, . . . ,vs}.
Dually, let {μ1, . . . ,μs,μ1, . . . ,μr} be a basis of Maurer–Cartan forms. Introducing the lifted bundle

B
(n)
N = J(n)×N and the inclusion map iN : B

(n)
N ↪−→ B

(n)
G induced by the containment N �G, the

lifted recurrence relations for the subgroup N are obtained by pulling-back the G-lifted recurrence

relations by the inclusion map iN . In applications, this is achieved by setting μs+1 = · · ·= μr = 0 in

(4.15). To simplify the notation, we omit writing the pull-back by the inclusion map. The recurrence

relations for the N-normalized invariants are then obtained by following the standard procedure

outlined in Section 4.1.

On the other hand, pulling-back the G-lifted recurrence relations by the map (4.25) induced

by the partial moving frame ρ̂N yields the lifted recurrence relations for the partially normalized

invariant (4.24). In applications, these equations are obtained by solving for the partially normal-

ized Maurer–Cartan forms μ̂1 = ρ̂∗
N(μ1), . . . , μ̂s = ρ̂∗

N(μs) using the recurrence relations for the

N-phantom invariants, which according to (4.23) are kept constant. Substituting the result into the

remaining recurrence relations yields the G/N-lifted recurrence formulas. The recurrence relations
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for the G-normalized invariants are then found by implementing the usual moving frame com-

putations using the G/N-lifted recurrence relations. In other words, one normalizes r−s of the

G/N-lifted invariants and uses the recurrence relations for these phantom invariants to solve for

the remaining normalized Maurer–Cartan forms. The result is then substituted into the remaining

recurrence formulas.

Example 4.5. Continuing Example 4.4, the recurrence relations for the G-lifted invariants are given

in (4.17). Pulling-back theses equation by the inclusion map iGε1
: B

(∞)
Gε1

↪−→ B
(∞)
G , we obtain the

recurrence relations for the Gε1
-lifted invariants. This is achieved by setting μ2 = 0 in (4.17):

dX = ω, dU =UX ω +Xμ1, dUX =UXX ω +μ1, dUk =Uk+1ω, k ≥ 2. (4.32)

Pulling back the recurrence relations (4.32) by the right moving frame section induced from the

moving frame (4.28) we obtain

dH = ϖ , 0 = I1ϖ +Hν1, dI1 = I2ϖ +ν1, dIk = Ik+1ϖ , k ≥ 2. (4.33)

Once again, we emphasize that the coordinate expressions for the moving frame (4.28) are not

needed to obtain (4.33) symbolically. Solving the second equation for the normalized Maurer–

Cartan form ν1, we obtain

ν1 =− I1

H
ϖ . (4.34)

Substituting the result into the other equations yields the recurrence formulas for the Gε1
-normalized

invariants:

dH = ϖ , dI1 =

(
I2 − I1

H

)
ϖ , dIk = Ik+1ϖ , k ≥ 2. (4.35)

Now, pulling-back the G-lifted recurrence relations (4.17) by the partial moving frame (4.30)

we obtain the recurrence relations

dĤ = ω̂ + Ĥ μ̂2, 0 = Î1ω̂ + Ĥ μ̂1,

dÎ1 = Î2ω̂ + μ̂1 − Î1μ̂2, dÎk = Îk+1ω̂ − kÎk μ̂2, k ≥ 2.

Solving the second equation for the partially normalized Maurer-Cartan forms μ̂1, we obtain μ̂1 =

− Î1

Ĥ
ω̂ . Substituting the result into the remaining equations yields the G/Gε1

� Gε2
lifted recurrence

relations

dĤ = ω̂ + Ĥ μ̂2, dÎ1 =

(
Î2 − Î1

Ĥ

)
ω̂ − Î1μ̂2, dÎk = Îk+1ω̂ − kÎk μ̂2, k ≥ 2. (4.36)

Setting Ĥ = 0 in (4.36), we obtain the normalized recurrence relations

0 = ϖ̂ + ν̂2, dJ1 = (J2 − J1)ϖ̂ − J1ν̂2, dJk = Jk+1ϖ̂ − kJk ν̂2, k ≥ 2.

Solving for ν̂2 in the first equation and substituting the result into the remaining equations we obtain

dJ1 = J2ϖ̂ , dJk = (Jk+1 + kJk)ϖ̂ , k ≥ 2,

which are identical to (4.19), up to the relabelling Jk ↔ Ik and ϖ̂ ↔ ϖ .
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The lifted recurrence relations (4.36) in Example 4.5, will play an important role in our symbolic

implementation of the symmetry reduction algorithm introduced in Section 5. As previously empha-

sized, the recurrence formulas (4.36) can be obtained symbolically without requiring the coordinate

expressions for the Gε2
-lifted invariants Ĥ, Îk and the differential forms ω̂ , μ̂2. On the other hand,

from (4.36) it is possible to recover the expressions of the Gε2
-lifted invariants in terms of the

Gε1
-normalized invariants H, Ik. Indeed, by virtue of the general formula for the lifted recurrence

relations (4.15), the coefficients multiplying μ̂2 in (4.36) must be the Gε2
-lift of the components of

the infinitesimal generator

v̂2 = v(∞)
2

∣∣
(H,I(∞))

= ξ
∂

∂H
+

∞

∑
k=1

ϕk
∂

∂ Ik
.

Therefore,

Ĥ = λGε2
(ξ ) and − kÎk = λGε2

(ϕk), k ≥ 1. (4.37)

Taking the inverse lift of (4.37), we conclude that the vector field components are

ξ = λ−1
Gε2

(Ĥ) = H, ϕk = λ−1
Gε2

(−kÎk) =−kIk,

so that

v̂2 = H
∂

∂H
−

∞

∑
k=1

kIk
∂

∂ Ik
. (4.38)

Exponentiating (4.38), we recover the Gε2
-action (4.31) without relying on the coordinate expres-

sions of the Gε1
-normalized invariants H, Ik.

