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This paper is a continuation of our previous work in which we studied a sl(3,C) Zakharov-Shabat type auxil-
iary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear
evolution equations. Now, we shall demonstrate how one can construct special solutions over constant back-
ground through Zakharov-Shabat’s dressing technique. That approach will be illustrated on the example of the
generalized Heisenberg ferromagnet equation related to the linear problem for sl(3,C). In doing this, we shall
discuss the differences between the Hermitian and pseudo-Hermitian cases.
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1. Introduction

In [7], the system of completely integrable equations

iut +uxx +(uu∗x + vv∗x)ux +(uu∗x + vv∗x)xu = 0, i =
√
−1,

ivt + vxx +(uu∗x + vv∗x)vx +(uu∗x + vv∗x)xv = 0
(1.1)

and the corresponding auxiliary spectral problem were introduced and studied. Above, the sub-
scripts mean partial differentiation, ∗ denotes complex conjugation and u,v : R2 → C are smooth
functions subject to the condition |u|2 + |v|2 = 1 (|z| =

√
zz∗, z ∈ C). System (1.1) is of particular

interest since it is an integrable generalization of the classical integrable Heisenberg ferromagnet
equation (HF)

St = S×Sxx.

HF describes the dynamics of a spin chain with unit spin vector S = (S1,S2,S3), see [4, 6, 21] for
more details.
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A vector system generalizing (1.1) was introduced quite independently by Golubchik and
Sokolov [11]. Motivated by studies of another classical model from theoretical physics, the Landau-
Lifshitz equation, the authors managed to find a Lax representation for the vector system, discussed
the algebraic meaning of the Lax pair and developed its Hamiltonian formulation.

System (1.1) kept attracting some further attention and extensive studies. In [8, 9], the authors
described the hierarchy of nonlinear evolution equations (NLEEs) associated with (1.1), the hier-
archies of conservation laws as well as the hierarchies of Hamiltonian structures in the case when
u(x)→ eiδ± and v(x)→ 0 sufficiently fast as x→±∞. Moreover, the generalized Fourier transform
interpretation of the inverse scattering transform for (1.1) was established and special soliton solu-
tions to (1.1) were constructed via dressing method. A deep study of the properties of the recursion
operators for (1.1) and the geometry linked to those was carried out in [22, 24].

In [23], the authors of the current paper considered a slightly more general system of NLEEs
having the form:

iut +uxx +(εuu∗x + vv∗x)ux +(εuu∗x + vv∗x)xu = 0, ε
2 = 1,

ivt + vxx +(εuu∗x + vv∗x)vx +(εuu∗x + vv∗x)xv = 0
(1.2)

where u and v satisfy the constraint:

ε|u|2 + |v|2 = 1. (1.3)

Obviously, (1.2) coincides with (1.1) when ε = 1 and, much like it, (1.2) has a zero curvature
representation [L(λ ),A(λ )] = 0 with Lax operators given by:

L(λ ) = i∂x−λS, λ ∈ C, S =

 0 u v
εu∗ 0 0
v∗ 0 0

 , (1.4)

A(λ ) = i∂t +λA1 +λ
2A2, A2 =

−1/3 0 0
0 2/3− ε|u|2 −εu∗v
0 −v∗u 2/3−|v|2

 , (1.5)

A1 =

 0 a b
εa∗ 0 0
b∗ 0 0

 ,
a = −iux− i(εuu∗x + vv∗x)u
b = −ivx− i(εuu∗x + vv∗x)v

. (1.6)

The form of (1.4)–(1.6) is rather similar to the form of the Lax pair of the original HF [8, 21, 23].
This is why we call (1.2) generalized Heisenberg ferromagnet equations. Following the convention
in [23], the case when ε = 1 will be referred to as Hermitian reduction while the case when ε =−1
— pseudo-Hermitian. As we shall discuss in more detail at the end of this section, the pseudo-
Hermitian reduction allows for different classes of solutions compared to the Hermitian one. This
observation initially motivated us to extensively study the pseudo-Hermitian reduction.

In [23], we described the integrable hierarchy associated with (1.2) in terms of recursion oper-
ators and derived completeness relations of their eigenfunctions. Instead of building the theory ab
initio, our analysis was based on the gauge equivalence between the auxiliary spectral problem with
scattering operator in the form (1.4) and that one for a nonlinear Schrödinger equation, i.e. a gen-
eralized Zakharov-Shabat system. This allowed us to obtain all our results for arbitrary constant
asymptotic values of the potential functions appearing in the auxiliary linear problems.
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Another issue of fundamental importance concerns the solutions of (1.2). In the present paper,
we intend to show how one can derive particular solutions to (1.2) in the simplest case of trivial
(constant) background. In doing this, we shall not make use of the gauge equivalence between
(1.4)–(1.6) and a generalized Zakharov-Shabat’s system in canonical gauge. Our approach will be
based on Zakharov-Shabat’s dressing method that seems to be suitable for the system of equations
we are interested in.

The paper itself is organized as follows. Next section contains our main results and is divided
into four subsections. The first subsection is preliminary— its purpose is to give the reader some
basic idea of Zakharov-Shabat’s dressing method and how it could be applied to linear bundles
(1.4). In doing this, we are going to use dressing factors which are meromorphic functions of the
spectral parameter. Our analysis depends on the poles of the dressing factor. It turns out there exist
three different cases:

• Generic case, when the poles of the dressing factor are complex numbers in general position, i.e.
those are not real or imaginary numbers;
• The case, when the poles of the dressing factor are imaginary;
• Degenerate case, when the poles are real.

Each of these cases is discussed in a separate subsection. Most of the considerations in these sub-
sections are general in the sense that they allow one to construct special solutions to any NLEE
belonging to the integrable hierarchy of (1.4) not just to the generalized HF. In order to specify the
NLEE within the hierarchy, one needs to substitute its dispersion law into the general equations we
are going to derive.

