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We go beyond in the study of the integrability of the classical model of competition between three species
studied by May and Leonard [19], by considering a more realistic asymmetric model. Our results show that
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model by classifying its invariant algebraic surfaces.
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1. Introduction and statement of the main results

Nonlinear differential equations govern many branches of applied mathematics, physics and sci-
ences in general. A 3–dimensional system with two first integrals whose gradients are linearly inde-
pendent in R3 (except perhaps in a zero Lebesgue measure set) is completely solvable in the sense
that the intersections of the invariant levels of these two first integrals determine the trajectories of
the system. On the other hand, the knowledge of only one first integral does not determine com-
pletely the phase portrait of the system but reduces the study of its dynamics by one dimension
(i.e. from dimension 3 to dimension 2). Therefore knowing whether there exists a first integral is
important in the qualitative theory of differential equations. Different methods exist for studying the
existence of first integrals of non–linear ordinary differential equations relying on: the well-known
Darboux theory of integrability [8, 18], the so-called Noether symmetries [5], the so-called Lie
symmetries [1, 24], the well-known Painlevé analysis [3], the use of Lax pairs [12], the so-called
direct method [9, 10], the well-known Carleman embedding procedure [2, 6], the so-called linear
compatibility analysis method [25], etc.

In the present paper using the well-known Darboux theory of integrability we determine the
existence of first integrals in some given classes for the following asymmetric model that studies
the competition among three species and that is the asymmetrization of the initial model used by
May and Leonard [19]. This asymmetric model is
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Ẋ = X(1−X−a1Y −b1Z),

Ẏ = Y (1−b2X−Y −a2Z),

Ż = Z(1−a3X−b3Y −Z),

(1.1)

where

0 < ai < 1 < bi for i = 1,2,3,

and the dot denotes derivative with respect to the time t. Model (1.1) was studied by Chi, Hsu and
Wu in [7] and it controls the competition between three species with the same intrinsic growth rates
and different competition coefficients. From the results on a two-dimensional competitive system
[26], the assumption 0 < ai < 1 < bi for i = 1,2,3 ensures that there is an orbit on the xy-plane
connecting the equilibrium (0,1,0) to the equilibrium (1,0,0), an orbit on the xz-plane connecting
the equilibrium (1,0,0) to the equilibrium (0,0,1), and an orbit on the yz-plane connecting the
equilibrium (0,0,1) to the equilibrium (0,1,0). May and Leonard [19] were the first to study the
symmetric case that is, when a1 = a2 = a3 and b1 = b2 = b3.

The symmetric case was studied intensively from the view point of the dynamics by several
authors including May and Leonard themselves and from the view of of the integrability by Leach
and Miritzis in [13] (obtaining partial results) and by Llibre and Valls in [16] characterizing com-
pletely the polynomial, rational and analytic first integrals. The asymmetric model, being much
more realistic, has been studied from the dynamical point of view in [7]. There the authors proved
the asymptotic stability of a stationary point in certain parameter regions, which precludes the exis-
tence of a global analytic first integral. In this paper we study the polynomial, rational and global
analytic first integrals for all the values of the parameters.

In order to study the integrability of system (1.1) we first do the change of variables

x = Xe−t , y = Ye−t , z = Ze−t , s = et ,

and system (1.1) becomes

x′ =−x(x+a1y+b1z),

y′ =−y(b2x+ y+a2z),

z′ =−z(a3x+b3y+ z),

(1.2)

where 0 < ai < 1 < bi for i = 1,2,3, and the prime denotes derivative with respect to s.
More precisely, we will completely characterize the polynomial, rational and analytic first inte-

grals of system (1.2). To do so we introduce some notation. We set
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G = z+
(1−a3)

b1−1
x+

(a1−1)(a3−1)
(b1−1)(b2−1)

y,

b∗3 = 1+
(1−a1)(1−a2)(1−a3)

(b1−1)(b2−1)
,

k∗1 =
b1−1
1−a2

> 0,

k∗2 =
(b1−1)(b2−1)
(1−a2)(1−a3)

> 0,

k∗3 =
1−a2 +a2a3−a3b1−b2 +b1b2

(1−a2)(1−a3)
> 0.

(1.3)

Let U ⊂ R3 be an open subset and consider the vector field

X =−x(x+a1y+b1z)
∂

∂x
− y(b2x+ y+a2z)

∂

∂y
− z(a3x+b3y+ z)

∂

∂ z
, (1.4)

on U related with system (1.2). A non–constant function H : U → R is a first integral of X if
H(x(t),y(t),z(t)) is constant for all values for which the solution (x(t),y(t),z(t)) of X is defined
on U .

