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In this paper, we will construct free-field realizations of the WAn,N algebra associated to an An-valued differ-
ential operator

L = In∂
N +UN−1∂

N−1 +UN−2∂
N−2 + · · ·U0,

where An is a Frobenius algebra with the uint In.
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1. Introduction

The source of the concept of W-algebras is the conformal field theory (CFT briefly) [2, 11, 23].
The main problem of the CFT is a description of fields having conformal symmetries. Only in the
two-dimensional case is the group of conformal diffeomorphisms rich enough to build a meaningful
theory on this base. All diffeomorphisms of a circle represent the core of the theory. Its related Lie
algebra is a centerless Virasoro algebra, whose extension is the well-known Virasoro algebra. In
the study of Virasoro algebra, there were various representations in terms of free fields, based on
bosons, fermions and ghosts. In particular, the free-boson representation, including vertex operators,
proved to be useful for particular calculations, especially for the evaluation of correlation functions.
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The CFT requires the extension of the Virasoro algebra as far as possible. The work by Zamolod-
chikov pioneered the concept of CFT. He gave an extension of the Virasoro algebra called the W3

algebra. In that terminology, the Virasoro algebra was W2. At the end of the 1980’s, it was found
that the mathematical framework for further extension of Virasoro algebra already existed as the
theory of integrable systems. In other words, the classical realization of the W-algebra [23] appears
naturally as the second Poisson bracket of KdV-type hierarchies. For example, the Virasoro algebra
W2 is realized as the Magri bracket for the KdV hierarchy [12,18], and the Zamolodchikov-Fateev-
Lukyanov Wm-algebra as the second Adler-Gelfand-Dickey (AGD briefly) bracket for the mth-order
Gelfand-Dickey (GDm) hierarchy [1, 10, 17, 19]. Free-field relations of W-algebras have also been
obtained by constructing the related Miura maps, please see e.g. [7–9,14] and references therein for
details.

In [5], A. Bilal proposed a non-local matrix generalization of the well-known Wm-algebra, called
the Vn,m-algebra, by constructing the second AGD bracket associated with a matrix differential
operator of order m

L=−In∂
m +U1∂

m−1 +U2∂
m−2 + · · ·+Um

=−(In∂ −P1) · · ·(In∂ −Pm), ∂ =
∂

∂x
, Pj, U j ∈ gl(n,C),

where In is the nth-order identity matrix. Upon reducing to U1 = 0, the non-commutativity of matri-
ces implies the presence of non-local terms in the Vn,m-algebra. A Miura transformation relates
these Poisson brackets of the U j to much simpler ones of a set of Pi ∈ gl(n,C), i.e., the Kupershmidt-
Wilson (KW briefly) type theorem. Contrary to the scalar case, generally Pi are not free fields. It
is difficult to give such a free-field realization because of the non-local terms except some special
cases [3, 4].

Recently motivated by the work in [6,13,16,25], Strachan and Zuo began to study the Frobenius
algebra-valued integrable systems [21,22,24,26]. In [21] they introduced an F-valued KP hierarchy
associated with an F-valued pseudo-differential operator (ΨDO in brief)

L = 1F∂ +U1∂
−1 +U2∂

−2 + · · ·

and constructed infinite series of bi-Hamiltonian structures, where 1F is the unit of the Frobenius
algebra F. Via the properties of the second Hamiltonian structures, they have obtained a local matrix
generalization of W -type algebras. Because the Frobenius algebra is commutative, upon reducing
to the U1 = 0, the second Hamiltonian structure is still local, which gives a chance to construct
free-field realizations.

The aim of this paper is to construct free-field realizations of the WAn,N algebra associated to a
concrete An-valued differential operator

L = In∂
N +UN−1∂

N−1 +UN−2∂
N−2 + · · ·U0

and organized as follows. Firstly, we recall the definition of WFn,N-algebra and then show a KW-
type theorem. Afterwards, with the help of the KW-type theorem we will construct the free-field
realizations of the WAn,N algebra. Finally we give two examples to illustrate our method.
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2. The WFn,N-algebra and the KW-type theorem

2.1. Local matrix generalizations of the classical W algebras

To be self-contained, below we recall some known facts, see [21, 22] for details. Let us begin with
some basic definitions.