The first two of the cases mentioned above lead to soliton type solutions while the degenerate
one leads to quasi-rational ones. In the context of the classification of solutions, it becomes quite
obvious why the pseudo-Hermitian reduction deserves to be studied. There are essential differences
between the properties of the solutions obtained in the Hermitian and pseudo-Hermitian cases.
For example, some soliton type solutions develop singularities in the pseudo-Hermitian case while
their counterparts are non-singular in the Hermitian one. Moreover, it turns out that quasi-rational
solutions are possible in the pseudo-Hermitian case only. This situation is similar to the case of the
classical (scalar) nonlinear Schrödinger equation iqt +qxx +κ|q|2q = 0, κ =±1 for q : R2→C. As
it is well known, the defocusing nonlinear Schrödinger equation (κ = −1) for lim|x|→∞ q = 0 does
not possess soliton solutions unlike the self-focusing case (κ = 1), see [6]. On the other hand, the
defocusing nonlinear Schrödinger equation admit quasi-rational solutions for the afore-mentioned
asymptotic condition while the self-focusing case does not.

Last section contains some concluding remarks.

2. Special Solutions

In this section, we shall present our main results: construction of special solutions to (1.2) over
constant background. More specifically, we shall assume its solutions obey the following boundary
condition:

lim
x→±∞

u(x, t) = 0, lim
x→±∞

v(x, t) = 1 (2.1)
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that is easily seen to be compatible with (1.3). Our approach to obtain particular solutions will be
based on Zakharov-Shabat’s dressing method [25, 26]. Since we aim at providing a self-contained
exposition, we shall remind the reader its basics as applied to linear bundles in pole gauge.

2.1. Dressing method and linear bundles in pole gauge

The dressing method represents an indirect way to solve completely integrable equations, i.e. one
constructs new solutions to a given NLEE from a known (seed) solution. In doing this, one essen-
tially uses the existence and the form of Lax representation.

In order to see how the method works, let us consider an arbitrary NLEE from the integrable
hierarchy related to (1.4) and denote by (u0,v0) a known solution subject to (1.3) and (2.1). Then,
as it is shown in [23], the NLEEs has a Lax representation

[L0(λ ),A0(λ )] = 0 (2.2)

where L0 and A0 are given by:

L0(λ ) = i∂x−λS(0), S(0) =

 0 u0 v0

εu∗0 0 0
v∗0 0 0

 , (2.3)

A0(λ ) = i∂t +
N

∑
k=1

λ
kA(0)

k , N ≥ 2, λ ∈ C . (2.4)

The coefficients A(0)
k , k = 1, . . . ,N can be uniquely expressed through (u0,v0) and their x-derivatives

of order up to N−k. Here we shall not specify the form of the coefficients of the second Lax operator
because only their asymptotic behavior as x→±∞ is essential for our further considerations. We
refer the reader who is interested in this issue to our previous paper [23] where they can find more
detailed explanations.

Similarly to (1.4)–(1.6), the above Lax operators fulfill the following symmetry conditions:

HL0(−λ )H = L0(λ ), HA0(−λ )H = A0(λ ), H = diag (−1,1,1), (2.5)

Qε

(
S(0)
)†

Qε = S(0), Qε

(
A(0)

k

)†
Qε = A(0)

k , Qε = diag (1,ε,1) (2.6)

where † stands for Hermitian conjugation and ε =±1.
Let ψ0 be an arbitrary fundamental solution to the auxiliary linear problem:

L0(λ )ψ0(x, t,λ ) = 0. (2.7)

Due to (2.2), ψ0 also fulfills the linear problem:

A0(λ )ψ0(x, t,λ ) = ψ0(x, t,λ ) f (λ ) (2.8)

where

f (λ ) := lim
x→±∞

N

∑
k=1

λ
k[g0(x, t)]−1A(0)

k (x, t)g0(x, t) (2.9)
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is the dispersion law of the NLEE. Above,

g0 :=
1√
2

 1 0 −1
εu∗0

√
2v0 εu∗0

v∗0 −
√

2u0 v∗0


is the gauge transform diagonalizing S(0), see [23] for more explanations. The dispersion law of a
NLEE is an essential feature encoding the time dependence of its solutions and that way it labels
the NLEE within the integrable hierarchy. The dispersion law of (1.2) is

f (λ ) =−λ
2diag (1,−2,1)/3. (2.10)

Linear problems (2.7) and (2.8) will be referred to as bare (seed) linear problems and their funda-
mental solutions will be called bare (seed) fundamental solutions. We shall denote the set of all bare
fundamental solutions by F0.

As discussed in [23], (2.5) and (2.6) are due to the action of the reduction group Z2×Z2 on
the set of bare fundamental solutions, see [13, 14] for more explanations. Indeed, in our case the
following Z2×Z2-action

ψ0(x, t,λ ) −→ Hψ0(x, t,−λ )H, (2.11)

ψ0(x, t,λ ) −→ Qε

[
ψ

†
0 (x, t,λ

∗)
]−1

Qε (2.12)

leads to (2.5) and (2.6) respectively.
Now, let us apply the gauge (dressing) transform

G : F0→F1 = G F0 := {G ψ0|ψ0 ∈F0}

where G (x, t,λ ) is a 3× 3-matrix with unit determinant. Since the Lax operators are transformed
through:

L0 −→ L1 := G L0G
−1, A0 −→ A1 := G A0G

−1, (2.13)

the operators L1 and A1 commute as well. We shall require that the auxiliary linear problems remain
covariant under the dressing transform, i.e. we have

L1(λ )ψ1(x, t,λ ) = 0, A1(λ )ψ1(x, t,λ ) = ψ1(x, t,λ ) f (λ ), ψ1 ∈F1 (2.14)

for L1 and A1 being of the same form as L0 and A0. Thus we can write

L1(λ ) = i∂x−λS(1), S(1) =

 0 u1 v1

εu∗1 0 0
v∗1 0 0

 , (2.15)

A1(λ ) = i∂t +
N

∑
k=1

λ
kA(1)

k (2.16)

where u1 and v1 are some new (unknown) functions solving the same NLEE and subject to (1.3)
and (2.1). The coefficients A(1)

k , k = 1, . . . ,N depend on (u1,v1) and their x-derivatives of order up
to N− k in the same way as A(0)

k depend on (u0,v0) and their x-derivatives. Therefore, the dressed
Lax pair has the same asymptotic behavior as the bare one.
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Finding (u1,v1) means that we have obtained a new solution to the same NLEE and this is the
main idea underlying the dressing method. Symbolically, it could be presented as the following
sequence of steps:

(u0,v0) −→ (L0,A0) −→ ψ0
G−→ ψ1 −→ (L1,A1) −→ (u1,v1) .