5. Symmetry Reduction Using Moving Frames

In this section we revisit the symmetry reduction algorithm presented in Section 3 using the moving

frame machinery introduced in Section 4. By taking advantage of the recurrence formulas (4.16) for

the normalized invariants, computations are performed symbolically without relying on the coordi-

nate expressions for the canonical variables, the differential invariants, and the moving frame.

5.1. One-parameter symmetry group

As in Section 3, our starting point is an nth order ordinary differential equation

Δ(x,u(n)) = 0 (5.1)

invariant under the infinitesimal symmetry generator

v = ξ (x,u)∂x +ϕ(x,u)∂u. (5.2)

Let Gε be the one-parameter Lie group whose local group action is induced by the flow of v:

(X ,U) = gε · (x,u) = exp[εv] · (x,u), gε ∈ Gε . (5.3)

Under this assumption, Gε is locally isomorphic to the one-dimensional abelian Lie group (R,+).

For all (x,u) ∈ V (0) ⊂ J(0) where v|(x,u) �= 0, the group action (5.3) is free. To simplify the expo-

sition and notation, we work on J(0) with the understanding that the constructions might have to
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x

u K = {x = c}

s = ρ

t = ι(u)

Fig. 1. Rectification of the group orbits.

be restricted to V (0). Assuming the group action is also regular, a local moving frame can be con-

structed. For simplicity, assume that K is a coordinate cross-section obtained by fixing the inde-

pendent variable x to a convenient constant:

K = {x = c}. (5.4)

If the independent variable is an invariant of the group action, one can make the hodograph transfor-

mation (x,u)→ (u,x) and then choose the cross-section (5.4). Alternatively, the cross-section (5.4)

can be replaced by K = {u = c} and the discussion below can easily be adapted to this setting. Let

ρ : J(0) → Gε be the right moving frame induced by the cross-section (5.4).

Given the moving frame ρ , we now introduce the canonical variables (t,s) appearing in Lie’s

symmetry reduction algorithm. At the group action level, the infinitesimal definition of the canonical

variables given in (3.3) implies that t is an invariant of Gε while Gε acts on s by translations. In terms

of the moving frame ρ , these coordinates can be given by

t = I = ι(u) and s = ρ(x,u). (5.5)

Indeed, by definition of the invariantization map, t is an invariant of Gε while the right-equivariance

of ρ implies that

gε · s = ρ(gε · (x,u)) = ρ(x,u)g−1
ε = s− ε, (5.6)

since Gε is locally isomorphic to (R,+). As illustrated in Figure 1, the canonical variables (5.5)

rectify the group orbits, foliating the space into horizontal lines. Also, since on the cross-section the

moving frame restricts to the identity element, i.e. ρ
∣∣
K

= 0, the cross-section (5.4) is mapped onto

the t-axis in the space of canonical variables.

Without relying on the coordinate expressions of t and s, it is possible to compute the derivatives

st , stt , . . ., symbolically. First, we have that

ds = dρ = ν = F(t)ϖ , (5.7)

where ν = ρ∗(μ) is the moving frame pull-back of the Maurer–Cartan form μ . As outlined in

the previous section, the function F(t) can be found symbolically using the recurrence relation for

the phantom invariant ι(x) = c. In fact, F(t) = − 1
ξ (c,t) . Also, the differential dt = dI, is computed
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symbolically using the recurrence relation for the normalized invariant I = ι(u):

dt = dI = I1ϖ +ϕ(c, t)ν = (I1 +ϕ(c, t)F(t))ϖ , (5.8)

where I1 = ι(ux). Combining (5.7) and (5.8), we have that

st =
ds
dt

=
ν
dt

=
F(t)

I1 +ϕ(c, t)F(t)
=

1

ϕ(c, t)− I1ξ (c, t)
=

1

Q(c, t, I1)
= F1(t, I1),

where Q(x,u,ux) = ϕ −ξ ux is the characteristic of the vector field (5.2). Next, using the recurrence

relation for I1 = ι(ux), which is of the form

dI1 = (I2 +K(t, I1))ϖ ,

it is then possible to compute stt symbolically:

stt =
dst

dt
=

1

dt

(
∂F1

∂ t
dt +

∂F1

∂ I1
dI1

)
= F2(t, I1, I2).

Similarly, the recurrence relations for the higher order normalized invariants lead to the symbolic

expressions

st� = F�(t, I1, . . . , I�), �≥ 1. (5.9)

Inverting (5.9), the normalized invariants I� can be expressed in terms of t and st , . . ., st� :

I = t, I� = I�(t,s(1,�)), �≥ 1,

where s(1,�) = (st , . . . ,st�) collects the derivatives of s with respect to t of order 1 ≤ k ≤ �. Since the

differential equation (5.1) is Gε -invariant, we invariantize the equation to obtain

0 = Δ(x,u(n)) = ι [Δ(x,u(n))] = Δ(c, I(n)) = Δ(c, t,I1(t,s(1,1)), . . . ,In(t,s(1,n))) = Δ̃(t,s(1,n)).

We observe that the resulting equation Δ̃(t,s(1,n)) = 0 is independent of s. This was to be expected as

in the canonical variables (t,s) the differential equation is invariant under the group of translations

(5.6). Introducing the new dependent variable w = st , the order of the original differential equation

(5.1) is reduced by one:

Δ̃(t,w(n−1)) = 0. (5.10)

Assuming (5.10) can be solved, we now explain how to recover the solution to the original

equation (5.1) without relying on the coordinate expressions of the canonical variables (t,s) (or

w = st). We refer to this procedure as the reconstruction step. Let w = w(t) be the general solution
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to (5.10). Since st = w(t), it follows that

s(t) =
∫

w(t)dt.

