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1. Introduction

The Kadomtsev-Petviashvili (KP) hierarchy [10, 11, 18, 28] is one of the most important classical

integrable systems. It has many applications including the theory of infinite-dimensional Lie alge-

bras [16, 17], orthogonal polynomials and random matrix model [14, 27]. The KP equation, which

is a natural generalization of the KdV equation [25], can be used to model water waves of long

wavelength with weakly non-linear restoring forces and frequency dispersion. It can also be used to

model nonlinear waves in ferromagnetic media, as well as two-dimensional matter-wave pulses in

Bose-Einstein condensates. The BKP [10] and CKP hierarchies [9] are two kinds of sub-hierarchies

of KP hierarchy. In other words, the two hierarchies are two important reductions of the KP hierar-

chy.

Nambu mechanics [22,23] is a generalization of classical Hamiltonian mechanics. Since Nambu

[22] proposed 3-bracket for the generalized Hamiltonian dynamics, the 3-algebras have been studied
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intensively. With the development of string theory and M-branches, it appears naturally an algebra

with ternary operation called Bagger-Lambert algebra [1]. More motivation comes from various

3-Lie algebras, in particular the infinite-dimensional cases such as (q-deformed) Virasoro-Witt 3-

algebra [7, 8, 12] and (super) w∞ 3-algebra [3, 6, 13]. Recently there has been an increasing interest

in the relationship between the infinite-dimensional 3-algebra and integrable systems [4,5,30]. It is

well known that the first Hamiltonian structure of KP hierarchy is related to the W1+∞ algebra [29].

The W1+∞ 3-algebra related to the KP hierarchy has been constructed in [4]. The BKP and CKP

hierarchies are also associated with two infinite dimensional algebras o(∞) and sp(∞) [16]. The

general symmetry reduction of the BKP hierarchy has been studied by means of tau functions [19].

In addition, many other Lax types have been investigated, such as the triple bracket equations of

Lax type [15] and the generalized Lax pairs [2]. There are a lot of methods to describe the algebraic

properties of the KP hierarchy. One was described by the associated Lax pair (Bn,L). By means

of the operator Nambu 3-bracket, the generalized Lax equation of the KP hierarchy with the Lax

triple (Bm,Bn,L) was studied in [26], where the KP equation and other integrable (nonintegrable)

equations were derived. It is well known that the BKP and CKP hierarchies are two important

reductions of the KP hierarchy. The constraints of the BKP and CKP hierarchies imply the vanishing

of the even time variables. Thus the BKP and CKP hierarchies can be expressed by the Lax pair

(B2n+1,L). The aim of this paper is to derive the nonlinear evolution equations from the generalized

Lax equation in term of the Lax triple (Bm,Bn,L) of the BKP and CKP hierarchies.

This paper is arranged as follows. In Section 2, the usual Lax equation is introduced, and the

BKP and CKP hierarchies are given. In Section 3, we investigate the generalized Lax equation with

the Lax triple (Bm,Bn,L) and derive the generalized BKP and CKP equations. In Sections 4, we

give the solutions of the generalized nonlinear evolution equations. Finally, a short conclusion and

further discussion are presented.

2. The usual Lax equation

The KP hierarchy is a paradigm of the hierarchies of integrable systems. It is defined as an infinite

system of equations given in Lax form [11]

∂L
∂ tn

= [Bn,L] = BnL−LBn, n = 1,2, · · · . (2.1)

where Bn = (Ln)+ is the differential part of Ln. L is the pseudo-differential operator

L = ∂ +
+∞

∑
i=0

vi(t)∂−i−1, (2.2)

t = (t1, t2, · · ·) are the time variables and ∂ = ∂/∂x,x = t1.
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The first few members of Bn are