Definition 2.1. The Frobenius algebra F := {F, trF ,1F,◦} over K is a free K-module F of finite
rank n, equipped with a commutative and associative multiplication ◦ and the unit 1F, and a K-
linear form trF : F→K whose kernel contains no nontrivial ideas, where K is C or R.

Let

L = 1F∂
N +UN−1∂

N−1 +UN−2∂
N−2 + · · ·U0 (2.1)

be an F-valued differential operator of order N. The F-valued Gefland-Dickey (GD in brief) hierar-
chy is defined as

∂L

∂ tr
= Br ◦L −L ◦Br, r = 1,2, . . . , (2.2)

where Br = L
r
N
+ is the pure differential part of the operator L

r
N . As discussed in [21], the F-valued

GD hierarchy has bi-hamiltonian structures with the second Poisson bracket as{
f̃ , g̃
}(N)

= trF
∫

res
((

L ◦ δ f
δL

)
+

◦L −L ◦
(

δ f
δL
◦L

)
+

)
◦ δg

δL
dx, (2.3)

where the variational derivativea δ f
δL

is defined by the formula
δ f
δL

=
N−1

∑
i=0

∂
−i−1 δ f

δUi
. Upon reduc-

ing to the UN−1 = 0, the Poisson bracket { , }(N) is reducible if and only if

res [L ,
δ f
δL

] = 0. (2.4)

We denote the reduced bracket by { , }(N)
D , which provides a local matrix generalization of the

classical WN-algebra ([21]). We would like to call the WFn,N-algebra. Especially when one takes
ϕ(x) = trFUN−2, with the use of (2.3) and (2.4) the reduced Poisson bracket is given by

{ϕ(x),ϕ(y)}(N)
D =−

(
N3−N

12
∂

3 +ϕ ∂ +∂ ϕ

)
δ (x− y).

This means that the WFn,N-algebra contains the Virasoro algebra as its subalgebra.

aThe variational derivative with respect to an algebra-valued field has been discussed in [20]. In the present context, let

f̃ =
∫

trF F(V )dx for V =
n
∑

q=1
vqeq ∈ F, the variational derivative

δF
δV

is defined by

f̃ (v+δv)− f̃ (v) =
∫

trF

(
δF
δV
◦δV +o(δV )

)
dx =

∫ n

∑
q=1

(
δ f
δvq

δvq +o(δv)
)

dx,

where f (v) = trF F(V ), δV =
n
∑

q=1
δvqeq ∈ F,

δ f
δvq

=
∞

∑
j=0

(−∂ ) j ∂ f

∂v( j)
q

and δv is a small parameter. Without confusion, we

use the notation
δ f
δV

instead of
δF
δV

.
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2.2. Modifying the second Hamiltonian structure

In order to construct free-field realizations of the WFn,N-algebra, we want to study the transforma-
tion of the second Hamiltonian structure { , } by the factorization

L = Lr ◦Lr−1 ◦ · · · ◦L1, (2.5)

where L j = 1F∂ N j +Vj,N j−1∂ N j−1 + · · · are F-valued ΨDOs and
r

∑
j=1

Nr = N.

Theorem 2.1. Assume that the factorization (2.5) exists, then the second Poisson bracket for L is a
direct sum of those for L1, . . . ,Lr, that is to say,

{ f̃ , g̃}(N) =
r

∑
j=1
{ f̃ , g̃}(N j). (2.6)

Moreover, the constraint condition UN−1 = 0 is equivalent to

res
[
L ,

δ f
δL

]
=

r

∑
j=1

res
[
L j,

δ f
δL j

]
= 0. (2.7)

When F= R, this result is the so-called KW theorem in [15].