Though the covariance of the linear problems is a strong condition, it does not determine the
dressing factor G uniquely. Indeed, after comparing (2.7) and (2.8) with (2.14), we see that G must
solve the system of linear partial differential equations:

i∂xG −λ

(
S(1)G −G S(0)

)
= 0, (2.17)

i∂tG +
N

∑
k=1

λ
k
(

A(1)
k G −G A(0)

k

)
= 0. (2.18)

Equations (2.17) and (2.18) tell us nothing about the λ -dependence of G . This is why we need to
make a few assumptions about its behavior with respect to λ in order to obtain more specific results.
Let us assume the dressing factor and its derivatives in x and t are defined in the neighbourhood of
λ = 0. After setting λ = 0 in (2.17) and (2.18), we immediately see that

∂xG |λ=0 = ∂tG |λ=0 = 0.

These relations imply that G should depend non-trivially on λ otherwise it will be merely a constant.
We shall pick up G |λ=0 = 11 since it does not lead to any loss of generality. In fact, this normaliza-
tion corresponds to the normalization of the fundamental analytic solutions to the auxiliary linear
problems at λ = 0, see [23].

Equation (2.17) allows one to find u1 and v1 in terms of the seed solution and the dressing factor.
At this point, we require that G as well as its derivatives in x and t are regular when |λ | → ∞. After
dividing (2.17) by λ and setting |λ | → ∞, we derive the following interrelation:

S(1) = G∞S(0)G −1
∞ , G∞(x, t) := lim

|λ |→∞

G (x, t,λ ). (2.19)

Since S(0) is determined by (u0,v0) and S(1) is determined by (u1,v1), the above relation allows us
to construct another solution of our system starting from a known one.

The form of the dressed operators and the zero curvature condition imply L1 and A1 obey (2.5)
and (2.6) too. Therefore, the set of the dressed fundamental solutions is subject to the Z2×Z2-action

ψ1(x, t,λ ) −→ Hψ1(x, t,−λ )H, ψ1 ∈F1, (2.20)

ψ1(x, t,λ ) −→ Qε

[
ψ

†
1 (x, t,λ

∗)
]−1

Qε . (2.21)

The Z2×Z2 action on F0 and F1 implies that the dressing factor is not entirely arbitrary but obeys
the symmetry relations:

HG (x, t,−λ )H = G (x, t,λ ), (2.22)

QεG
†(x, t,λ ∗)Qε = [G (x, t,λ )]−1 . (2.23)
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A simple ansatz for dressing factor meeting all the requirements discussed so far is given by:

G (x, t,λ ) = 11+λ ∑
j

[
B j(x, t)

µ j(λ −µ j)
+

HB j(x, t)H
µ j(λ +µ j)

]
, µ j ∈ C\{0}. (2.24)

Generally speaking, the dressing procedure does not preserve the spectrum of scattering opera-
tor, see [6]. Indeed, let us assume for simplicity that L0 has no discrete eigenvalues, i.e. the spectrum
of the bare scattering operator coincides with the real line, see [23]. Denote the resolvent of L0 by
R0(λ ). According to (2.13), the dressing transform maps the bare resolvent onto

R1(λ ) = G R0(λ )G
−1. (2.25)

Equation (2.25) implies that the singularities of the dressing factor and its inverse “produce” singu-
larities of the dressed resolvent operator R1(λ ). This way the dressing procedure adds new discrete
eigenvalues to the bare scattering operator.

In order to find L1 and A1 through (2.19), we need to know B j(x, t) = Res(G (x, t,λ ); µ j). The
algorithm to find the residues of (2.24) consists in two steps. In the first step, one considers the iden-
tity G G −1 = 11 which gives rise to a set of algebraic relations for B j. The form of those relations
crucially depends on the location of µ j— whether the poles of the dressing factor are arbitrary com-
plex numbers with nonzero real and imaginary parts (generic case) or the poles are either imaginary
or real numbers. If the poles are complex numbers in generic position or purely imaginary then we
obtain soliton type solutions. For poles lying on the real line, we have degeneracy in the spectrum of
the scattering operator. As a result, we obtain quasi-rational solutions. Due to all these differences,
we shall consider the three cases in separate subsections.

Though the algebraic relations may be different, they always imply that the residues of G are
some singular (degenerate) matrices which could be decomposed as follows:

B j(x, t) = X j(x, t)FT
j (x, t) (2.26)

where X j(x, t) and Fj(x, t) are rectangular matrices of certain rank and the superscript T stands for
matrix transposition. After substituting (2.26) into the algebraic relations, we are able to express X j

through Fj.
The factors Fj are determined in the second step. For this to be done, we consider (2.17) and

(2.18). As for the algebraic relations discussed above, the calculations here depend on the location
of the poles of G . However, (2.17) always leads to the following result:

FT
j (x, t) = FT

j,0(t) [ψ0(x, t,µ j)]
−1

allowing one to construct Fj through a bare fundamental solution defined in the neighbourhood of
µ j and some arbitrary x-independent matrices Fj,0. The matrices Fj,0 depend on t in a way governed
by (2.18). Regardless of the location of µ j, we derive exponential t-dependence. Thus in order to
recover the time dependence in all formulas, we may use the rule below:

FT
j,0(t) −→ FT

j,0(t)e
−i f (µ j)t

where f (λ ) is the dispersion law of the NLEE, see (2.9). We shall demonstrate in more detail that
procedure in the subsections to follow.
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2.2. Soliton type solutions I. Generic case