B1 = ∂ ,
B2 = ∂ 2 +2v0,

B3 = ∂ 3 +3v0∂ +3v1 +3v0,x,

B4 = ∂ 4 +4v0∂ 2 +(4v1 +6v0,x)∂ +4v2 +6v2
0 +6v1,x +4v0,xx,

B5 = ∂ 5 +5v0∂ 3 +5(v1 +2v0,x)∂ 2 +5(v2 +2v2
0 +2v1,x +2v0,xx)∂

+5(v3 +4v0v1 +4v0v0,x +2v2,x +2v1,xx + v0,xxx),

B6 = ∂ 6 +6v0∂ 4 +3(2v1 +5v0,x)∂ 3 +(6v2 +15v2
0 +15v1,x +20v0,xx)∂ 2

+(6v3 +30v0v1 +15v2,x +45v0v0,x +20v1,xx +15v0,xxx)∂
+6v4 +6v0,xxxx +20v2,xx +15v1,xxx +15v3,x +30v0v2

+45v0v1,x +30v1v0,x +35v0v0,xx +20v3
0 +25v2

0,x +15v2
1,

..., (2.3)

where the subscript x denotes the derivative with respect to the variable x.

The BKP and CKP hierarchies are also defined as an infinite dimensional of nonlinear evolution

equations given in Lax form (2.1). However the operator L needs to satisfy the constraints L∗ =
−∂L∂−1 and L∗ =−L, respectively.

The BKP hierarchy is obtained from the KP hierarchy by imposing the condition

L∗ =−∂L∂−1, (2.4)

which implies the vanishing of the even time variables (i.e., t2 = t4 = · · · = 0) and of the constant

terms of Bn (n = 3,5, · · ·) [10, 18, 28].

Equating the coefficients of the operator ∂−i(i = 2,3, · · ·) in (2.4), we can derive

v1 = −v0,x,

v3 = −2v2,x + v0,xxx,

v5 = −3v4,x +5v2,xxx −3v0,xxxxx,

v7 = −4v6,x +14v4,xxx −28v2,xxxxx +17v0,xxxxxxx,

.... (2.5)

The CKP hierarchy is obtained from the KP hierarchy by imposing the condition

L∗ =−L, (2.6)

which also implies the vanishing of the even time variables (i.e., t2 = t4 = · · ·= 0) [18].
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Equating the coefficients of the operator ∂−i(i = 2,3, · · ·) in (2.6), we can derive

v1 = −1

2
v0,x,

v3 = −3

2
v2,x +

1

4
v0,xxx,

v5 = −5

2
v4,x +

5

2
v2,xxx − 1

2
v0,xxxxx,

v7 = −7

2
v6,x +

35

4
v4,xxx − 21

2
v2,xxxxx +

17

8
v0,xxxxxxx,

.... (2.7)

Equations (2.5) and (2.7) show that the odd dynamical variables of {v j} can be expressed by the

even ones of {v j}, and the even dynamical variables of {v j} are independent.

Let us list the usual BKP and CKP equations. Taking Bn = B3 in (2.1) and equating the coeffi-

cient of ∂−i−1(i = 0,2,4, · · ·) with the left and right-hands side of (2.1), we obtain

∂v0

∂y
= 3v2,x +3v1,xx + v0,xxx +6v0v0,x,

∂v2

∂y
= 3v4,x +3v3,xx + v2,xxx +3v0v2,x +9v2v0,x −3v0v1,xx +6v1v1,x −3v1v0,xx,

∂v4

∂y
= 3v6,x +3v5,xx + v4,xxx +3v0v4,x +15v4v0,x +12v3v1,x −18v3v0,xx −18v2v1,xx

+12v2v0,xxx +12v1v1,xxx −3v0v1,xxxx −3v1v0,xxxx,

..., (2.8)

where y = t3.

From (2.5) and (2.8), we derive the constraints of the BKP hierarchy as follows

v1 = −v0,x,

v2 =
1

3
∂−1v0,y − v2

0 +
2

3
v0,xx,

v3 = −2

3
v0,y +4v0v0,x − 1

3
v0,xxx,

v4 =
1

9
∂−2v0,yy −∂−1(v0v0,y)+

7

9
v0,xy −∂−1(v0,x∂−1v0,y)+

5

3
v3

0 −
15

2
v2

0,x

−5∂−1(v0v0,xxx)+
1

9
v0,xxxx,

.... (2.9)
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From (2.7) and (2.8), we obtain the constraints of the CKP hierarchy as follows

v1 = −1

2
v0,x,

v2 =
1

3
∂−1v0,y − v2

0 +
1

6
v0,xx,

v3 = −1

2
v0,y +3v0v0,x,

v4 =
1

9
∂−2v0,yy −∂−1(v0v0,y)+

4

9
v0,xy −∂−1(v0,x∂−1v0,y)+

5

3
v3

0 −
17

4
v2

0,x

−3∂−1(v0v0,xxx)− 1

18
v0,xxxx,

.... (2.10)