H is a polynomial first integral if H is a polynomial, H is a proper rational first integral if H is
a rational function which is not a polynomial and H is an analytic first integral if H is an analytic
function.

The symmetric case, i.e., when a1 = a2 = a3 = a and b1 = b2 = b3 = b the polynomial, rational
and analytic integrability was studied in [16] where the authors proved the following result.

Theorem 1.1. For the differential system (1.2) with a1 = a2 = a3 = a and b1 = b2 = b3 = b, the
following statements hold.

(a) There are no polynomial first integrals.
(b) The unique proper rational first integrals are rational functions in the variable

xyz
(x+ y+ z)3

whenever a+b = 2.
(c) There are no global analytic first integrals.

The main result of this paper is the following one.

Theorem 1.2. For the differential system (1.2) the following statements hold.

(a) There are no polynomial first integrals.
(b) If b3 = b∗3 then

xyk∗1 zk∗2

Gk∗3

is a first integral. Additionally, if k∗1,k
∗
2,k
∗
3 ∈N, this first integral is the unique proper ratio-

nal first integral of the system.
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(c) There are no global analytic first integrals.

Note that Theorem 1.2 reduces to Theorem 1.1 when a1 = a2 = a3 = a and b1 = b2 = b3 =

b. Therefore in the proof of Theorem 1.2 we will only consider the case in which (a1− a2)
2 +

(a1−a3)
2 +(a2−a3)

2 6= 0 and (b1−b2)
2 +(b1−b3)

2 +(b2−b3)
2 6= 0. The integrability of other

3-dimensional Lotka-Volterra systems other than system (1.2) has been studied, see for instance
[4, 11, 15, 20–22] and the references therein. We must remark that under the condition b3 = b∗3 the
differential system (1) exhibits a Hopf bifurcation and a family of neutrally stable periodic orbits,
see for a proof [7]; while under the same condition system (2) and system (1) have the first integral
given in statement (b) of Theorem 1.2.

Note that since system (1.2) is homogeneous, the knowledge of its homogeneous polynomial
first integrals determine easily all its polynomial and its analytic first integrals (see Proposition 2.3
for further details). With this observation it is clear that statement (c) of Theorem 1.2 follows from
statement (a) (of the same theorem).

In the proof of Theorem 1.2 we will use the invariant algebraic surfaces of system (1.2). This is
precisely on what is based the Darboux theory of integrability which was introduced by Darboux
[8] in 1878. This theory is valid for either real or complex polynomial differential equations and
sometimes the knowledge of complex invariant algebraic curves is necessary for obtaining all the
real first integrals of a real polynomial differential equation (see for instance [14]).

We say that h = h(x,y,z) ∈ C[x,y,z] \C is a Darboux polynomial of system (1.2) if it satisfies
X h = Kh for some K = K(x,y,z) ∈ C[x,y,z]. The polynomial K is called the cofactor of h and has
degree at most 1. In this case we also say that h = 0 is an invariant algebraic curve of the vector
field X associated to system (1.2) and K is also called the cofactor of h = 0. Throughout the paper
when we say that a polynomial is irreducible, we mean irreducible in C[x,y,z]. Moreover, we recall
that the polynomial first integrals are the Darboux polynomials with zero cofactor.

Theorem 1.3. The unique irreducible Darboux polynomials with non–zero cofactor of system (1.2)
are x, y, z with cofactors −(x+a1y+b1z), −(b2x+ y+a2z) and −(a3x+b3y+ z) respectively, for
all ai,bi ∈ R for i = 1,2,3; and G whenever b3 = b∗3 (see (1.3)) with cofactor −x− y− z.

In Section 2 we state and prove some auxiliary results of system (1.2) that will be used in the
paper. In Section 3 we prove some results of system (1.2) restricted to either x = 0, or y = 0, or
z = 0 and that will play an important role in the proof of Theorem 1.2. Finally, in section 4 we prove
Theorem 1.3, and in section 5 we prove Theorem 1.2.

2. Preliminaries

Proposition 2.1. Let f ∈ C[x,y,z] and f =
s

∏
j=1

f α j
j be its decomposition into irreducible factors in

C[x,y,z]. Then f is a Darboux polynomial of system (1.2) if and only if f j are Darboux polynomials
of system (1.2) for j = 1, . . . , j. Additionally, if K and K j are the cofactors of f and f j respectively,

then K =
s

∑
j=1

α jK j.