Let us start with the case when the poles of (2.24) are complex numbers in generic position, i.e.
µ2

j /∈ R for all j. From the symmetry condition (2.23), we immediately deduce that

[G (x, t,λ )]−1 = 11+λ ∑
i

[
QεB†

i (x, t)Qε

µ∗i (λ −µ∗i )
+

QεHB†
i (x, t)HQε

µ∗i (λ +µ∗i )

]
. (2.27)

Thus the dressing factor and its inverse have poles located at different points.
Let us consider the identity G (x, t,λ ) [G (x, t,λ )]−1 = 11. Since it holds identically in λ , the

residues of G G −1 should vanish. After evaluating the residue of G G −1 at µ∗i we easily obtain the
following algebraic relation:[

11+µ
∗
i ∑

j

(
B j

µ j(µ∗i −µ j)
+

HB jH
µ j(µ∗i +µ j)

)]
QεB†

i Qε = 0. (2.28)

Evaluation of the residues at ±µi and −µ∗i leads to equations that can easily be reduced to (2.28),
thus giving us no new constraints.

It is seen from (2.28) that each Bi should be a degenerate matrix, hence it can be factored

Bi(x, t) = Xi(x, t)FT
i (x, t) (2.29)

where Xi and Fi are two rectangular matrices. After substituting (2.29) into (2.28), one obtains the
linear system

QεF∗i = µ
∗
i ∑

j

(
X j

FT
j QεF∗i

µ j(µ j−µ∗i )
−HX j

FT
j HQεF∗i

µ j(µ∗i +µ j)

)
(2.30)

for the factors X j. Solving it, allows one to express X j through Fj. This is easier when the dressing
factor has just a single pair of poles: µ and −µ . Assuming X and F are column-vectors, we get:

X =

(
µ∗FT QεF∗

µ(µ−µ∗)
− µ∗FT HQεF∗

µ(µ +µ∗)
H
)−1

QεF∗. (2.31)

Let us return now to the general case. The factors Fj can be found from (2.17). For that purpose
we rewrite (2.17) in the following way

λS(1) = i∂xG G −1 +λG S(0)G −1

and calculate the residues of its right-hand side at λ = µi. After taking into account (2.30), we obtain
the linear differential equation

i∂xFT
i +µiFT

i S(0) = 0 (2.32)

which is immediately solved to give

FT
i (x, t) = FT

i,0(t) [ψ0(x, t,µi)]
−1 . (2.33)

Above, Fi,0 are “integration constant” matrices which depend on t however. Evaluation of the
residues at −µi or ±µ∗i gives equations that are easily reduced to (2.32) after taking into account
the symmetries of S(0)1 .
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The t-dependence of Fi,0 is determined from (2.18) after it is rewritten as follows:

N

∑
k=1

λ
kA(1)

k =−i∂tG G −1 +G
N

∑
k=1

λ
kA(0)

k G −1. (2.34)

Evaluation of the residues of both hand sides of (2.34) for λ = µi gives

i∂tFT
i −FT

i

N

∑
k=1

µ
k
i A(0)

k = 0. (2.35)

Yet again, we do not need to consider the residues for λ =±µ∗i and λ =−µi due to the symmetries
of the coefficients of A(λ ).

After substituting (2.33) into (2.35), we derive a linear differential equation for Fi,0, namely

i∂tFT
i,0−FT

i,0 f (µi) = 0 (2.36)

where f (λ ) is the dispersion law of the NLEE. Equation (2.36) is easily solved and allows us to
state the rule: in order to recover the t-dependence in all formulas, one has to make the following
substitution

FT
i,0 −→ FT

i,0e−i f (µi)t . (2.37)

Now let us apply the general results obtained above to some seed solution. An obvious choice
for seed solution satisfying (1.3) and (2.1) is

S(0) =

0 0 1
0 0 0
1 0 0

 . (2.38)

One can prove that the bare scattering operator in this case has no discrete eigenvalues.
For a bare fundamental solution we shall choose

ψ0(x,λ ) =

 cos(λx) 0 −i sin(λx)
0 1 0

−i sin(λx) 0 cos(λx)

 . (2.39)

This fundamental solution is invariant with respect to (2.11) and (2.12) which makes it rather con-
venient for the calculations to follow.

From this point on, we shall focus on the simplest case when the dressing factor has a single
pair of poles and X and F are column-vectors. After substituting (2.29) and (2.31) into (2.24) and
(2.27), equation (2.19) can be written in components as follows:

u1 =−
[
µ|F1|2 +µ∗(ε|F2|2 + |F3|2)

](
µ2− (µ∗)2

)
F2
(
F3
)∗

µ∗ [µ∗|F1|2 +µ(ε|F2|2 + |F3|2)]2
, (2.40)

v1 =

[
µ|F1|2 +µ∗(ε|F2|2 + |F3|2)

]
µ∗ [µ∗|F1|2 +µ(ε|F2|2 + |F3|2)]2

×{
µ
∗ [

µ|F1|2 +µ
∗(ε|F2|2 + |F3|2)

]
+
(
µ

2− (µ∗)2)
ε|F2|2

}
(2.41)

where FT = (F1,F2,F3). It is not hard to check that (2.40) and (2.41) satisfy (1.3) for any F .
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On the other hand, (2.33) leads to the following expression for F :

F(x) =

F1
0 cos(µx)+ iF3

0 sin(µx)
F2

0
F3

0 cos(µx)+ iF1
0 sin(µx)

 , F0 =

F1
0

F2
0

F3
0

 . (2.42)

In order to evaluate X , we shall need the following quadratic expressions as well:

FT QεF∗ =
(∣∣F1

0
∣∣2 + |F3

0 |2
)

cosh(2κx)−2|F1
0 F3

0 |cosϕ sinh(2κx)+ ε|F2
0 |2, (2.43)

FT QεHF∗ =
[(
|F3

0 |2−|F1
0 |2
)

cos(2ωx)−2|F1
0 F3

0 |sinϕ sin(2ωx)+ ε|F2
0 |2
]

(2.44)

where ω = Re µ > 0, κ = Im µ > 0 and ϕ = argF1
0 − argF3

0 . Taking into account the structure of
(2.39)–(2.42), it is natural to consider in detail the following three elementary cases, see [9].