Next, by definition of the right moving frame, ρ · (x,u) = (c, t) ∈ K . Inverting the last equality, it

follows that

(x,u) = ρ · (c, t), (5.11)

where ρ = ρ−1 is the corresponding left moving frame. Since s = ρ and group inversion is given

by the additive inverse, equation (5.11) is equivalent to

(x,u) = (−s(t)) · (c, t), (5.12)

where the right-hand side of (5.12) is obtained by acting on the point (c, t) ∈ K with the group

element −s(t) ∈ G. The latter provides a parametric solution (x(t),u(t)) to the original differential

equation (5.1). Inverting the relation x = x(t), to express t as a function of x, we obtain the solution

u(t(x)) to the original differential equation (5.1).

Before considering an example, let us summarize the steps involved in the symbolic implemen-

tation of the symmetry reduction process introduced above. Starting with the ordinary differential

equation (5.1):

• Compute a basis of infinitesimal symmetry generators following standard procedures, [3,

5–8, 10, 15–17, 27, 35–37]. Choose one infinitesimal symmetry generator v with respect to

which the equation is to be reduced.

• Let g = span{v} and compute the recurrence relations (4.15) for the lifted invariants of

order ≤ n−1.

• Introduce the cross-section (5.4) and let ρ be the corresponding right moving frame. Note,

it is not necessary to compute ρ! We only need to know that it exists.

• Compute the recurrence relations for the normalized invariants I(n) = ι(u(n)) as outlined in

Section 4.1.

• Introduce the canonical variables t = ι(u), s = ρ . Invariantizing the differential equation

(5.1) and using the recurrence relations for the normalized invariants I(n), rewrite the equa-

tion in terms of t,w = ds
dt ,wt , . . . ,wtn−1 .

• Solve the reduced equation Δ̃(t,w(n−1)) = 0 to obtain w(t). The solution to the original

equation is, in parametric form,

(x,u) = (−s(t)) · (c, t),

where s(t)=
∫

w(t)dt and the group product is obtained by exponentiating the infinitesimal

symmetry generator v.

Example 5.1. To illustrate the above constructions, consider the first order ordinary differential

equation

2x4uux +4x3u2 +2x = 0. (5.13)

This equation is invariant under the infinitesimal symmetry generator

v = x
∂
∂x

−u
∂
∂u

.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

231



F. Valiquette / Symmetry Reduction of ODE Using Moving Frames

The corresponding group action is

X = eεx, U = e−εu, ε ∈ R, (5.14)

and the order zero lifted recurrence relations are

dX = ω +Xμ, dU =UX ω −Uμ. (5.15)

Choosing the cross-section K = {x = 1}, the normalized recurrence relations are

0 = ϖ +ν , dI = I1ϖ − Iν ,

where ν = ρ∗(μ), ϖ =�∗ (ω). The recurrence relation for the phantom invariant gives ν = −ϖ .

Substituting ν into the second equation yields the recurrence relation

dI = (I1 + I)ϖ . (5.16)

Invariantizing the differential equation (5.13) we get

2II1 +4I2 +2 = 0 so that I1 =−2I2 +1

I
.

Substituting the latter equality into the recurrence relation (5.16), we obtain

dI =− I2 +1

I
ϖ .

Introducing the canonical variables

t = ι(u) = I, s = ρ,

we conclude that

ds
dt

=
ν
dI

=
−ϖ

− I2 +1

I
ϖ

=
t

t2 +1
. (5.17)

Setting w = st , equation (5.17) reduces to the algebraic equation

w =
t

t2 +1
.

It follows that

s(t) =
∫

w(t)dt =
1

2
ln(1+ t2)+C,

where C is an arbitrary constant of integration. Recalling the group action (5.14), a parametric

solution to the original differential equation (5.13) is obtained by acting on the point (1, t) ∈ K by

the left moving frame ρ =−s(t):

x(t) =−s(t) ·1 = e−s(t) =
K√

1+ t2
, u(t) =−s(t) · t = es(t)t =

t
√

1+ t2

K
,

where K = eC. Solving the first equation for t, and substituting the result into u(t) yields the solution

u(x) =

√
K2 − x2

x2
.
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5.2. Solvable symmetry group

To extend our symbolic implementation of the symmetry reduction algorithm to solvable symme-

try groups, we use the inductive/recursive moving frame constructions outlined in Section 4.2. Our

starting point is an nth order ordinary differential equation Δ(x,u(n)) = 0 invariant under the pro-

longed action of an r-dimensional solvable Lie group G with (3.5) as its chain of normal subgroups.

Based on this chain of normal subgroups, we introduce the �th lifted subbundle B
(n)
� = J(n)×G(�)

and the inclusion map i� : B
(n)
� ↪−→ B

(n)
G induced by the containment G(�) ⊂ G. At the infinitesimal

level, let g be the corresponding r-dimensional solvable Lie algebra spanned by the infinitesimal

generators v1, . . . ,vr such that (3.7) holds. Dually, let μ1, . . . ,μr ∈ g∗ be a basis of Maurer–Cartan

forms. Finally, for � ∈ {1, . . . ,r}, let Gε� denote the one-parameter Lie group whose local group

action on J(0) is induced by the flow of v�:

gε� · (x,u) = exp[ε�v�] · (x,u), gε� ∈ Gε� .

Prior to the implementation of the symmetry reduction algorithm, we first compute the recur-

rence relations (4.15) for the G-lifted differential invariants of order ≤ n−1:

d[λG(x)] = ω +
r

∑
�=1

λG(ξ�)μ�,

d[λG(uk)] = λG(uk+1)ω +
r

∑
�=1

λG(ϕk
� )μ�, 0 ≤ k ≤ n−1.

(5.18)

Starting the symmetry reduction process, we first implement the procedure outlined in Section 5.1

for the prolonged action of the 1-parameter group Gε1
= G(1) on the nth order jet bundle J

(n)
0 = J(n).