Proof. See [14].

The following three results are well-known and can be proved easily using Darboux theory of
integrability (for the second one see also [23] and for the third one see [17]).
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Proposition 2.2. The homogeneous polynomial differential system (1.2) has a proper rational first
integral if and only if it has two Darboux polynomials with the same non–zero cofactor.

Lemma 2.1. Any Darboux polynomial f 6= 0 of the homogeneous polynomial differential system
(1.2) has a cofactor of the form

K = α1x+α2y+α3z, (2.1)

with αi ∈ C, i = 1,2,3.

Proposition 2.3. The following statements hold:

(a) Let f be a polynomial and write it in sum of its homogeneous parts as f = ∑
n
j=1 f j. Then

f is a Darboux polynomial of the homogeneous polynomial differential system (1.2) with
cofactor K if and only if f j is a Darboux polynomial of homogeneous polynomial differential
system (1.2) with cofactor K for j = 1, . . . ,n.

(b) Let f be a formal power series and write it in sum of its homogeneous parts as f = ∑ j≥1 f j,
with f j being homogeneous polynomials of degree j. Then f is a formal first integral of
the homogeneous polynomial differential system (1.2) if and only if f j is a polynomial first
integral of the homogeneous polynomial differential system (1.2) for all j ≥ 1.

Proposition 2.4. The unique irreducible Darboux polynomials of degree 1 with non–zero cofactor
of system (1.2) are: x, y, z with cofactors −(x+a1y+b1z), −(b2x+ y+a2z) and −(a3x+b3y+ z)
respectively, for all a,b ∈ R and G whenever b3 = b∗3 (see (1.3)) with cofactor −x− y− z.

Proof. It follows easily from direct computations and the definition of Darboux polynomial.

3. System (1.2) restricted to x = 0, or y = 0, or z = 0.

We will consider in this section system (1.2) restricted to either x = 0, or y = 0, or z = 0.

Theorem 3.1. For system (1.2) restricted to z = 0 the following statements hold.

(a) There are no homogeneous polynomial first integrals.
(b) All the irreducible Darboux polynomials with non–zero cofactor are x and y for all 0 <

a1 < 1 < b2; and additionally (b2−1)x+(1−a1)y.

Proof. First we consider system (1.2) restricted to z = 0, that is,

ẋ =−x(x+a1y), ẏ =−y(b2x+ y). (3.1)

It follows by direct computations that

H = x1−b2y1−a1((b2−1)x+(1−a1)y)−1+a1b2

is a first integral of system (3.1). Furthermore, it is a homogeneous polynomial of degree n ≥ 1 if
and only if

1−a1 = n1, 1−b2 = n2, a1b2−1 = n−n1−n2, n1 +n2 ≤ n, n1,n2 ∈ N,

or equivalently, if and only if,

1−a1 = n1, 1−b2 = n2, n1n2 = n, n1 +n2 ≤ n, n1,n2 ∈ N,

which is not possible because 0 < a1 < 1 and b2 > 1. Hence statement (a) is proved.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

397



J. Llibre and C. Valls / Proper rational and analytic first integrals

It is also straightforward by direct computations that the unique irreducible Darboux polynomi-
als of system (3.1) are x and y and (b2−1)x+(1−a1)y (note that a1 6= 1, b2 6= 1 and that irreducible
homogeneous polynomials in two variables are necessarily of degree one).

To complete the proof of the proposition we will proceed by contradiction. Let f be an irre-
ducible homogeneous Darboux polynomial of system (3.1) of degree n≥ 2 and so it satisfies

−x(x+a1y)
∂ f
∂x
− y(b2x+ y)

∂ f
∂y

= (α1x+α2y) f , α1,α2 ∈ C. (3.2)

First we assume that α1 6= 0 or α2 6= 0. If we restrict equation (3.2) to x= 0 and denote the restriction
of f to x= 0 by f , then f = f (y) 6= 0 (otherwise f would be reducible) is a homogeneous polynomial
of degree n. We write it as f = β0yn with β0 ∈ C\{0}. Clearly f satisfies

−y2 d f
dy

= α2y f .

So f = α0y−α2 with α0 ∈ C \ {0}. Now equating the two expressions for f we get α2 = −n. In a
similar manner restricting to y = 0 we get that α1 = −n. Thus K = −n(x+ y) and equation (3.2)
becomes

−x(x+a1y)
∂ f
∂x
− y(b2x+ y)

∂ f
∂y

=−n(x+ y) f .

