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We provide a Lax pair for the surfaces of Voss and Guichard, and we show that such particular surfaces con-
sidered by Gambier are characterized by a third Painlevé function.
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1. Introduction. Surfaces of Voss and Guichard

Let us first recall two equivalent definitions of these surfaces: a geometric one and an analytic one.
Our notation follows the review of Gambier [4].

Geometrically, the surfaces of Voss [11] and Guichard [6] are by definition those which admit a
conjugate net made of geodesics. For instance, every minimal surface is such a surface.

Analytically, they can be characterized by their three fundamental quadratic forms dF.dF,
—dF.dN, dN.dN, in which F(u,v) is the current point of the surface and N(u,v) a unit vector normal
to the tangent plane. Choosing the coordinates (u,v) defined by the geodesic conjugate net, these
are [4, p. 362]

I=X2du? 4 2cos(20)X,Y,dudv + Y2dv?,
11 = sin(2w) (X, du’ 4 Y,dv?), (1.1)
I = du? + 2 cos(2@)dudy + dv?,

with the notation X, = dX (u,v)/du, ..., they depend on three functions @, X, Y of two variables,
and 2 is the angle between the two conjugate geodesics. It is remarkable that, among the three
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Gauss-Codazzi equations [4, p. 362]

1
Wy — 3 sin2w) =0,
— — (1.2)
X, —cos(2m)Y, =0,
Y, —cos(2w)X, =0,

the first one characterizes the surfaces with a constant total (Gauss) curvature.

2. Their Lax pair

Gambier succeeded in introducing a deformation parameter A, thus upgrading the moving frame
equations to a Lax pair, but he did not write this Lax pair explicitly, so let us do it here.

The moving frame equations (Gauss-Weingarten equations) only depend on the coefficients of
the first and second fundamental forms, and the spectral parameter is introduced, as in the case of
surfaces with a constant mean curvature, by noticing the invariance of the Gauss-Codazzi equations
(1.2) under the scaling transformation (u,v) — (Au,A~'v). The traceless Lax pair is

Y=Ly, oy =My, 2.1)
W 2X,
3XL: + 3x: cotg(2m)m, . 4XO Y, tg(2m)
L=| —-52cotg(2 —— — —cotg(2 0 22
121% cotg2@)a, 3o — 2 cotg(20)a, o , 22
———-cotg(2w —cotg(2w - “cotg(2m
22y, c0820) y, cote20) 3x, Ty, o),

Y,, 4, 242X,

—— — —cotg(2m)w, = cotg(20) w, 0
3YV 3YL[ 2Y V2Y
M= 0 7+ = cotg(20) o, X, tg(2m) . (23
3y, | 3Y,

L cote(20) Ceog20) e e
— CO ——CO — — CO
x, 08 x, '8 3y, " 3y, O u

with the zero-curvature condition,

—FE; EE, —(EG—F?)E,
[0, —L,0,—M] = —GE, FE, —(EG—F?)E; | =0, (2.4)
GE,—FE; —FE>,+ FEEFE; 0

denoting E;, j = 1, 2, 3 the lhs of (1.2), and E, F, G the coefficients of the first fundamental form,

E=X? F=X,cos(2m), G=Y". (2.5)

3. Surfaces applicable on a surface of revolution

Gambier [3, p. 99] investigated surfaces whose first fundamental form I, Eq. (1.1), has coefficients
Xy, Y,, @ only depending on the single variable x = u 4 v. Denoting for shortness X, =&, ¥, =1,
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he first obtains

dX = Edu+ (& +2Cy)dv, dY = (n+2C2)du+ ndy,
&E+2C =ncos(2w), N+2C, = Ecos(2m), 3.1

with C, C; two integration constants. After a possible conformal transformation, this defines two
reductions of the Gauss-Codazzi equations, either

d2 2
WC; = m7 sin(2@), m = arbitrary constant, (3.2)
or
d2 X
E‘j - %m(zw). (33)

The first reduction (3.2) integrates with elliptic functions and is handled in full detail by Gambier
[3, pp. 100-105].

As to the second reduction (3.3), Gambier unexpectedly fails to integrate it. This ordinary dif-
ferential equation (ODE) belongs to the class of second order first degree ODEs

d%u 3 du J
@+20Aj(x,u) (dx> =0, (3.4)
j:

whose property is to be form-invariant under the group of point transformations
(u,x) > (U,X): u=09X,U), x=y(X,U), U=>(x,u), X =¥(x,u). (3.5)

Roger Liouville [7] enumerated equivalence classes of (3.4) modulo the group (3.5) but, as later
pointed out by Babich and Bordag [1], he forgot the important class, to which the ODE (3.3)
belongs, when the invariants which he denotes vs and w; both vanish.