(1) First, let us assume F2
0 = 0 and F1

0 6=±F3
0 . Then for F we have

F(x) =

F1
0 cos(µx)+ iF3

0 sin(µx)
0

F3
0 cos(µx)+ iF1

0 sin(µx)

 (2.45)

and (2.43), (2.44) now could be simplified to

FT QεF∗ = Acosh(2κx+ξ0), (2.46)

FT QεHF∗ =−Acos(2ωx+δ0) (2.47)

where

coshξ0 =
|F1

0 |2 + |F3
0 |2

A
, sinhξ0 =−

2|F1
0 F3

0 |cosϕ

A
, (2.48)

A =

√(
|F1

0 |2 + |F3
0 |2
)2−4|F1

0 F3
0 |2 cos2 ϕ , (2.49)

cosδ0 =
|F1

0 |2−|F3
0 |2

A
, sinδ0 =−

2|F1
0 F3

0 |sinϕ

A
. (2.50)

After substituting (2.45)–(2.50) into (2.40) and (2.41), we obtain the dressed solution to (1.2)
at a fixed moment of time:

u1(x) = 0, (2.51)

v1(x) = exp
[

4iarctan
κ cos(2ωx+δ0)

ω cosh(2κx+ξ0)

]
. (2.52)

In order to recover the time evolution in (2.51) and (2.52), one needs to make the substitution:

ϕ → ϕ, ξ0→ ξ0, δ0→ δ0, A→ Aexp
(
−4ωκt

3

)
(2.53)

that follows directly from (2.10) and (2.37). It is seen that (2.51) and (2.52) remain invariant
under transformation (2.53), so the dressed solution is stationary and non-singular. The solution
just derived coincides with that found in [9] (see formula (3.26)) for the generalized HF with
Hermitian reduction.
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(2) Let us assume F2
0 6= 0. Without any loss of generality we could just set F2

0 = 1. There exist two
elementary options: F1

0 = F3
0 and F1

0 =−F3
0 . Let us consider the former one. After recovering

the time evolution, the vector F(x) is given by:

F(x, t) =

F1
0 eiµx+ iµ2t

3

e−
2iµ2t

3

F1
0 eiµx+ iµ2t

3

 .

The solution in this case reads:

u1(x, t) =
4ωκ

[
2ωeϑ(x,t)+ ε(ω− iκ)e−ϑ(x,t)

]
e−i[ωx+(ω2−κ2)t+δ ]

(ω− iκ)
[
2ωeϑ(x,t)+ ε(ω + iκ)e−ϑ(x,t)

]2 , (2.54)

v1(x, t) = 1− 8εωκ2

(ω− iκ)
[
2ωeϑ(x,t)+ ε(ω + iκ)e−ϑ(x,t)

]2 (2.55)

where

ϑ(x, t) =−κ(x+2ωt)+ ln |F0,1|, δ =
(

π

2
+ argF0,1

)
.

Solution (2.54), (2.55) has no singularities and goes into the one obtained in [9] (see equation
(3.27)) when ε = 1.

(3) Assume now F2
0 = 1 and F1

0 =−F3
0 . In this case F(x, t) is given by:

F(x, t) =

 F1
0 e−iµx+ iµ2t

3

e−
2iµ2t

3

−F1
0 e−iµx+ iµ2t

3

 .

The corresponding dressed solution looks as follows:

u1(x, t) =
4ωκ

[
2ωeϑ̃(x,t)+ ε(ω− iκ)e−ϑ̃(x,t)

]
ei[ωx+(κ2−ω2)t+δ̃ ]

(ω− iκ)
[
2ωeϑ̃(x,t)+ ε(ω + iκ)e−ϑ̃(x,t)

]2 , (2.56)

v1(x, t) = 1− 8εωκ2

(ω− iκ)
[
2ωeϑ̃(x,t)+ ε(ω + iκ)e−ϑ̃(x,t)

]2 (2.57)

where

ϑ̃(x, t) = κ(x−2ωt)+ ln |F0,1|, δ̃ =
π

2
− argF0,1.

Formally, this solution could be derived from (2.54), (2.55) by applying the transform x→−x
and F0,1→ F0,3.

All the solutions constructed explicitly in this subsection are connected with four distinct poles
(quadruples) of G and G −1, i.e. four discrete eigenvalues of the dressed scattering operator. This is
why we call such solutions “quadruplet” solutions.
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2.3. Soliton type solutions II. Imaginary poles

Let us assume now that all the poles of G are purely imaginary, i.e. we have µ j = iκ j for some real
numbers κ j 6= 0. Thus we could write

G (x, t,λ ) = 11+λ ∑
i

[
Bi(x, t)

iκi(λ − iκi)
+

HBi(x, t)H
iκi(λ + iκi)

]
(2.58)

for the dressing factor and

[G (x, t,λ )]−1 = 11−λ ∑
i

[
QεB†

i (x, t)Qε

iκi(λ + iκi)
+

QεHB†
i (x, t)HQε

iκi(λ − iκi)

]
(2.59)

for its inverse. Since G and G −1 have the same poles, the identity G G −1 = 11 gives rise to algebraic
relations that do not follow from (2.28). It is easily checked that the following equations hold true:

lim
λ→iκi

(λ − iκi)
2 (G G −1 = 11

)
⇒ BiQεHB†

i = 0 , (2.60)

lim
λ→iκi

∂λ (λ − iκi)
2 (G G −1 = 11

)
⇒ BiQεHΩ

†
i −ΩiQεHB†

i = 0 (2.61)

where

Ωi = 11+
Bi

iκi
+∑

j 6=i

κiB j

iκ j(κi−κ j)
+∑

j

κiHB jH
iκ j(κi +κ j)

.

There is no need to perform similar calculations for λ = −iκi since all algebraic equations can be
reduced to (2.60) and (2.61).