Since b2 6= 1 and a1 6= 1, we introduce the change of variables (X ,Y ) = ((b2−1)x+(1−a1)y,y).
In these new variables system (3.1) becomes

X ′ =
X

1−b2
(X +(a1 +b2−2)Y ), Y ′ =

Y
1−b2

(b2X +(a1b2−1)Y ).

We have that f̃ = f̃ (X ,Y ) = f (x,y) satisfies

X
1−b

(X +(a1 +b2−2)Y )
∂ f̃
∂X

+
Y

1−b2
(b2X +(a1b2−1)Y )

∂ f̃
∂Y

=
n

1−b2
(X +(b2 +a1−2)Y ) f̃ .

(3.3)

Let now f̂ be the restriction of f̃ to X = 0. Since f is irreducible, f̂ 6= 0, and f̂ satisfies (3.3)
restricted to X = 0, that is

(a1b2−1)Y 2

1−b2

d f̂
dY

=
n

1−b2
(b2 +a1−2)Y f̂ .

Solving this linear differential equation we obtain f̂ = β0yn(2−a1−b2)/(1−a1b2), with β0 ∈ C \ {0}.
Since f̂ has degree n, we must have 2− a1− b2 = 1− a1b2, or equivalently (a1− 1)(b2− 1) = 0.
That is a1 = 1 or b2 = 1, a contradiction. This completes the proof.

Theorem 3.2. For system (1.2) restricted to x = 0 the following statements hold.

(a) There are no homogeneous polynomial first integrals.
(b) All the irreducible Darboux polynomials with non–zero cofactor are x and y for all 0 <

a2 < 1 < b3; and additionally (b3−1)x+(1−a2)y.

Theorem 3.3. For system (1.2) restricted to y = 0 the following statements hold.
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(a) There are no homogeneous polynomial first integrals.
(b) All the irreducible Darboux polynomials with non–zero cofactor are x and y for all 0 <

a3 < 1 < b1; and additionally (b1−1)x+(1−a3)y.

Theorems 3.2 and 3.3 are proved in the same way as Theorem 3.1.

4. Proof of Theorem 1.3

In order to prove Theorem 1.3 we first study the irreducible homogeneous Darboux polynomials of
degree n≥ 2 of system (1.2) with non–zero cofactor. This is the content of the following theorem.

Theorem 4.1. System (1.2) has no irreducible homogeneous Darboux polynomials of degree n≥ 2
with non–zero cofactor.

Proof. Let f be a homogeneous irreducible Darboux polynomial of degree n ≥ 2 with non-zero
cofactor. In view of Lemma 2.1 we can assume that K = α1x+α2y+α3z with (α1,α2,α3) ∈ C3 \
{(0,0,0)}.

We shall prove that K = −n(x + y + z). By Theorem 3.1 we have that f̃ = f (x,y,0) =

cxm1ym2((b2− 1)x+ (1− a1)y)n−m1−m2 with m1,m2 ≥ 0 and then, by Proposition 2.1, the cofac-
tor is

K = ((1−b2)m2−n)x+((1−a1)m1−n)y. (4.1)

Moreover the cofactor K is also equal to α1x+α2y. This means that

α1 = (1−b2)m2−n, and α2 = (1−a1)m1−n. (4.2)

Similarly, by Theorem 10 we have that f = f (0,y,z) = c1ym3zm4((b3− 1)x + (1− a2)y)n−m3−m4

with m3,m4 ≥ 0 and then the cofactor is K = ((1−b3)m3−n)y+((1−a2)m4−n)z. Moreover the
cofactor K is also equal to α2y+α3z. This means that

α2 = (1−b3)m3−n, and α3 = (1−a2)m4−n. (4.3)

It follows from (4.2) and (4.3) that (1−b3)m3−n = (1−a1)m1−n and so (1−b3)m3 = (1−a1)m1

with m1,m3 ≥ 0. Since b3 > 1 and a1 < 1 the unique possibility is m1 = m3 = 0.
Doing the same with the restriction of f to y = 0 we get that m2 = m4 = 0. From (10) and (11)

we get α1 = α2 = α3 =−n. In short K =−n(x+ y+ z) and f satisfies

−x(x+a1y+b1z)
∂ f
∂x
− y(b2x+ y+a2z)

∂ f
∂y
− z(a3x+b3y+ z)

∂ f
∂ z

=−n(x+ y+ z) f .