Taking Bn = B5 in (2.1) and equating the coefficient of ∂−1, we have

∂v0

∂ t
= 20v0v2,x +20v1v1,x +20v2v0,x +20v0v1,xx +10v1v0,xx +10v0v0,xxx +10v2,xxx

+5v1,xxxx + v0,xxxxx +10v3,xx +5v4,x +30v0,xv2
0 +20v0,xv0,xx +30v1,xv0,x, (2.11)

where t = t5.

Substituting (2.9) into (2.11), we obtain the usual BKP equation

∂v0

∂ t
=

5

3
v0v0,y −5v0,xv2

0 −
5

3
v0v0,xxx − 5

3
v0,xv0,xx +

5

3
v0,x∂−1v0,y

+
5

9
v0,xxy − 1

9
v0,xxxxx +

5

9
∂−1v0,yy. (2.12)

Substituting (2.10) into (2.11), we obtain the usual CKP equation

∂v0

∂ t
=

5

3
v0v0,y −5v0,xv2

0 −
5

3
v0v0,xxx − 25

6
v0,xv0,xx +

5

3
v0,x∂−1v0,y

+
5

9
v0,xxy − 1

9
v0,xxxxx +

5

9
∂−1v0,yy. (2.13)

3. Generalized Lax equation with the Lax triple

The operator Nambu 3-bracket is defined by [22]

[Ã, B̃,C̃] = [Ã, B̃]C̃+[B̃,C̃]Ã+[C̃, Ã]B̃, (3.1)

where [Ã, B̃] = ÃB̃− B̃Ã.

By means of (3.1), the generalized zero curvature formulations with the Lax triple (Bm,Bn,L) is

as follows

∂L
∂ tmn

= [Bm,Bn,L]−, (m,n = 0,1,2 · · ·), (3.2)

where B0 = 1, the operator Nambu 3-bracket [, , ]− denotes the formal integration operator part of

the derived pseudo-differential operator.
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Taking Bm = B0 in (3.2), it is easy to verify that (3.2) leads to the Lax equation (2.1),

∂L
∂ t0n

= [B0,Bn,L]− = [Bn,L]. (3.3)

Thus it is natural to derive the BKP and CKP hierarchies from (3.3).

3.1. Generalized Lax equation

• Taking the operator pair (B1,B2) in (3.2), we obtain

∂v0

∂ t
= v2,x + v1,xx +2v0v0,x, (3.4)

where t = t12.

• Taking the operator pair (B1,B3) in (3.2), we obtain

∂v0

∂ t
= 6v1v0,x +6v0v1,x +3v0v0,xx +3v2

0,x +2v3,x +3v2,xx + v1,xxx, (3.5)

where t = t13.

• Taking the operator pair (B1,B4) in (3.2), we obtain

∂v0

∂ t
= 12v2v0,x +12v1v1,x +6v1v0,xx +12v0v2,x +18v0,xv2

0 +12v0v1,xx +6v0v0,xxx

+18v1,xv0,x +8v0,xv0,xx +3v4,x + v1,xxxx +6v3,xx +4v2,xxx, (3.6)

where t = t14.

• Taking the operator pair (B2,B3) in (3.2), we obtain

∂v0

∂ t
= v4,x +2v3,xx + v2,xxx +3v0v1,xx +3v1v0,xx +3v0,xv0,xx

+3v2v0,x + v0v0,xxx +6v0,xv1,x +6v1v1,x +3v0v2,x, (3.7)

where t = t23.

