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A simple application of a neat formula relating the time evolution of the N zeros of a (monic) time-dependent
polynomial of degree N in the complex variable w to the time evolution of its N coefficients allows to identify
integrable Hamiltonian N-body problems in the plane featuring N arbitrary functions, the equations of motions
of which are of Newtonian type: accelerations equal forces nonlinearly dependent on the coordinates of the N
particle. The motions generally take place in the complex z-plane, or, equivalently, in the Cartesian xy-plane with
z = x+ iy. It is also easy to identify qualitative features of special subclasses of these models, for instance cases
in which all the motions starting from an arbitrary real set of initial data are confined and multiply periodic. It
is also indicated how to generate from these models hierarchies of analogous models with analogous properties.

Keywords: integrable many-body Hamiltonian systems in the plane, integrable many-body systems with New-
tonian (accelerations equal forces) equations of motion

1. Introduction

The main tool used in this short paper are the nonlinear relations—by definition, algebraic—among
the N coefficients of a monic polynomial of degree N in the (complex) variable w and its N zeros.
The approach based on these relations allowed over time to identify several dynamical systems solv-
able by algebraic operations, including N-body problems characterized by Newtonian equations of
motion (“accelerations equal forces”) [1]. These systems generally feature Newtonian equations of
motion of the following goldfish type:

z̈n =
N

∑
`=1, 6̀=n

(
2 żn ż`
zn− z`

)
+Fn (~z) , (1.1)

where N is an arbitrary positive integer (N ≥ 2), the complex numbers zn ≡ zn (t) are the coordi-
nates of N point-particles moving in the complex z-plane, ~z ≡~z(t) is a N-vector of components
zn ≡ zn (t), the real independent variable t is time, superimposed dots indicate time-differentiations,
and the nonlinear functions Fn (~z) are appropriately defined.

Remark 1.1. For the origin of the “goldfish” terminology see [2]; for examples of the use of this ter-
minology see [3]; and note that, while in this paper we mainly confine our consideration to N-body
problems of goldfish type characterized by equations of motion such as (1.1), the class of goldfish
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type models is more general than (1.1), possibly featuring in their-right hand sides functions Fn(~z,
·
~z)

rather than Fn(~z) (this is indeed the case for the hierarchies of analogous models tersely mentioned
below, see Section 5).

These developments were until recently mainly restricted to the consideration of nonlinear evo-
lutions satisfied by the zeros of a time-dependent polynomial the coefficients of which evolve
according to linear systems of Ordinary Differential Equations (ODEs). Recently a convenient
way to relate directly the time-evolution of the zeros of a time-dependent polynomial to the time-
evolution of its coefficients has been noted [4], and this development has allowed the identification
and investigation of several new solvable many-body problems characterized by the time-evolution
of the zeros of polynomials the coefficients of which evolve in a nonlinear but solvable/integrable
manner [4–6]. In the present paper we show how this development can be employed to identify
integrable Hamiltonian N-body problems of goldfish type, see (1.1), with the forces Fn (z) explicitly
expressed in terms of N arbitrary functions of appropriate combinations of the N particle coordi-
nates zn ≡ zn (t) (see below). The motions take place in the complex z-plane, or, equivalently, in the
Cartesian xy-plane with z = x+ iy.

Notation 1.1. The basic building blocks underlining our findings are time-dependent monic poly-
nomials of arbitrary order N (N ≥ 2),

PN (w;~c(t) ,z(t)) = wN +
N

∑
m=1

[
cm (t) wN−m]= N

∏
n=1

[w− zn (t)] ; (1.2)

here and hereafter the complex variable w is the argument of the polynomial, indices such as n, m
run throughout from 1 to N, the N-vector ~c(t) features the N coefficients cm (t) of the polynomial
(1.2) as its N components, z(t) denotes the unordered set of the N zeros zn (t) of the polynomial
(1.2) (but see Remark 1.2 below), and we generally assume all these variables to be complex.
We instead assume the independent variable t (“time”) to be real. We generally focus on generic
polynomials the coefficients and zeros of which are generic complex numbers, the zeros being all
different among themselves, zn (t) 6= zm (t) if n 6= m. Hereafter we often omit the explicit indication
of the independent variable t when this can be done to streamline the presentation without causing
confusion. Note that the notation PN (w;~c,z) is somewhat redundant, since this monic polynomial
of degree N in w can be identified by assigning either its N coefficients cm or its N zeros zn; indeed
the N coefficients cm can be expressed in terms of the N zeros zn via the standard formula

cm (t) = (−1)m
∑

1≤n1<n2<...<nm≤N
[zn1 (t) zn2 (t) · · · znm (t)] , (1.3a)

so that

c1 (t) =− [z1 (t)+ z2 (t)+ ...+ zN (t)] , (1.3b)

c2 (t) = z1 (t) z2 (t)+ z1 (t) z3 (t)+ ...+ z1 (t) zN (t)

+z2 (t) z3 (t)+ z2 (t) z4 (t)+ ...+ z2 (t) zN (t)+ ...