Proof. Observe that

δ f̃ = trF
∫

res
δ f
δL
◦δL dx =

r

∑
j=1

trF
∫

res
δ f

δL j
◦δL jdx

=
r

∑
j=1

trF
∫

res
δ f
δL
◦Lr ◦ · · · ◦L j+1 ◦δL j ◦L j−1 ◦ · · · ◦L1dx

=
r

∑
j=1

trF
∫

resL j−1 ◦ · · · ◦L1 ◦
δ f
δL
◦Lr ◦ · · · ◦L j+1 ◦δL jdx.

This expression implies

δ f
δL j

= L j−1 ◦ · · · ◦L1 ◦
δ f
δL
◦Lr ◦ · · · ◦L j+1 mod R(−∞,−m j−1). (2.8)

Here R(−∞,−k) contains all of the F-valued operators of the form
−k

∑
j=−∞

A j∂
j. With the use of (2.8),

we get

L j ◦
δ f

δL j
=

δ f
δL j+1

◦L j+1 = L j ◦ · · · ◦L1 ◦
δ f
δL
◦Lr ◦ · · · ◦L j+1 mod R(−∞,−1) (2.9)

and

r

∑
j=1

res [L j,
δ f

δL j
] = res(Lr ◦

δ f
δLr

− δ f
δL1

◦L1) = res [L ,
δ f
δL

]. (2.10)
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Obviously, (2.7) follows from (2.4) and (2.10). With the help of (2.9), the right side of (2.6) is

r

∑
j=1
{ f̃ , g̃}(N j)

=
r

∑
j=1

trF
∫

res

((
L j ◦

δ f
δL j

)
+

◦L j−L j ◦
(

δ f
δL j

◦L j

)
+

)
◦ δg

δL j
dx

=
r

∑
j=1

trF
∫

res

(
L j ◦

(
δ f

δL j
◦L j

)
−
−
(

L j ◦
δ f

δL j

)
−
◦L j

)
◦ δg

δL j
dx

=
r

∑
j=1

trF
∫

res
(

δ f
δL j

◦L j

)
−
◦
(

δg
δL j

◦L j

)
+

dx

−
r

∑
j=1

trF
∫

res
(

L j ◦
δ f

δL j

)
−
◦
(

L j ◦
δg

δL j

)
+

dx

=
r

∑
j=1

trF
∫

res
(

δ f
δL j

◦L j

)
−
◦
(

δg
δL j

◦L j

)
+

dx

−
r−1

∑
j=1

trF
∫

res
(

δ f
δL j+1

◦L j+1

)
−
◦
(

δg
δL j+1

◦L j+1

)
+

dx

− trF
∫

res
(

Lr ◦
δ f

δLr

)
−
◦
(

Lr ◦
δg

δLr

)
+

dx

= trF
∫

res
[(

δ f
δL1

◦L1

)
−
◦
(

δg
δL1

◦L1

)
+

−
(

Lr ◦
δ f

δLr

)
−
◦
(

Lr ◦
δg

δLr

)
+

]
dx

= { f̃ , g̃}(N).

We thus complete the proof of this theorem. �

The above theorem implies that it is possible to simplify the construction of the free-field real-
ization for the WFn,N-algebra to the construction of the free-field realization for each copy of the
WFn,1-algebra. Many examples suggest the existence of free-filed realizations of the above W-type
algebras, but up to now we have no a unified proof for the general WFn,N-algebra. In the next section
we illustrate our construction by taking a concrete algebra An.

3. Free-field realizations of the WAn,N-algebra

Let us denote

Zn =

{
a =

n

∑
k=1

akΛ
k−1
∣∣∣ ak ∈ C, k = 1, . . . ,n

}
,

where Λ = (Λi j) ∈ gl(n,C) with the elements

Λi j = δi, j+1 =

{
1, i = j+1
0, other cases

and Λ0 = In is the nth-order identity matrix. Observe that Λn = 0, then Zn is a maximal commutative
subalgebra of gl(n,C). In [21, 26], they have shown that the algebra Zn has at least n-“basic”
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different ways to be realized as the Frobenius algebra Ak := {Zn, In, trAk} with the trace form
defined by

trAk(a) = ak +an(1−δn,k) for any a =
n

∑
k=1

akΛ
k−1 ∈Zn. (3.1)

Without loss of generality, in this section we will take the Frobenius algebra F as An and construct
a free-field realization of WAn,N-algebra.