Relation (2.60) implies that Bi(x, t) is degenerate, so (2.29) holds again for some rectangular
matrices Xi and Fi (we shall assume that these matrices are simply column vectors). Due to (2.60)
the factors Fi satisfy the quadratic relation

FT
i QεHF∗i = 0. (2.62)

After substituting (2.29) into (2.61), we see that there exist functions αi such that:

ΩiQεHF∗i =−Xiαi, α
∗
i = αi . (2.63)

These relations allow one to find all vectors Xi in terms of Fi and αi. In the simplest case when the
dressing factor has a single pair of poles ±iκ (2.63) is easily solvable to give:

X =−
(

α +
FT QεF∗

2iκ
H
)−1

QεHF∗ . (2.64)

After taking into account (2.29), (2.58), (2.59) and (2.64), equation (2.19) could be written down in
components as follows:

u1(x, t) =
2(|F1(x, t)|2 + iκα(x, t))F2(x, t)

(
F3(x, t)

)∗
(|F1(x, t)|2− iκα(x, t))2 , (2.65)

v1(x, t) = 1+
2
(
2iκα(x, t)− ε|F2(x, t)|2

)
|F1(x, t)|2− iκα(x, t)

+
4iκα(x, t)

(
iκα(x, t)− ε|F2(x, t)|2

)
(|F1(x, t)|2− iκα(x, t))2 . (2.66)

It is easy to check that (2.65) and (2.66) are interrelated through |v|2 +ε|u|2 = 1 for any real-valued
α and F obeying (2.62).
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Like in the generic case (see the previous subsection) we can find Fi and αi by analyzing (2.17)
and (2.18). Considerations similar to those in the generic case lead to the following linear differential
equations:

lim
λ→iκi

(λ − iκi)
2
(

i∂xG G −1 +λG S(0)G −1 = λS(1)
)
⇒ i∂xFT

i +µiFT
i S(0) = 0, (2.67)

lim
λ→iκi

∂λ (λ − iκi)
2
(

i∂xG G −1 +λG S(0)G −1 = λS(1)
)
⇒ i∂xαi = FT

i S(0)QεHF∗i . (2.68)

Equation (2.67) shows that (2.33) holds true for the vectors Fi while (2.68) implies that the scalar
functions αi can be expressed in terms of the seed fundamental solution as given by:

αi(x) = αi,0 +FT
i,0 [ψ0(x, iκi)]

−1 ∂ψ0(x, iκi)

∂λ
Kψ0QεHF∗i,0. (2.69)

Above, αi,0 is an integration constant and Kψ(λ ) = [ψ(λ )]−1HQε

[
ψ†(−λ ∗)

]−1 QεH measures the
“deviation” of the solution ψ from invariant solutions, i.e. if ψ is invariant with respect to (2.11)
and (2.12), then Kψ = 11.

Finally, we need to recover the time dependence in all formulas. For this to be done we consider
(2.18) as we did in the previous subsection. As a result, we derive a set of equations for Fi and αi,
namely:

lim
λ→iκi

(λ − iκi)
2

[
−i∂tG G −1 +G ∑

k
λ

kA(0)
k G −1

]
= 0 ⇒

i∂tFT
i −FT

j ∑
k
(iκi)

kA(0)
k = 0, (2.70)

lim
λ→iκi

∂λ

{
(λ − iκi)

2

[
−i∂tG G −1 +G ∑

k
λ

kA(0)
k G −1

]}
= 0 ⇒

i∂tαi +FT
i ∑

k
k(iκi)

k−1A(0)
k QεHF∗i = 0. (2.71)

Equation (2.70) coincides with (2.35). Thus after substituting (2.33) into (2.70), we derive (2.36)
and (2.37) holds again. On the other hand, (2.71) is reduced to

i∂tαi,0 +FT
i,0

d f (iκi)

dλ
Kψ0HQεF∗i,0 = 0. (2.72)

If the bare fundamental solution is invariant with respect to both reductions, i.e. Kψ0 = 11, then (2.72)
is simplified to

i∂tαi,0 +FT
i,0

d f (iκi)

dλ
HQεF∗i,0 = 0. (2.73)

Let us consider the case when the seed solution S(0) is picked up as in (2.38) and the correspond-
ing fundamental solution is given by (2.39). As we discussed in the previous subsection, for (2.39)
we have Kψ0 = 11. From this point on, we shall assume that G has a single pair of imaginary poles.
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In this case the 3-vector F reads:

F(x) =

 cosh(κx)F1
0 − sinh(κx)F3

0
F2

0
cosh(κx)F3

0 − sinh(κx)F1
0

 , F0 =

F1
0

F2
0

F3
0

 . (2.74)

Our further considerations depend on whether or not F2
0 is equal to 0.

(1) Let us first assume F2
0 = 0. Then we may set |F1

0 |= |F3
0 |= 1 and (2.74) and (2.69) now give

|F1(x)|2 = cosh(2κx)− sinh(2κx)cos(2ϕ), 2ϕ = argF1
0 − argF3

0 (2.75)

α(x) = α0 +2xsin(2ϕ) (2.76)

where α0 is t-independent in this case. After substituting (2.75) and (2.76) into (2.65) and
(2.66), then taking into account (2.74), we get the following stationary solution to (1.2):

u1(x) = 0, (2.77)

v1(x) =
[

cosh(2κx)− sinh(2κx)cos(2ϕ)+ iκ(α0 +2xsin(2ϕ))

cosh(2κx)− sinh(2κx)cos(2ϕ)− iκ(α0 +2xsin(2ϕ))

]2

. (2.78)

The dressed solution just derived does not “feel” the presence of ε , i.e. whether the reduction is
Hermitian or pseudo-Hermitian, hence it formally coincides with the one obtained in [9]. The
right-hand side of (2.78) could be rewritten as:

v1(x) = exp
[

4iarctan
(

κ(α0 +2xsin(2ϕ))

cosh(2κx)− sinh(2κx)cos(2ϕ)

)]
.