As in Section 5.1, assume, for simplicity, that x is not an invariant of the Gε1
-action and consider

the cross-section

K1 = {x = c1} ⊂ J
(n)
0 .

Let ρ1 : J
(n)
0 → Gε1

be the corresponding right moving frame and let ι1 be the induced invariantiza-

tion map. We introduce the notation

I(n);1 = ι1(u(n)), ϖ1 = ι1(dx), ν1
1 = ρ∗

1 (μ
1),

to denote the Gε1
-normalized differential invariants, the Gε1

-invariant horizontal form, and the Gε1
-

normalized Maurer–Cartan form. To obtain the symbolic expression for ν1
1 , first pull-back the lifted

recurrence relations (5.18) by the inclusion map i1 : B
(n)
1 ↪−→B

(n)
G to obtain the Gε1

-lifted recurrence

relations

dX = ω1 +ξ1(X ,U)μ1, dUk =Uk+1 ω1 +ϕk
1(X ,U (k))μ1, 0 ≤ k ≤ n−1, (5.19)

where X = λGε1
(x), U (k) = λGε1

(u(k)) are the Gε1
-lifted invariants, and ω1 = λGε1

(dx) is the Gε1
-

lifted horizontal form. Recall that in order to simplify the notation, we purposely omit writing

the pull-back map i∗1. Also, note that, symbolically, the equations (5.19) are obtained by setting

μ2 = · · · = μr = 0 in (5.18) and substituting λG(x) → X , λG(uk) → Uk, and ω → ω1. Taking the

pull-back of (5.19) by the right moving frame section �1 : J
(n)
0 → B

(n)
1 , we obtain the recurrence
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relations for the Gε1
-normalized differential invariants. The recurrence relation for the phantom

invariant ι1(x) = c1 implies that

ν1
1 = H1(I;1)ϖ1 =− ϖ1

ξ1(c1, I;1)
. (5.20)

The recurrence relations for the Gε1
-normalized differential invariants are then obtained by sub-

stituting (5.20) into the remaining recurrence relations, giving

dIk;1 = Fk;1

(
I(k+1)
;1

)
ϖ1 =

(
Ik+1;1 −

ϕk
1(c1, I

(k)
;1 )

ξ1(c1, I;1)

)
ϖ1, k = 0, . . . ,n−1.

As in the previous section, we introduce the canonical variables

t1 = I;1 = ι1(u), s1 = ρ1,

and let

w1 =
ds1

dt1
=

ν1
1

dI;1
=

H1(I;1)

F;1(I
(1)
;1 )

=
1

ϕ1(c1, I;1)−ξ1(c1, I;1)I1;1
=

1

Q1(c, I;1, I1;1)
,

where Q1(x,u,ux) is the characteristic of the vector field v1. In the variables (t1,w1), the order of

the original differential equation (5.1) is reduced by one

Δ(x,u(n)) = Δ̃1(t1,w
(n−1)
1 ) = 0,

and this completes the first iteration of the symmetry reduction algorithm.

Before proceeding to the second iteration, we recall from Section 5.1 that the normalized invari-

ants I(n);1 can be expressed in terms of (t1,w
(n−1)
1 ):

I;1 = t1, Ik;1 = Ik(t1,w
(k−1)
1 ), 1 ≤ k ≤ n−1. (5.21)

Therefore, the variables (t1,w
(n−1)
1 ) provide a local system of coordinates for the cross-section K1,

K1 = {(c1, t1,w
(n−1)
1 )} � J

(n−1)
1 = {(t1,w(n−1)

1 )},

which is isomorphic to the (n−1)th order jet space J
(n−1)
1 = {(t1,w(n−1)

1 )}.

For the second iteration of the symmetry reduction algorithm, we consider the induced action

of the one-parameter group Gε2
� G(2)/G(1) on J

(n−1)
1 . To obtain the Gε2

-lifted recurrence relations,

we implement the inductive/recursive moving frame constructions introduced in Section 4.2 with

G = G(2) and N = G(1). First, we pull-back the lifted recurrence relations (5.18) by the inclusion

map i2 : B
(n)
2 ↪−→ B

(n)
G to obtain the lifted recurrence relations of the G(2)-prolonged action on J(n).

Introducing the G(2) lift map λ(2) = λG(2) , we have

d[λ(2)(x)] = ω2 +λ(2)[ξ1(x,u)]μ1 +λ(2)[ξ2(x,u)]μ2,

d[λ(2)(uk)] = λ(2)(uk+1)ω2 +λ(2)[ϕk
1(x,u

(k))]μ1 +λ(2)[ϕk
2(x,u

(k))]μ2, 0 ≤ k ≤ n−1,
(5.22)

where ω2 = λ(2)(dx). In the lifted recurrence relations (5.22), we make the substitution

λ(2)(x,u(n)) = λ(2)(c1, I
(n)
;1 ), corresponding to equality (4.22) in the general framework of Section
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4.2. This yields the recurrence relations

d[λ(2)(c1)] = ω2 +λ(2)[ξ1(c1, I;1)]μ1 +λ(2)[ξ2(c1, I;1)]μ2,

d[λ(2)(Ik;1)] = λ(2)(Ik+1;1)ω2 +λ(2)[ϕk
1(c1, I

(k)
1 )]μ1 +λ(2)[ϕk

2(c1, I
(k)
;1 )]μ2,

(5.23)

where 0 ≤ k ≤ n−1. Introducing the partial normalization

λ(2)(c1) = c1,

let ρ̂G(1) : J(n)×Gε2
→ G(2) be the corresponding partial moving frame. Pulling-back the recurrence

relations (5.23) by �̂G(1) = (id, ρ̂G(1) ) : J(n)×Gε2
→ J(n)×G(2), the first equation becomes