Suppose that the An-valued differential operator

L = In∂
N +UN−1∂

N−1 +UN−2∂
N−2 + · · ·U0

could be represented as a product of

L = LN ◦LN−1 ◦ · · · ◦L1

of An-valued differential operators L j = In∂ +Vj, j = 1, . . . ,N. With the use of Theorem 2.1, we
get

{ f̃ , g̃}(N) =
N

∑
j=1
{ f̃ , g̃}(1)L j

=
N

∑
j=1

trF
∫

res

((
L j ◦

δ f
δL j

)
+

◦L j−L j ◦
(

δ f
δL j

◦L j

)
+

)
◦ δg

δL j
dx

=
N

∑
j=1

trF
∫

δ f
δVj
◦ ∂

∂x
δg
δVj

dx. Here using
δ f

δL j
= ∂

−1 δ f
δVj

. (3.2)

More precisely, {
trAn

∫
FVidx , trAn

∫
GVjdx

}(N)

= δi j trAn

∫
F

∂

∂x
Gdx,

where F and G are two An-valued test functions.
Next, we want to study the reduced bracket under reduction to the submanifold UN−1 = 0.

Lemma 3.1. The Poisson bracket { , }(N) with the constraint UN−1 = 0 is reduced to{
trAn

∫
FVidx , trAn

∫
GVjdx

}(N)

D
=
(

δi j−
1
N

)
trAn

∫
F

∂

∂x
Gdx, (3.3)

where F and G are two An-valued test functions. In particular,

{
Vi,q(x) ,Vj,r(y)

}(N)

D =
(

δi j−
1
N

)
δq+r,n+1 δ

′(x− y), (3.4)

where Vi =
n

∑
q=1

Vi,qΛ
q−1.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

523



Y.Y. Ge et al. / Free-field realizations of the WAn,N -algebra

Proof. Taking an overcomplete set of vectorsb

~h j =
(
h1

j , . . . ,h
N−1
j

)
, j = 1, . . . ,N (3.5)

in an (N−1)-dimensional Euclidean space with

N

∑
j=1

~h j = 0,
N

∑
j=1

ha
jh

b
j = δab,

N−1

∑
a=1

ha
i ha

j = δi j−
1
N
. (3.6)

Observe that UN−1 =
N

∑
j=1

Vj and denoting Va =
N

∑
j=1

ha
jVj, a = 1, . . . ,N− 1. With the help of

(3.6), we have

Vj =
1
N

UN−1 +
N−1

∑
a=1

ha
jVa, j = 1, . . . ,N

and

δ f
δVj

=
δ f

δUN−1
+

N−1

∑
a=1

ha
j

δ f
δVa

, j = 1, . . . ,N. (3.7)

So using (3.6) and (3.7), the Poisson bracket { , }(N) in (3.2) can be rewritten as

{ f̃ , g̃}(N) =
N

∑
j=1

trF
∫

δ f
δVj
◦ ∂

∂x
δg
δVj

dx

= N trF
∫

δ f
δUN−1

◦ ∂

∂x
δg

δUN−1
dx+

N−1

∑
a=1

trF
∫

δ f
δVa
◦ ∂

∂x
δg

δVa
dx.

When we consider the reduction UN−1 = 0, from (2.7) we should take into account the following
condition

N

∑
j=1

(
δ f
δVj

)
x
= 0. (3.8)

That is to say,

0 =
N

∑
j=1

(
δ f
δVj

)
x
= N

δ f
δUN−1

+
N

∑
j=1

N−1

∑
a=1

ha
j

δ f
δVa

= N
δ f

δUN−1
.