When vs and w; both vanish, the coefficients A3, Ay, A; in the class (3.4) can be set to zero by
a transformation (3.5), thus defining the five remarkable four-parameter nonautonomous ODEs

U (w)’
@ = 7[2 ) Z ejzﬂ(sz-'—w/)gZ)g?))a

Jj=,0,1,x
d*U coshU sinhU 2X 1
— =20 — — 297X sinh(2U) — = 8™ sinh(4U),
dx? sinh® U cosh*U ¥ (2v) 2 (4U)
du 1 1
Xz Eex(aew —|—Be_2U) + Eezx(yew + 5e‘4U),
d’U B 3.5 3 2 3
—=—oU+ — -U 2XU° + XU 286(U° +XU
e +2U3+y<4 + + +28(U° +XU),
d’U

7 = QU +XU) +y(6U* +X) +BU + «,
in which the summation in the first equation runs over the four half-periods @; of the Weierstrass
elliptic function .

The third one is precisely, up to rescaling, the ODE (3.3) isolated by Gambier, and the main
result of Ref. [1] is the existence of a point transformation mapping these five four-parameter ODEs
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to the representation of the Painlevé equations chosen by Garnier [5], [2] (i.e. five equations with
four parameters, the last one unifying Py and Py),

PVI'MHZl l+ 1 + Ll 1—I— 1 + L
) 2lu u—1 wu—x x x—1 u—x

u(u—1)(u—x) X x—1 x(x—1)
- la+B )
x2(x—1)32 +Bu2+y(u—l)2+ (u—x)%|’
1 1 ! —1)? 1
Py : u'=|—+ u’z—uf%—(u ) au+é +ye 6u(u—|— ),
2u u-—1 x x? u X u—1
2d oty B S
Pirr : //:L_i -~ 4+ 3.6
- P x T a2 TmTaw (36)
2
3
Py U = L2t+y<2u3+4xu2—|—2x2u> —|—45(u2+xu)—206u+é,
u u

Py ;= 8(2u® +xu) + y(61* +x)+ Bu+a.

The point transformations which realize this mapping are, respectively,

_e3—er  PR0U,g,83)—e
Te—e ey—el ’
x=e>X, u=coth’U,
x=e u=e"e?Y,
x=X, u:Uz,
x=X,u=U.

Therefore the mapping between the ODE (3.3) for @(x) and the third Painlevé equation (3.6)
for u(€) is either

. 1
ez"":2oce*"u, 3 :_meh, off #0,y=0,8=0, 3.7)
or equivalently
. 1
O — 2 E = _%g’ a=0,B=0, y5 #0. (3.8)

As is well known, the third Painlevé equation has three kinds of solutions:

(i) two-parameter transcendental solutions, which is the generic case, and one cannot proceed
beyond the description of Gambier [3, pp. 105-106];
(ii) one-parameter Riccati-type solutions, but for our case ¥4 # 0 this does not happen;
(iii) zero-parameter rational® solutions, the only ones being, with the choice (3.7),

B 1/2
”:<‘a) g%, 7y=0,8=0, (3.9)

4 Algebraic solutions of (3.6) [8] are in fact rational solutions for another representative of Pyyy in its equivalence class
under (u,x) — (g(x)u, f(x)), with f(x) = 1/x, g(x) = 1. All algebraic solutions of P, equations, n =2, 3, 4, 5, are similarly
rational.
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or equivalently with the choice (3.8),

5 1/4
U= (—Y> EV2 a=0, B =0. (3.10)

However, these rational solutions correspond to sin(2®) = 0, forbidden because the second
fundamental form would vanish. Consequently, all solutions of (3.3) are transcendental.

4. Future developments

The equation (1.2); for constant total curvature surfaces (sine-Gordon equation) possesses many
closed form solutions which obey neither (3.2) nor (3.3), for instance the factorized solution [10]

o  Ji(utv)

in which J; and J; are Jacobi elliptic functions, a degeneracy of which is

® sink(u+v)
tg 2 = ST Y 4.2
) sink(u—v) “2)

or the N-soliton solution [9], which depends on 2N arbitrary constants. The difficulty to build Voss-
Guichard surfaces from such solutions is the integration of the linear system (1.2), 3 for X (u,v) and
Y (u,v).

Another useful development would be to find a Darboux transformation for the system (1.2).
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