0 = ω̂2 +ξ1(c1, Î;1) μ̂1 +ξ2(c1, Î;1) μ̂2,

where

Î;1 = λGε2
(I;1) = gε2

· I;1, gε2
∈ Gε2

,

ω̂2 = �̂∗G(1) (ω2), and μ̂� = ρ̂∗
G(1) (μ�), � = 1,2. Solving for μ̂1 and substituting the result into the

remaining equations of (5.23) gives the lifted recurrence relations for the Lie group Gε2
acting on

the Gε1
-normalized invariants of order ≤ n−1:

d(Îk;1) = Îk+1;1 ω̂2 +ψk
1(c1, Î

(k)
;1 ) μ̂2, 0 ≤ k ≤ n−1. (5.24)

The change of variables (5.21), implies that

Î;1 = T1, Îk;1 = Ik(T1,W
(k−1)
1 ), (5.25)

where

T1 = λGε2
(t1) = gε2

· t1 and W (k−1)
1 = λGε2

(w(k−1)
1 ) = gε2

·w(k−1)
1 .

Substituting (5.25) into (5.24), we obtain the lifted recurrence relations of the Gε2
action on the jet

space J
(n−1)
1 = {(t1,w(n−1)

1 )}:

dT1 = T
(
T1,W1

)
ω̂2 +ξ (T1,W1)μ̂2,

dW1;T k
1
= Wk

(
T1,W

(k+1)
1

)
ω̂2 +ϕk(T1,W

(k)
1 )μ̂2, k = 0, . . . ,n−1.

(5.26)

Taking the inverse lift λ−1
Gε2

of the coefficients ξ (T1,W1), ϕ(T1,W1) multiplying μ̂2 in (5.26) we

obtain the components of the prolonged vector field v(1)2 restricted to J
(0)
1 :

v̂2 = v(1)2

∣∣
(t1,w1)

= ξ (t1,w1)
∂

∂ t1
+ϕ(t1,w1)

∂
∂w1

. (5.27)

Exponentiating the infinitesimal generator (5.27) gives explicit expressions for the Gε2
-action on

(t1,w1).

With (5.26) in hand, we now implement the second iteration of the symmetry reduction proce-

dure. Again, for simplicity, assume that t1 is not an invariant of the Gε2
-action, and let K2 = {t1 =
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c2}⊂ J
(n−1)
1 be a local cross-section. Let ρ2 : J

(n−1)
1 →Gε2

be the corresponding right moving frame,

and ι2 the induced invariantization map. We also introduce the notation

I(n−1)
;2 = ι2(w

(k−1)
1 ) and ϖ2 =�∗2 (ω̂2).

Making the normalization T1 = c2 in (5.26) and solving for the normalized Maurer–Cartan form

ν2
2 =�∗2 (μ̂2) we obtain

ν2
2 = H2(I;2)ϖ2.

Substituting the result into the remaining formulas yields the recurrence relations

dIk;2 = Fk;2

(
I(k+1)
;2

)
ϖ2, k = 1, . . . ,n−2.

A new set of canonical variables is introduced by setting

t2 = I;2 = ι2(w1) and s2 = ρ2.

Also, let

w2 =
ds2

dt2
=

ν2
2

dI;2
=

H2(I;2)

F;2(I
(1)
;2 )

.

In the new coordinates (t2,w2), the order of the original differential equation (5.1) is now reduced

by two:

Δ̃2(t2,w
(n−2)
2 ) = 0.

Also, the jet variables (t2,w
(n−2)
2 ) can be used to parametrize the cross-section

K2 = {(c2, t2,w
(n−2)
2 )} � J

(n−2)
2 = {(t2,w(n−2)

2 )}.
The symmetry reduction procedure continues by considering the action of Gε3

on the submani-

fold jet bundle J
(n−2)
2 = {(t2,w(n−2)

2 )}, and so on. At the �th iteration, the lifted recurrence relations

of the Gε�-prolonged action on the jet space J
(n−�+1)
�−1 = {(t�−1,w

(n−�+1)
�−1 )} is obtained by considering

the G(�)-lifted recurrence relations followed by the normalization of the Maurer–Cartan forms μ1,

. . ., μ�−1. The latter is achieved by pulling back the G(�)-lifted recurrence relations with respect to

the partial moving frame that keeps the partial cross-section

K = {x = c1, t1 = c2, . . . , t�−2 = c�−1}
invariant. Assuming that t�−1 is not an invariant of the Gε�-action, we introduce the cross-section

K� = {t�−1 = c�} and let ρ� : J
(n−�+1)
�−1 → Gε� be the corresponding right moving frame. The order

of the differential equation Δ̃�−1(t�−1,w
(n−�+1)
�−1 ) = 0 is reduced by one by introducing the canonical

variables

t� = ι�(w�−1), s� = ρ�, (5.28)

and rewriting the equation in terms of the variables t�, w� =
ds�
dt�

, and the derivatives of w� with

respect to t�.
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At the end of the symmetry reduction algorithm, the fully reduced equation is the order n− r
differential equation

Δ̃r(tr,w
(n−r)
r ) = 0. (5.29)

Let wr(tr) be the solution to the fully reduced equation (5.29). We now reconstruct the solution

to the original differential equation (5.1). By definition wr =
dsr
dtr

, so that

sr(tr) =
∫

wr dtr.