When we have F0,1 =±F0,3, it simplifies to

v1(x) =
[

e∓2κx + iκα0

e∓2κx− iκα0

]2

.

It is seen that v1 is nontrivial only if α0 6= 0.
(2) Assume now that F2

0 6= 0. Thus we may simply set F2
0 = 1. Our further analysis depends on

the value of ε . Let us pick up ε = 1 first. Due to (2.62) and the invariance of (2.39) under the
reductions, we have

FT
0 QεHF∗0 = 0 ⇒ |F1

0 |2−|F3
0 |2 = 1. (2.79)

A natural parametrization for F1
0 and F3

0 is the following one:

F1
0 = cosh(θ) ei(δ+ϕ), F3

0 = sinh(θ) ei(δ−ϕ), θ > 0. (2.80)

Then using (2.80), we have

|F1(x, t)|2 = cosh2(κx−θ)cos2
ϕ + cosh2(κx+θ)sin2

ϕ,

α(x, t) = x sinh(2θ)sin(2ϕ)−2κt.
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In the end we derive the following dressed solution:

u1(x, t) =
2∆∗p
∆2

p
ei(κ2t−δ ) [−sinh(κx−θ)cosϕ + i sinh(κx+θ)sinϕ] ,

v1(x, t) = 1+
2(2iκα−1)

∆p
+

4iκα(iκα−1)
∆2

p
,

∆p = cosh2(κx−θ)cos2
ϕ + cosh2(κx+θ)sin2

ϕ− iκ(xsinh2θ sin2ϕ−2κt) .

The result we obtained coincides with the one found in [9].
Let us consider now the case when ε =−1. Relation (2.79) is rewritten as

|F3
0 |2−|F1

0 |2 = 1

hinting at the following parametrization:

F1
0 = sinh(θ) ei(δ+ϕ), F3

0 = cosh(θ) ei(δ−ϕ), θ > 0.

Then we have

|F1(x, t)|2 = sinh2(κx−θ)cos2
ϕ + sinh2(κx+θ)sin2

ϕ,

α(x, t) = x sinh(2θ)sin(2ϕ)+2κt

and substituting into (2.65) and (2.66) we obtain:

u1(x, t) =
2∆∗m
∆2

m
ei(κ2t−δ ) [cosh(κx−θ)cosϕ + i cosh(κx+θ)sinϕ] , (2.81)

v1(x, t) = 1+
2(2iκα +1)

∆m
+

4iκα(iκα +1)
∆2

m
, (2.82)

∆m = sinh2(κx−θ)cos2
ϕ + sinh2(κx+θ)sin2

ϕ− iκ[xsinh(2θ)sin(2ϕ)+2κt] .

It is not hard to see that ∆m could vanish for particular values of the parameters and thus we
obtain singular solutions.

Unlike the quadruplet solutions in the previous subsection, the soliton-like solutions we derived
here are related to a pair of discrete eigenvalues (doublet) of the scattering operator. This is the
reason we call such solutions “doublet” solutions.

2.4. Degenerate case

Hereafter, we shall consider the case when the poles of the dressing factor are all real. Like in
doublet case (see the previous subsection), the dressing factor

G (x, t,λ ) = 11+λ ∑
i=1

[
Bi(x, t)

µi(λ −µi)
+

HBi(x, t)H
µi(λ +µi)

]
, µi ∈ R\{0}

and its inverse

[G (x, t,λ )]−1 = 11+λ ∑
i=1

[
QεB†

i (x, t)Qε

µi(λ −µi)
+

QεHB†
i (x, t)HQε

µi(λ +µi)

]
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have the same poles. Then the identity G (λ )[G (λ )]−1 = 11 gives rise to the following algebraic
relations:

BiQεB†
i = 0 , (2.83)

Ω̃iQεB†
i +BiQεΩ̃

†
i = 0 (2.84)

where

Ω̃i = 11+
Bi

µi
+∑

j 6=i

µiB j

µ j(µi−µ j)
+∑

j

µiHB jH
µ j(µi +µ j)

. (2.85)

Like in the previous case, relation (2.83) could be reduced to

FT
i QεF∗i = 0 (2.86)

for the vector Fi involved in (2.29). It is clear that for Qε = 11 (2.86) leads to Fi = 0 and G becomes
equal to 11. Therefore a nontrivial result is possible only for pseudo-Hermitian reduction, i.e. Qε =

diag (1,−1,1).
From this point on, we shall be interested in the case when Xi and Fi are just 3-vectors. Relation

(2.84) implies there exists a scalar function βi such that

Ω̃iQεF∗i = Xiβi, β
∗
i =−βi . (2.87)

Relation (2.87) is a linear system of equations for Xi. This system could easily be solved when G
has a single pair of real poles. In this case for X we have:

X =

(
β − FT HQεF∗

2µ
H
)−1

QεF∗ . (2.88)

In order to obtain Fi and βi, one considers the differential equations satisfied by the dressing
factor, see (2.17) and (2.18). Analysis rather similar to that in the previous subsections shows that
Fi depend on bare fundamental solution according to (2.33) while βi is determined by:

βi = βi,0FT
i,0 [ψ0(x,µi)]

−1
∂λ ψ0(x,µi)K̃ψ0(µi)QεF∗i,0

where K̃ψ(λ ) = [ψ(λ )]−1Qε

[
ψ†(λ ∗)

]−1 Qε measures the “deviation from invariance” of the solu-
tion ψ and βi,0 is an imaginary x-independent scalar function. Like in the previous cases, (2.18)
leads to (2.37) recovering the time dependence of Fi. The time dependence of βi is obtained through
the following substitution rule:

βi,0→ βi,0− iFT
i,0

d f (λ )
dλ

∣∣∣∣
λ=µi

K̃ψ0(µi)QεF∗i,0 t (2.89)

where f (λ ) is the dispersion law.
We shall focus now on the simplest case when the dressing factor has one pair of real poles.