• Taking the operator pair (B1,B5) in (3.2), we obtain

∂v0

∂ t15
= 4v5,x +10v4,xx +10v3,xxx +5v2,xxxx + v1,xxxxx +20v3,xv0 +20v3v0,x

+20v1v0,xxx +20v0v1,xxx +10(v0,xx)
2 +20v2

0v0,xx +20v1v1,xx +20v2
1,x

+80v1v0v0,x +5v0v0,xxxx +30v1,xv0,xx +30v0,xv1,xx +15v0,xv0,xxx +40v0v2
0,x

+40v2,xv0,x +30v0v2,xx +10v2v0,xx +20v2v1,x +20v1v2,x +40v2
0v1,x, (3.8)

where t = t15.

• Taking the operator pair (B2,B4) in (3.2), we obtain

∂v0

∂ t
= 2v5,x +5v4,xx +4v3,xxx + v2,xxxx +8v3,xv0 +8v3v0,x +12v0v2

0,x

+4v1v0,xxx +12v0v1,xxx +2(v0,xx)
2 +6v2

0v0,xx +12v1v1,xx +12v2
1,x

+24v1v0v0,x +4v0v0,xxxx +10v1,xv0,xx +18v0,xv1,xx +6v0,xv0,xxx

+18v2,xv0,x +12v0v2,xx +6v2v0,xx +12v2v1,x +12v1v2,x +12v2
0v1,x, (3.9)

where t = t24.
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3.2. Generalized BKP equations

• For the pair (B1,B2), substituting (2.9) into (3.4), we obtain

∂v0

∂ t
=

1

3
(v0,y − v0,xxx). (3.10)

• For the pair (B1,B3), substituting (2.9) into (3.5), we obtain

∂v0

∂ t
=−v2

0,x − v0v0,xx − 1

3
v0,xy +

1

3
v0,xxxx. (3.11)

• For the pair (B1,B4), substituting (2.9) into (3.6), we obtain

∂v0

∂ t
= v0,x∂−1v0,y −3v0,xv2

0 +7v0,xv0,xx + v0v0,y +3v0v0,xxx +
1

3
∂−1v0,yy − 1

3
v0,xxy. (3.12)

• For the pair (B2,B3), substituting (2.9) into (3.7), we obtain

∂v0

∂ t
= −4v0,xv2

0 +5v0,xv0,xx + v0v0,xxx +
1

9
∂−1v0,yy − 2

9
v0,xxy +

1

9
v0,xxxxx. (3.13)

• For the pair (B1,B5), substituting (2.9) into (3.8), we obtain

∂v0

∂ t
= −2

9
v0,yy − 8

3
v0,xv0,y − 4

3
v0v0,xy +

1

9
v0,xxxy − 4

3
v0,xx∂−1v0,y − 20

3
v2

0,xx

−25

3
v0,xv0,xxx − 5

3
v0v0,xxxx +

1

9
v0,xxxxxx. (3.14)

• For the pair (B2,B4), substituting (2.9) into (3.9), we obtain

∂v0

∂ t
= −1

9
v0,yy − 4

3
v0,xv0,y − 1

3
v0v0,xy +

2

9
v0,xxxy − v0,xx∂−1v0,y +3v2

0v0,xx +6v0v2
0,x

−3v2
0,xx −

20

3
v0,xv0,xxx − 11

3
v0v0,xxxx − 1

9
v0,xxxxxx. (3.15)

3.3. Generalized CKP equations

• For the pair (B1,B2), substituting (2.10) into (3.4), we obtain

∂v0

∂ t
=

1

3
(v0,y − v0,xxx). (3.16)

• For the pair (B1,B3), substituting (2.10) into (3.5), we obtain

∂v0

∂ t
= 0. (3.17)

• For the pair (B1,B4), substituting (2.10) into (3.6), we obtain

∂v0

∂ t
= v0,x∂−1v0,y −3v0,xv2

0 +
11

2
v0,xv0,xx + v0v0,y +3v0v0,xxx +

1

3
∂−1v0,yy − 1

3
v0,xxy. (3.18)

• For the pair (B2,B3), substituting (2.10) into (3.7), we obtain

∂v0

∂ t
= −4v0,xv2

0 +4v0,xv0,xx + v0v0,xxx +
1

9
∂−1v0,yy − 2

9
v0,xxy +

1

9
v0,xxxxx. (3.19)
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• For the pair (B1,B5), substituting (2.10) into (3.8), we obtain