+zN−2 (t) zN−1 (t)+ zN−2 (t) zN (t)+ zN−1 (t) zN (t) , (1.3c)
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and so on. On the other hand, while the assignment of the N coefficients cm determines uniquely—
up to permutations (but see Remark 1.2 below)—the N zeros zn, of course explicit formulas in
terms of elementary functions (including radicals) expressing the zeros of a polynomial of degree
N in terms of its coefficients are generally only available for N ≤ 4. Finally let us note that hereafter
formulas featuring the N-vector~z—see for instance (1.1)—are meant to be valid for any assignment
of the N components zn of this N-vector as one of the N! permutations of the N components of the
unordered set z (but see the following Remark 1.2).

Remark 1.2. The statement according to which the set z(t) of the N zeros of the polynomial
PN (w;c(t) ,z(t)), see (1.2), is unordered must be qualified according to the following observation,
highly relevant to the following developments: if the time evolution of the zeros zn (t) is continuous
in t—as it shall generally be in the following treatment—then the ordering of the N zeros zn (t) (i. e.,
the assignment of the value of the integer index n in its range from 1 to N to the function zn (t)) can
only be arbitrarily assigned at one specific time—for instance at the initial time t = 0—remaining
thereby unambiguously assigned for all time due to the continuous evolution over time of the func-
tions zn (t).

In the following Section 2 we report and tersely discuss our main finding, which is then proven
and further discussed in the following Section 3. In Section 4 a class of N-body problems of goldfish
type, see (1.1), are displayed, still featuring N largely arbitrary functions while having the property
that all its motions starting from real initial data (or complex conjugate pairs of such data: see
below) are multiply periodic. A terse Section 5 outlines possible future developments.

2. Results

Proposition 2.1. The N-body problem characterized by the following system of N coupled nonlinear
Newtonian equations of motion of goldfish type, see (1.1), is Hamiltonian and integrable:

z̈n =
N

∑
`=1, 6̀=n

(
2 żn ż`
zn− z`

)
−

[
N

∏
`=1, 6̀=n

(zn− z`)

]−1 N

∑
m=1

[
fm (cm) (zn)

N−m
]
. (2.1a)

Here the N quantities zn ≡ zn (t) are the coordinates of the N particles moving in the complex
z-plane, the N functions cm ≡ cm (t) are expressed in terms of the coordinates zn ≡ zn (t) by the
formulas (1.3), while the N functions fm (cm) can be arbitrarily assigned.

Moreover the initial-value problem—to compute the N functions zn (t) for all time t > 0 from
the 2N given initial data zn (0) , żn (0)—can be solved by algebraic operations (including changes of
variables from the coefficients to the zeros of a polynomial of degree N such as (1.2)) and quadra-
tures. The procedure to do so is detailed in the following Section 3.

For N = 2 this system, (2.1a), of 2 coupled nonlinear Newtonian equations of motion of goldfish
type reads as follows:

z̈n =−(−1)n (z1− z2)
−1 [2 ż1 ż2− f1 (−z1− z2) zn− f2 (z1 z2)] , n = 1,2 . (2.1b)
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For N = 3 this system, (2.1a), of 3 coupled nonlinear Newtonian equations of motion of goldfish
type is given by (1.1) with

Fn (z) =−

[
3

∏
`=1, 6̀=n

(zn− z`)

]−1 [
f1 (−z1− z2− z3) (zn)

2

+ f2 (z1z2 + z2z3 + z3z1) zn + f3 (z1z2z3)] , n = 1,2,3 . (2.1c)

3. Proof

The proof of Proposition 2.1 is actually quite easy. The starting point is the identity (for a proof
see, if need be, [4])

z̈n =
N

∑
`=1, 6̀=n

(
2 żn ż`
zn− z`

)
−

[
N

∏
`=1, 6̀=n

(zn− z`)

]−1 N

∑
m=1

[
c̈m (zn)

N−m
]
, (3.1)

relating the time-evolution of the N zeros zn (t) and the N coefficients cm (t) of any time-dependent
polynomial such as (1.2).