Thus the reduced Poisson bracket { , }(N)
D is given by

{ f̃ , g̃}(N)
D =

N−1

∑
a=1

trF
∫

δ f
δVa
◦ ∂

∂x
δg

δVa
dx

be.g., such vectors have been explicitly written in [8].
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and for two An-valued test functions F and G,

{
trAn

∫
FVidx , trAn

∫
GVjdx

}(N)

D
=

N−1

∑
a=1

ha
i ha

j trAn

∫
F

∂

∂x
Gdx

= (δi j−
1
N
) trAn

∫
F

∂

∂x
Gdx.

The identity (3.4) follows from the formula (3.3) and the definition trF in (3.1). �

Let K = (Kqr) be an n× n matrix with the elements Kqr = δq+r,n+1. Obvious the matrix K is a
real symmetric matrix, thus there exists an orthogonal matrix Q such that K = Qdiag(λ1, . . . ,λn)Qt ,
where λ j are eigenvalues of K and Qt is the transpose of Q. Assume

S = (Sqr) = Qdiag
(√

λ1, . . . ,
√

λn
)
∈ gl(n,C), (3.9)

then K = SSt .
Taking (N−1)n free fields ϕ j,q(x) with the currents j i,q(x) = ϕ ′i,q(x) together with the Poisson

bracket

{
j i,q(x) , j j,r(y)

}(N)

D = δi j δqr δ
′(x− y), (3.10)

where i, j = 1, . . . ,N−1 and q,r = 1, . . . ,n.

Theorem 3.1. Setting

~Jk = (J1,k , . . . , JN−1,k) , Ja,k =
n

∑
α=1

Sk,α ja,α(x), (3.11)

then the identification L = LN ◦LN−1 ◦ · · · ◦L1 with the element

L j = In∂ +Vj = In∂ +
n

∑
k=1

(~h j ·~Jk)Λ
k−1, j = 1, . . . ,N (3.12)

provides a free-field realization of the WAn,N-algebra, where~h j ·~Jk :=
N−1

∑
a=1

ha
j Ja,k .

Proof. The constrained condition UN−1 = 0 follows from

N

∑
j=1

Vj =
N

∑
j=1

n

∑
k=1

(~h j ·~Jk)Λ
k−1 =

n

∑
k=1

(
N

∑
j=1

~h j ·~Jk

)
Λ

k−1 = 0.
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Denoting Vj =
n

∑
k=1

Vj,k(x)Λk−1, then Vj,k(x) =~h j ·~Jk =
N−1

∑
a=1

ha
j Ja,k. Now, with the help of (3.6), (3.9)

and (3.10), we have{
Vi,q(x) ,Vj,r(y)

}(N)

D = {~hi ·~Jq ,~h j ·~Jr}(m)
D

=
N−1

∑
a,b=1

{
ha

i Ja,q(x) , ha
j Jb,r(x)

}(m)

D

=
N−1

∑
a,b=1

ha
i hb

j

n

∑
α,β=1

{
Sq,α ja,α(x) ,Sr,β jb,β (x)

}(m)

D

=
N−1

∑
a,b=1

ha
i hb

j

n

∑
α,β=1

Sq,α Sr,β δabδαβ δ
′(x− y)

=
N−1

∑
a=1

ha
i ha

j δq+r,n−1 δ
′(x− y)

=~hi ·~h j δq+r,n−1 δ
′(x− y)

=
(

δi j−
1
N

)
δq+r,n−1 δ

′(x− y),

which is exactly the reduced Poisson bracket (3.4). We thereby obtain the free-field realization of
the WAn,N-algebra. �

4. Conclusion

In summary, with the help of the KW-type theorem, we have constructed free-field realizations of
the WAn,N algebra associated with the An-valued differential operator

L = In∂
N +UN−1∂

N−1 +UN−2∂
N−2 + · · ·U0.

By analogy with the above, a minor modification will give the free-field realizations of the WAk,N

algebra for k = 1, . . . ,n−1. But for general WF,N algebra, it is still open because of the uncertainty
of the K-linear form trF .
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