∂v0

∂ t
= 0. (3.20)

• For the pair (B2,B4), substituting (2.10) into (3.9), we obtain

∂v0

∂ t
= 0. (3.21)

4. The solutions of the generalized evolution equations

For (B1,B2), we note (3.10) and (3.16) are the same linear partial differential equations. However,

the other equations on the generalized BKP equations do not pass the Painlevé test. For the case of

(B1,B4) and (B2,B3), by means of the Painleve analysis approach [20], we find both of the evolution

equations (3.18) and (3.19) on the generalized CKP equations do not pass the Painlevé test. For the

case of (B1,B3), (B1,B5) and (B2,B4), we also observe that the evolution equations (3.17), (3.20)

and (3.21) disappear. Now let us give the solutions of the generalized evolution equations.

• For the pair (B1,B2), the generalized BKP (3.10) and CKP equations (3.16) are the same linear

partial differential equation. Its traveling wave solution is

v0 = ceax+by+kt , (4.1)

where a,b,c are the arbitrary constants and

k =
1

3
(b−a3). (4.2)

• For the pair (B1,B3), the generalized CKP equation (3.17) disappears. The generalized BKP

equation (3.11) does not pass the Painlevé test. However, we may construct its solution by using the

similarity transformations method via Lie group theory [21, 24].

We consider the one-parameter (ε) Lie group of infinitesimal transformations.

x∗ = x+ εξ (1)(x,y, t,v0)+O(ε2),

y∗ = y+ εξ (2)(x,y, t,v0)+O(ε2),

t∗ = t + ετ(x,y, t,v0)+O(ε2),

v∗0 = v0 + εη(x,y, t,v0)+O(ε2), (4.3)

where ξ 1, ξ (2), τ and η are the infinitesimals for the variables x,y, t and v0 respectively.

The vector field of the form

V = ξ (1) ∂
∂x

+ξ (2) ∂
∂y

+ τ
∂
∂ t

+η
∂

∂v0
, (4.4)

is the infinitesimal generator of the one-parameter Lie transformation group.

With the aid of the symbolic computation system Maple, we arrive at the infinitesimals

ξ (1) =
1

4
C1x+ f ′(y), ξ (2) =

3

4
C1y+C3, τ =C1t +C2,

η =
1

3
f ′′(y)− 1

2
C1v0, (4.5)

where C1, C2 and C3 are the arbitrary constants, f (y) is an arbitrary function with respect to y. The

prime denotes differentiation with respect to y.
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Thus we may derive the linearly independent infinitesimal generators as follows

V1 =
1

4
x

∂
∂x

+
3

4
y

∂
∂y

+ t
∂
∂ t

− 1

2
v0

∂
∂v0

, V2 =
∂
∂ t

,

V3 =
∂
∂y

, V4 = f ′(y)
∂
∂x

+
1

3
f ′′(y)

∂
∂v0

. (4.6)

In the case of V =V3 +V4, according to the corresponding characteristic system

dx
ξ (1)

=
dy

ξ (2)
=

dt
τ

=
dv0

η
, (4.7)

we obtain the similarity form of the solution of (3.11) as

v0(x,y, t) =
1

3
f ′(y)+F(X , t), (4.8)

with the similarity variable

X = x− f (y). (4.9)

Substituting (4.8) into (3.11), we obtain a new partial differential equation

Ft − 1

3
FXXXX +FFXX +F2

X = 0. (4.10)

By using the symmetry reduction process again, we may conclude that (4.10) has the infinitesimal

generator

V =
1

4
X

∂
∂X

+ t
∂
∂ t

. (4.11)

Then we obtain the similarity solution of Eq.(4.10) as

F(X , t) =
K(Y )

X2
, (4.12)

with the similarity variable

Y =
t

X4
. (4.13)

The reduction equation is given by

−256KYYYYY 4 +48KKYYY 2 +48K2
YY 2 −2432KYYYY 3 +156KKYY

−5616KYYY 2 +30K2 −2904KYY −120K +3KY = 0. (4.14)