Now assume that the N functions cm ≡ cm (t) satisfy the N (decoupled) Newtonian equations

c̈m = fm (cm) ; (3.2a)

it is then plain, see (3.1), that the N functions zn ≡ zn (t) satisfy the system of ODEs (2.1a). Propo-
sition 2.1 is thereby proven. Indeed this implies that the solution of the initial-value problem for the
system of ODEs (2.1a) is yielded by the following procedure. Step (i): from the initial data zn (0) ,
żn (0) compute the corresponding functions cm (0) , ċm (0) (via the formulas (1.3) and their time
derivatives). Step (ii): solve the Newtonian equations of motion (3.2a) with these initial data cm (0) ,
ċm (0), obtaining thereby the functions cm (t) for all time t > 0. Step (iii): the solutions zn (t) of the
system of ODEs (2.1a) are then provided by the N zeros of the polynomial (1.2) with coefficients
cm (t). And of course—since the decoupled Newtonian equations (3.2a) are of course Hamiltonian
and integrable—and of course solvable by quadratures—all these properties also hold—up to alge-
braic operations—for the equations of motion (2.1a). Indeed the Hamiltonian equations of motion
corresponding to the Newtonian equations of motion (3.2a) read of course as follows:

ċm = pm , ṗm = fm (cm) , (3.2b)

where the N quantities pm≡ pm (t) are of course, in the Hamiltonian context, the canonical momenta
conjugated to the canonical coordinates cm ≡ cm (t). But then the change of variables from the
N canonical coordinates cm ≡ cm (t) of these standard Hamiltonian equations of motion to the
Hamiltonian equations corresponding to the Newtonian equations of motion (2.1a) satisfied, in an
Hamiltonian context, by the N new canonical coordinates zn ≡ zn (t), besides being algebraic—see
(1.2) and (1.3)—clearly corresponds to a canonical transformation, because it does not involve the
canonical momenta (and it is moreover time-independent); implying that the goldfish system of
equations of motion (2.1a) is as well Hamiltonian and integrable.

Remark 3.1. If it is assumed that the N, a priori arbitrary, functions fm (cm) are entire, then clearly
the only possible source of singularity in the evolution of the goldfish model (1.1) are particle
collisions, i. e. the possibility that, at some time tc during the time-evolution, two or more particle
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coordinates coincide, say zn (tc) = z` (tc) with n 6= `, implying a blow-up of the right-hand side of
(2.1a). This is not a generic event for motions of the goldfish model (1.1) taking place in the complex
plane and starting from a generic set of complex initial data zn (0) , żn (0); while it is likely to happen
for motions taking place on the real axis of the complex plane—as it might be the case when the
functions fm (cm) are all real functions of real arguments and the set of initial data zn (0) and żn (0)
include only real numbers (implying that the initial data cm (0) and ċm (0) are all real, see (1.2) and
(1.3)). Note that such collisions generally imply that the identities of the colliding particles after the
collision are undetermined; and generally in the case of motions taking place, before the collision,
on the real axis, the collision causes the colliding particles to jump off the real axis, into the complex
plane, in opposite orthogonal directions.

4. An example

In this Section 4 we display a subclass of N-body problems of goldfish type—see (2.1)—featuring
the property that all the corresponding motions starting from arbitrary real (or complex conju-
gate:see below) initial data zn (0) , żn (0) are confined and multiply periodic.

Let us assume for instance that the N functions fm (cm) read as follows,

fm (cm) = (am− cm) exp [gm (cm)] , (4.1)

where the N parameters am are N arbitrary real numbers and the N functions gm (cm) are N arbitrary
real entire functions of their arguments cm (such that gm (±∞) ≥ 0). It is then plain—see (3.2a)—
that the time evolution of the quantities cm (t) corresponding to any assignment of real initial data
cm (0) , ċm (0) takes place on the real axis of the complex c-plane and consists of periodic oscillations
around the equilibria cm = am with some periods Tm (depending of course on the initial data and on
the functions (4.1)):

cm (t +Tm) = cm (t) , ċm (t +Tm) = ċm (t) . (4.2)

Hence—focussing now on the goldfish N-body model (2.1a) with (4.1)—for any assignment of
initial data zn (0), żn (0) of the N particle coordinates which only include real numbers or complex
conjugate pairs so that the corresponding initial data cm (0) and ċm (0)—see (1.2), (1.3) and the time-
derivatives of (1.3)—are all real, it is plain that the corresponding time evolution of the coordinates
zn (t) is confined and multiply periodic, because these coordinates are then the N zeros of a time-
dependent polynomial, see (1.2), which is itself multiply periodic. These evolutions may of course
take place on the real axis or in the complex plane (but then always featuring pairs of particles with
complex conjugate coordinates), and may or may not feature particle collisions, see Remark 3.1. It
is also plain that there are open sets of real initial data zn (0), żn (0) yielding nonsingular motions
with the N particles remaining for all time confined to the real axis.

5. Outlook

It is plain that the approach employed in this paper provides the possibility to identify a large
universe of new integrable/solvable N-body problems of goldfish type; it is for this reason that we
felt the need to highlight this development in this paper, in spite of the fact that the finding reported
herein is simply related to an approach already used in several previous papers [4–6]. Let us also
note—without going into a detailed presentation—that the development reported herein opens the
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possibility to generate hierarchies of such models having analogous features, as implied by the
detailed treatment provided in [6].
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