Assume the seed solution S(0) and the corresponding fundamental solution ψ0 are given by (2.38)
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and (2.39) respectively. Due to (2.86), for the components of the 3-vector F0 = (F1
0 ,F

2
0 ,F

3
0 ) we have

|F1
0 |2 + |F3

0 |2 = |F2
0 |2 . (2.90)

Without any loss of generality we could set F2
0 = 1. Then the form of (2.90) suggests the

parametrization:

F1
0 (t) = cos(θ) e

i
(

µ2t
3 +δ+ϕ

)
, F3

0 (t) = sin(θ) e
i
(

µ2t
3 +δ−ϕ

)
, θ ∈ [0,π/2].

Then F could be written down as:

F(x, t) =


e

i
(

µ2t
3 +δ

) [
eiϕ cos(µx)cosθ + i e−iϕ sin(µx)sinθ

]
e−

2iµ2t
3

e
i
(

µ2t
3 +δ

) [
e−iϕ cos(µx)sinθ + i eiϕ sin(µx)cosθ

]

 . (2.91)

A relatively simple computation shows that β depends linearly on x and t as follows:

β = i[2µt + xsin(2θ)cos(2ϕ)] . (2.92)

Thus taking into account (2.19), the dressed solution to (1.2) acquires the form:

u1(x, t) =−
2
(
µβ + |F1|2

)
F2
(
F3
)∗

(µβ −|F1|2)2 , (2.93)

v1(x, t) =

(
µβ + |F1|2

)(
µβ −1−|F3|2

)
(µβ −|F1|2)2 . (2.94)

It could easily be checked that (2.93) and (2.94) satisfy (1.3) provided β and F obey (2.86) but are
otherwise arbitrary.

After substituting (2.91) and (2.92) into (2.93) and (2.94) and making some further simplifica-
tions, we derive

u1(x, t) =

−
2∆∗d
∆2

d
e−(iµ2t+δ+ π

4 )
[
cos
(

ϕ +
π

4

)
sin(µx+θ)− i sin

(
ϕ +

π

4

)
sin(µx−θ)

]
, (2.95)

v1(x, t) =
∆∗d(∆

∗
d−2)

∆2
d

(2.96)

where

∆d = cos2(µx+θ)cos2
(

ϕ +
π

4

)
+ cos2(µx−θ)sin2

(
ϕ +

π

4

)
− iµ[2µt + x sin(2θ)cos(2ϕ)].

Solutions (2.95) and (2.96) contain terms that are linear in x and t as well as terms that are bounded
oscillating functions. This is why we call such solutions quasi-rational. It is easy to see that the
denominator ∆d has zeros for particular values of the parameters. For example, when θ = π/2 it is
zero at x = 0 and t = 0.
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3. Conclusion

In this paper, we have shown how Zakharov-Shabat’s dressing method can be applied to linear bun-
dles in pole gauge whose potential functions are subject to (2.1). Following the general algorithm
described in Section 2.1, we have constructed special solutions to a generalized Heisenberg ferro-
magnet equation, see (1.2). The simplest class of such solutions corresponds to a dressing factor
with simple poles, see (2.24). We have seen that the location of the poles in λ -plane affects the form
of the solutions. There exist three “pure” cases: the poles are complex numbers in generic position,
the poles are imaginary and the poles are real. The first two options lead to soliton-like solutions of
quadruplet and doublet type respectively, see formulas (2.51), (2.52), (2.54), (2.55), (2.56), (2.57),
(2.77), (2.78), (2.81) and (2.82). All the quadruplet solutions we have derived are non-singular while
the doublet solutions could have singularities in the pseudo-Hermitian case.

The case of real poles differs much from the others. It introduces certain degeneracy in the
spectrum of the scattering operator and leads to quasi-rational solutions, see (2.95) and (2.96). We
have seen such degeneracy is possible only if we have a pseudo-Hermitian reduction. This is a rather
essential difference between the Hermitian and pseudo-Hermitian reductions. The quasi-rational
solutions (2.95) and (2.96) could be non-singular for particular values of the parameters.

Apart from the “pure” cases we have discussed in the main text, there exists a situation when
some poles of the dressing factor are generic complex numbers while the rest are either real or
imaginary numbers. Clearly, the analysis of this “mixed” case can be reduced to the considerations
we have already demonstrated.

Though we have discussed in detail special solutions to (1.2), similar procedures could be used
to derive explicit solutions to any NLEE belonging to the integrable hierarchy of (1.4). The solutions
of such a NLEE will have the same x-dependence as those of (1.2) but a different t-dependence.

In the present paper, we have focused on the simplest class of solutions obeying asymptotic
behavior (2.1). A possible way of extending our results is by looking for solutions having more
complicated behavior, e.g. non-trivial background solutions or periodic solutions. In the last few
decades, nontrivial background solutions have become a topic of increased interest due to the con-
nection to phenomena like rogue (freak) waves, see [1, 3, 17, 18]. Such solutions were obtained for
classical integrable equations like the (scalar) nonlinear Schrödinger equation [1, 2, 12, 18], the 3-
wave equation [3, 5] and for the scalar derivative nonlinear Schrödinger equation [19, 20]. This is
why it is interesting to explicitly construct such type of solutions for the generalized Heisenberg
equation and find out how the properties of (1.2) and its spectral problem will change if u and v
have a different behavior.

Another direction to extend our results is by studying auxiliary spectral problems and the cor-
responding integrable hierarchies of NLEEs for other symmetric spaces and/or other reductions.
This includes the study of multicomponent versions of (1.2) connected to the symmetric spaces
SU(m+n)/S(U(m)×U(n)) and rational bundles like the following one:

L(λ ) = i∂x−λS1−
1
λ

S−1, λ ∈ C\{0},

where

S±1 =

(
0 u±

v± 0

)
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for u± and v± being some vector functions. The above rational bundle can be viewed as a defor-
mation of the linear bundle we have considered here and it has much more complicated properties,
see [7, 10] for some discussion of the Hermitian case. The dressing method has already been suc-
cessfully applied to such complicated spectral problems, see [15,16] for some interesting examples.
We intend to discuss all these issues in more detail elsewhere.
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