(4.14) can be rewritten as

−256KYYYYY 4 −2432KYYYY 3 −5616KYYY 2 −2904KYY −120K = 0, (4.15)

48KKYYY 2 +48K2
YY 2 +156KKYY +30K2 +3KY = 0. (4.16)

Solving (4.15), we have

K(Y ) =
c1

Y
5
4

+
c2

Y
+

c3

Y
1
2

+
c4

Y
3
4

. (4.17)
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Substitution Eq.(4.17) into (4.16), we obtain

c2 =
1

6
, c1 = c3 = c4 = 0. (4.18)

Thus we have a rational solution of (3.11)

v0 =
1

3
f ′(y)+

(x− f (y))2

6t
, (4.19)

where f (y) is an arbitrary function with respect to y.

Fig.1 shows the profiles of the exact rational solution v0 described by Eq.(4.19) at t = 1 for (a)

f (y) = sech2y and (b) f (y) = tanhy.

(a) f (y) = sech2y (b) f (y) = tanhy

Fig.1 Profiles of exact solution v0 described by Eq.(4.19) at t = 1.

• For the pair (B1,B4), we set

v0 = asech2(C1(ωt + x+ py)+C2), (4.20)

where a,C1,ω, p,C2 are undetermined parameters. Substituting (4.20) into (3.12) and taking the

coefficients to zero, then we obtain

a =−26C2
1 , ω =

5005

27
C4

1 , p =−65

3
C2

1 . (4.21)

Thus we find the single soliton solution of the generalized BKP equation (3.12)

v0 =−26C2
1sech2(

5005

27
C5

1t +C1x− 65

3
C3

1y+C2), (4.22)

where C1, C2 are the arbitrary constants.

Similarly, the single soliton solution of the generalized CKP equation (3.18) is

v0 =−23C2
1sech2(

185725

1323
C5

1t +C1x− 391

21
C3

1y+C2), (4.23)

where C1, C2 are the arbitrary constants.

• For the pair (B2,B3), we find the single soliton solution of the generalized BKP equation

(3.13) as follows,
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v0 = 3C2
1 − (

21

4
− 1

4

√
601)C2

1sech2(
73

4
C5

1t +C1x+
47

2
C3

1y+C2), (4.24)

where C1,C2 are the arbitrary constants.

Similarly, the single soliton solution of the generalized CKP equation (3.19) is

v0 =−5C3
1 −2C2

15C1
+C2

1sech2(
C2

2

25C1
t +C1x+C2y+C3), (4.25)

where C1,C2,C3 are the arbitrary constants, and C1 �= 0.

The BKP (CKP) hierarchy is obtained by imposing a symmetry constraint in KP hierarchy. The

KP hierarchy can be reduced to the KdV hierarchy by dimensional reductions. Now we tend to

provide the reduction equation of the generalized BKP (CKP) hierarchy. With the reduction y = 0,

(3.13) and (3.19) leads to the fifth order KdV equations

∂v0

∂ t
= −4v0,xv2

0 +5v0,xv0,xx + v0v0,xxx +
1

9
v0,xxxxx, (4.26)

and

∂v0

∂ t
= −4v0,xv2

0 +4v0,xv0,xx + v0v0,xxx +
1

9
v0,xxxxx, (4.27)

respectively. As is well known, the fifth order KdV equations describe the motions of long waves

in shallow water. Thus the generalized BKP (CKP) evolution equations could be widely applied in

many fields.

5. Summary

We investigated the generalized Lax equation of the BKP (CKP) hierarchy with the Lax triple

(L,Bm,Bn) in the frame of the Nambu Mechanics. In terms of the Lax triple (L,Bm,Bn), some

evolution equations were derived from the generalized Lax equation. We noted that they do not pass

the Painlevé test except for the linear equation. However, we still concluded some solutions for these

evolution equations. Moreover it should be noted that the evolution equations seem to disappear in

the case of (L,Bm,Bn) with m+n even for the generalized CKP hierarchy. The deeper relationship

of the generalized BKP (CKP) hierarchy with the Lax triple (L,Bm,Bn) is still deserved to further

study.
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