Next, since ιr(tr−1,wr−1) = ρr · (tr−1,wr−1) = (cr, tr) and ρr = sr, it follows that

tr−1 = tr−1(tr) = ρ−1
r · cr = (−sr) · cr, (5.30a)

wr−1 = wr−1(tr) = ρ−1
r · tr = (−sr) · tr, (5.30b)

where the product is given by the Gεr -action on (tr−1,wr−1). Inverting (5.30a), we obtain tr =
tr(tr−1). Substituting the result in (5.30b), yields the function wr−1(tr(tr−1)). Repeating the pro-

cedure, since wr−1 =
dsr−1

dtr−1
we have

sr−1(tr−1) =
∫

wr−1 dtr−1

and

tr−2 = (−sr−1) · cr−1, wr−2 = (−sr−1) · tr−1,

where the product is now given by the Gεr−1
-action on (tr−2,wr−2). Continuing in this fashion, at

the last iteration we have

s1 =
∫

w1 dt1

and

x = x(t1) = (−s1) · c1, u = u(t1) = (−s1) · t1,

where the product is given by the Gε1
-action on (x,u). Inverting the relation x = x(t1), to obtain

t1 = t1(x), the solution to the original differential equation (5.1) is u(t1(x)).
Before considering two examples, let us summarize the above considerations into a list of exe-

cutable steps. Our starting point is an nth order ordinary differential equation Δ(x,u(n)) = 0.

• Compute a basis of infinitesimal symmetry generators using standard techniques, [3, 5–8,

10, 15–17, 27, 35–37].

• Find a sufficiently large solvable Lie subalgebra g of dimension r, and let G be the corre-

sponding symmetry group action. Note that we do not have to compute the group action to

implement the algorithm. Compute the chain of normal Lie subalgebras (3.6), and consider

a canonical basis {v1, . . . , vr} such that (3.7) holds.

• Compute the recurrence relations (4.15) for the G-lifted invariants of order ≤ n−1.
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• Reduce the order of the differential equation Δ(x,u(n)) = 0 iteratively. For 1 ≤ �≤ r, the �th

iteration consists of reducing the differential equationf Δ�(t�−1, w(n−�+1)
�−1 ) = 0 with respect

to the one-parameter symmetry group Gε� � G(�)/G(�−1). To this end,

– Implement the inductive/recursive moving frame constructions with N = G(�−1) and

G=G(�) to obtain the lifted recurrence relations of the Gε� action on J
(n−�+1)
�−1 = {(t�−1,

w(n−�+1)
�−1 )}. Recall that the G(�)-lifted recurrence relations are obtained symbolically

by setting μ�+1 = · · ·= μr = 0 in the G-lifted recurrence relations.

– Choose a cross-section K� = {t�−1 = c�} ⊂ J
(n−�+1)
�−1 and let ρ� be the corresponding

right moving frame.

– Introduce the canonical variables t�, s� defined in (5.28), and compute w� =
ds�
dt�

, dw�
dt�

,

and its higher derivatives up to order n − �+ 1 symbolically using the recurrence

relations for the Gε�-normalized invariants.

– Invariantize Δ̃�−1(t�−1,w
(n−�+1)
�−1 ) = 0 using the moving frame ρ�. Writing the result in

terms of (t�,w
(n−�)
� ) yields the reduced equation

Δ̃�(t�,w
(n−�)
� ) = 0.

• Let wr(tr) be the solution to the fully reduced equation Δ̃r(tr,w
(n−r)
r ) = 0. The solution to

the original differential equation is obtained by implementing the reconstruction process.

For 1 ≤ �≤ r, the �th step consists of:

– Evaluating sr−�+1 =
∫

wr−�+1 dtr−�+1.

– Computing

tr−�(tr−�+1) = (−sr−�+1) · cr−�+1, wr−�(tr−�+1) = (−sr−�+1) · tr−�+1,

using the Gεr−�+1
-action on (tr−�,wr−�). This action is obtained symbolically from

the Gεr−�+1
-lifted recurrence relations computed in the (r− �+ 1)th reduction step as

follows. From the lifted recurrence relations

dTr−� = · · ·+ξ (Tr−�,Wr−�)μ̂r−�+1, dWr−� = · · ·+ϕ(Tr−�,Wr−�)μ̂r−�+1,

extract the coefficients ξ (Tr−�,Wr−�) and ϕ(Tr−�,Wr−�). Their inverse lift yields the

coefficients of the vector field

v̂εr−�+1
= ξ (tr−�,wr−�)

∂
∂ tr−�

+ϕ(tr−�,wr−�)
∂

∂wt−�
.

Exponentiating v̂εr−�+1
gives the formulas for the Gεr−�+1

-action on (tr−�,wr−�).

– Inverting tr−� = tr−�(tr−�+1), and substituting tr−�+1 = tr−�+1(tr−�) into wr−�(tr−�+1),

yields wr−�(tr−�+1(tr−�)).

• The output of the reconstruction process is the solution to the original differential equation

Δ(x,u(n)) = 0.

fWhen �= 1, we let Δ0(t0,w
(n)
0 ) = Δ(x,u(n)) = 0.
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Example 5.2. We now revisit Example 3.1 using the moving frame machinery. We emphasize

the fact that, this time around, computations are performed symbolically without relying on the

coordinate expressions of the canonical variables and the differential invariants.

Since the differential equation is of order two, we consider the lifted recurrence relations (4.17)

of the full symmetry group (4.2) up to order one. According to the solvable structure of the symme-

try group, we first implement the symmetry reduction process using the one-parameter group Gε1
.

The recurrence relations for the Gε1
-lifted invariants were obtained in (4.32). Choosing the cross-

section (4.27), let ρ1 be the corresponding right moving frame and let ι1 be the induced invarianti-

zation map. Using the same notation as in (4.29), the recurrence relations for the Gε1
-normalized

invariants are given in (4.35).

We now introduce the canonical variables

t = ι1(x) = H, s = ρ1.

Using (4.34) and the recurrence relations (4.35), we have that

st =
ds
dt

=
ν1

dH
=− I1

H
,

and

stt =
dst

dt
=

1

ϖ1
d
(
− I1

H

)
=

1

ϖ1

(
− dI1

H
+

I1

H2
dH

)
=− I2

H
+2

I1

H2
.

Therefore,

I1 =−tst and I2 =−tstt −2st .

Introducing the variable w = st ,

I1 =−tw and I2 =−twt −2w. (5.31)

Invariantizing the differential equation (3.8), we obtain

H2I2 = F(HI1),

which when expressed in the variables (t,w(1)), yields the first order differential equation

t3wt +2t2w =−F(−t2w). (5.32)

Now, let Gε2
act on J

(1)
1 = {(t,w(1))}. To obtain the corresponding Gε2

-lifted recurrence

relations, recall that the recurrence relations for the Gε2
-lift of the Gε1

-normalized invariants

(H, I1, I2, . . .) were obtained in (4.36). Using (5.31), we have that

Ĥ = gε2
·H = gε2

· t = T,

Î1 = gε2
· I1 = gε2

· (−tw) =−TW,

Î2 = gε2
· I2 = gε2

· (−twt −2w) =−TWT −2W.

(5.33)

Substituting (5.33) into the first two equations of (4.36), we obtain

dT = ω̂ +T μ̂2, dW =WT ω̂ −2W μ̂2. (5.34)
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Assuming T > 0, a cross-section to the Gε2
-action is given by

K2 = {t = 1},

which is equivalent to making the normalization T = 1. Let ρ2 be the induced right moving frame

and ι2 the corresponding invariantization map. Also, let

J = ι2(w), J1 = ι2(wt), ν2 =�∗2 (μ̂
2), ϖ2 =�∗2 (ω̂).

Then, the normalized recurrence relations are

0 = ϖ2 +ν2, J = J1ϖ2 −2Jν2.

The first equation gives

ν2 =−ϖ2,

which when substituted into the second equation yields

dJ = (J1 +2J)ϖ2. (5.35)

Invariantizing (5.32) we find that

J1 =−(2J+F(−J)). (5.36)

Substituting (5.36) into (5.35) yields

dJ =−F(−J)ϖ2.

Introducing the canonical variables

y = J, z = ρ2,

where z = z(y), we have that

zy =
dz
dy

=
ν2

dJ
=

1

F(−y)
.

As in Example 3.1, assume F(−y) = y2. Then

zy =
1

y2
so that z =−1

y
+ lnC. (5.37)

Given (5.37), we now recover the solution to the original differential equation (3.15). Taking the

inverse lift of the coefficients multiplying μ̂2 in (5.34), i.e. λ−1
ε2
(T ) = t and λ−1

ε2
(−2W ) =−2w, we
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obtain the infinitesimal generator

v̂2 = t
∂
∂ t

−2w
∂

∂w
.

This vector field induces the one-parameter group action

T = eε2t, W = e−2ε2w.

Since

1 = ι2(t) = eρ2t, y = J = ι2(w) = e−2ρ2w,

and ρ2 = z, it follows that

t = e−z =
1

C
e1/y and w = e2zy =C2ye−2/y.

From the first equation y =
1

ln(Ct)
, which when substituted into the expression for w yields

w(t) =
1

t2 ln(Ct)
.

Since w = st ,

s(t) =
∫

w(t)dt =−C E1(ln(Ct))−K.

Setting ε2 = 0 in (4.2) we see that Gε1
acts on (x,u) by Galilean boosts:

X = x, U = u+ ε1x.

Recalling that

t = H = ι1(x) = x and 0 = ι1(u) = u+ρ1 x = u+ sx,

we conclude that the general solution to the original differential equation (3.15) is

u =−xs(x) =CxE1(ln(Cx))+Kx.

As expected, we recover the same solution as in Example 3.1, with the important distinction that

the coordinate expressions for the canonical variables and the differential invariants were not used

in the derivation of the solution.

Remark 5.1. The choice of canonical variables is not unique. For example, in Example 3.1 the

general solution to the system of differential equations (3.10) is

t = f (x), s =
u
x
+g(x), (5.38)

where fx �= 0 and g is an arbitrary smooth function. The canonical variables introduced in (3.11)

correspond to the simplest possible solution.
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This freedom in the choice of the canonical variables also appears in the moving frame approach.

First, the choice of the cross-section (4.27) is not unique. If it were replaced by

K1 = {u =−xg(x)},
then the solution to the normalization equation −xg(x) =U = u+ ε1x would give

s = ε1 =−u
x
−g(x),

recovering, up to a sign, the second canonical variable in (5.38). Also, since the function of an

invariant is an invariant function, the definition of the canonical variable

t = ι1(x) = x

can be extend to

t = f (ι1(x)) = f (x),

where fx �= 0. In doing so we recover the first canonical variable in (5.38).

From a purely symbolic and computational standpoint, the symmetry reduction algorithm can be

executed using solely the lifted recurrence relations of the the whole symmetry group G. Reviewing

the general procedure outlined above, we notice that in the first iteration of the symmetry reduction

algorithm, all computations can be carried out using the lifted recurrence relations for G provided

the equalities are defined modulo the Maurer–Cartan forms μ2, . . ., μr. Similarly, in the second

iteration, all computations hold modulo the Maurer–Cartan forms μ3, . . ., μr. In general, at the

�th iteration, the first �− 1 Maurer–Cartan forms μ1, . . ., μ�−1 will have been (partially) normal-

ized and the symmetry reduction computations can be performed using the recurrence relations of

the whole symmetry group provided the equalities are defined modulo the (partially normalized)

Maurer–Cartan forms μ̂�+1, . . ., μ̂r. By working with the recurrence relations of the whole symme-

try, the computations and the implementation of the symmetry reduction algorithm becomes more

straightforward. This is illustrated in the following example.

Example 5.3. Consider the second order ordinary differential equation

uxx =
ux

u2
− 1

xu
. (5.39)

Equation (5.39) admits a two-dimensional symmetry group G with infinitesimal generators

v1 = x2 ∂
∂x

+ xu
∂

∂u
, v2 =−x

∂
∂x

− u
2

∂
∂u

,

and first prolongation

v(1)1 = x2 ∂
∂x

+ xu
∂
∂u

+(u− xux)
∂

∂ux
, v(1)2 =−x

∂
∂x

− u
2

∂
∂u

+
ux

2

∂
∂ux

.

The lifted recurrence relations of the whole symmetry group G are, up to order 1,

dX = ω +X2μ1 −Xμ2,

dU =UX ω +XUμ1 − U
2

μ2,

dUX =UXX ω +(U −XUX)μ1 +
UX

2
μ2.

(5.40)
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Since

[v1,v2] = v1,

we first reduce equation (5.39) using the 1-parameter group induced by the infinitesimal generator

v1. Let ρ1 : J(2) → B
(2)
Gε1

be the moving frame obtained by normalizing X = 1 and let ι1 be the

induced invariantization map. Working with the 2-parameter group G, let ρ̂1 be the partial moving

frame obtained by normalizing X = 1. Also, let

Îk = ρ̂1 · Ik, ω̂ = �̂∗1(λG(ϖ1)), μ̂1 = ρ̂∗
1 (μ

1), μ̂2 = ρ̂∗
1 (μ

2),

where Ik = ι1(uk) and ϖ1 = ι1(dx). Pulling back the lifted recurrence relations (5.40) by the section

�̂1 induced by the partial moving frame ρ̂1, we obtain

0 = ω̂ + μ̂1 − μ̂2, dÎ = Î1ω̂ + Îμ̂1 − Î
2

μ̂2, dÎ1 = Î2ω̂ +(Î − Î1)μ̂1 +
Î1

2
μ̂2.

Since we are performing symmetry reduction with respect to v1, we use the first equation to solve

for μ̂1:

μ̂1 =−ω̂ + μ̂2. (5.41)

Substituting the result into the remaining equations yields

dÎ = (Î1 − Î)ω̂ +
Î
2

μ̂2, dÎ1 = (Î2 + Î1 − Î)ω̂ +

(
Î − Î1

2

)
μ̂2. (5.42)

Modulo μ̂2, we obtain

dÎ ≡ (Î1 − Î)ω̂, dÎ1 ≡ (Î2 + Î1 − Î)ω̂. (5.43)

The recurrence relations for the Gε1
-normalized invariants I = ι1(u), I1 = ι1(ux) are symbolically

obtained by dropping the hat notation over the invariants in (5.43) and substituting ω̂ →ϖ1 = ι1(dx):

dI = (I1 − I)ϖ1, dI1 = (I2 + I1 − I)ϖ1.

Also, modulo μ̂2, equation (5.41) becomes μ̂1 ≡−ω̂ , from which we conclude that ν1 = ρ∗
1 (μ1) =

ϖ1. Introducing the canonical variables t = I, s = ρ1, and setting w = st , we have that

w = st =
ν1

dI
≡− 1

I1 − I
and wt = stt =

I2

(I1 − I)3
. (5.44)

Invariantizing (5.39) we obtain the reduced differential equation

wt =
w2

t2
. (5.45)

We now reduce (5.45) using the 1-parameter group Gε2
induced by the infinitesimal generator

v2. From (5.44), we have that

I = t, I1 = t − 1

w
, I2 =−wt

w3
.
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Making the substitutions

Î → T, Î1 → T − 1

W
, Î2 →−WT

W 3
,

into (5.42), we obtain the order zero Gε2
-lifted recurrence relations

dT =− 1

W
ω̂ +

T
2

μ̂2, dW =−WT

W
ω̂ +

W
2

μ̂2. (5.46)

Let ρ2 : J
(1)
1 = {(t,w,wt)}→ Gε2

be the moving frame obtained by normalizing T = 1, and let ι2 be

the corresponding invariantization map. Introducing the notation

J = ι2(w), J1 = ι2(wt), ϖ2 =�∗2 (ω̂), ν2 =�∗2 (μ̂
2),

and pulling back (5.46) by the moving frame section �2 we obtain

0 =−1

J
ϖ2 +

1

2
ν2, dJ =−J1

J
ϖ2 +

J
2

ν2.

The first equation implies that

ν2 =
2

J
ϖ2. (5.47)

Substituting (5.47) into the second equation yields the recurrence relation

dJ =

(
1− J1

J

)
ϖ2. (5.48)

Invariantizing (5.45) we obtain the syzygy J1 = J2, which when substituted in (5.48) yields

dJ = (1− J)ϖ2.

Introducing the canonical variables y = J and z = ρ2, with z = z(y), we have that

zy =
dz
dy

=
ν2

dJ
=

2

y(1− y)
.

Integrating the latter equation gives

z(y) = ln

(
Cy

1− y

)2

.

We now recover the solution to the original differential equation (5.39) by implementing the

reconstruction process. Un-lifting the coefficients multiplying μ̂2 in (5.46), we conclude that

v̂2 = v(1)2

∣∣
(t,w) =

t
2

∂
∂ t

+
w
2

∂
∂w

.

Therefore, Gε2
acts on (t,w) by dilation:

T = e
ε2
2 t, W = e

ε2
2 w.

Since ι2(t,w) = ρ2 · (t,w) = (1,y), we have

t = e−
ρ2
2 ·1 = e−

z
2 =

1− y
Cy

so that y =
1

Ct +1
,
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and

w = e−
ρ2
2 y = e−

z
2 y =

1− y
C

=
t

Ct +1
.

Hence,

st = w =
t

Ct +1
and s(t) =

t
C
− 1

C2
ln(Ct +1)+K.

Finally, since the action of Gε1
on (x,u) is given by

X =
x

1− ε1x
, U =

u
1− ε1x

,

acting on ι1(x,u) = (1, t) by the left moving frame ρ1 =−s(t) yields the parametric solution

x =
1

1+ s
=

C2

Ct +B− ln(Ct +1)
, u =

t
1+ s

=
C2t

Ct +B− ln(Ct +1)
,

to the differential equation (5.39).
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