We denote by f̃ = f̃ (x,y) the restriction of f to z = 0. Since αi =−n for i = 1,2,3, it follows from
the above discussion in the case that we restricted to z = 0 that f̃ = f (x,y,0) = c0xm1ym2((b1−1)x+
(1−a1)y)n−m1−m2 with cofactor (4.1). Therefore m1 = m2 = 0 and so f̃ = ((b1−1)x+(1−a1)y)n

and f = c0((b− 1)x+(1− a)y)n + zg, where g = g(x,y,z) is a homogenous polynomial of degree
n−1. Proceeding analogously for the restrictions of f to x = 0 and to y = 0 we can write f in the
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following three forms

f = c0((b2−1)x+(1−a1)y)n + zg0 = c1((b3−1)y+(1−a2)z)n + xg1,

= c2((b1−1)z+(1−a3)x)n + yg2,
(4.4)

for some homogeneous polynomials g0,g1,g2 of degree n−1. Note that ci 6= 0 for i = 1,2,3 other-
wise f would be reducible. We consider two cases.
Case 1: b3 6= b∗3. Evaluating (4.4) on x = z = 0 we get

c0(1−a1)
n = c1(b3−1)n. (4.5)

Evaluating (4.4) on x = y = 0 we obtain

c1(1−a2)
n = c2(b1−1)n, (4.6)

and on y = z = 0, we have

c0(b2−1)n = c2(1−a3)
n. (4.7)

From (4.5) and (4.6) we get

c0 = c2
(b1−1)n(b3−1)n

(1−a1)n(1−a2)n ,

and so from (4.7) using that c2 6= 0 we must have(
(b1−1)(b2−1)(b3−1)

(1−a1)(1−a2)

)n

= (1−a3)
n,

and since all the factors are positive we obtain

(b1−1)(b2−1)(b3−1)
(1−a1)(1−a2)

= 1−a3,

which yields

b3 = 1+
(1−a1)(1−a2)(1−a3)

(b1−1)(b2−1)
= b∗3,

which is not possible.
Case 2: b3 = b∗3. From (1.3) we have

G = z+
(1−a3)

(b1−1)(b2−1)
((b2−1)x+(1−a1)y),

and from (4.4) we get

f = c0((b2−1)x+(1−a1)y)n + zg0 = c̃0

( (1−a3)

(b1−1)(b2−1)

)n
((b2−1)x+(1−a1)y)n + zg0,

where

c̃0 = c0

( (1−a3)

(b1−1)(b2−1)

)−n
.
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Moreover, using the Newton’s binomial formula we can also write

f = c̃0Gn + zg1, (4.8)

for some homogeneous polynomial g1 of degree n−1. Indeed, note that

Gn =

(
z+

(1−a3)

(b1−1)(b2−1)
((b2−1)x+(1−a1)y)

)n

=
n

∑
j=0

(
n
j

)
z j
( (1−a3)

(b1−1)(b2−1)
((b2−1)x+(1−a1)y)

)n− j

=
( (1−a3)

(b1−1)(b2−1)

)n
((b2−1)x+(1−a1)y)n

+
n

∑
j=1

(
n
j

)
z j
( (1−a3)

(b1−1)(b2−1)
((b2−1)x+(1−a1)y)

)n− j

=
( (1−a3)

(b1−1)(b2−1)

)n
((b2−1)x+(1−a1)y)n + zg2,

for some homogeneous polynomial g2. Then taking g1 = g0− c̃0g2 we obtain (4.8). It follows from
(4.8) and the fact that Gn is a homogeneous polynomial of degree n with cofactor−n(x+y+ z) that

−n(x+ y+ z)(c̃0Gn + zg1) = X (c̃0Gn + zg1) =−n(x+ y+ z)c̃0Gn +X (zg1),

and so

X (zg1) = X (z)g1 + zX (g1) =−z(a3x+b3y+ z)g1 + zX (g1) =−n(x+ y+ z)zg1.

Hence,

X (g1) = (−n(x+ y+ z)+a3x+b3y+ z)g1.

We will show that g1 = 0. We consider two different cases.
Case 2.1: g1 is not divisible by z. Let g∗1 the restriction of g1 to z = 0. Then by assumptions we have
that g∗1 6= 0 and so, g∗1 is a homogeneous Darboux polynomial of degree n−1 of system (3.1) with
cofactor−n(x+y)+a3x+b3y. It follows from the arguments used in the proof of Theorem 3.1 that

(1−b2)m2−n =−n+a3, (1−a1)m1−n =−n+b3,

which is not possible because b2 > 1 and 0 < a3 < 1. So this case is not possible.
Case 2.2: g1 is divisible by z. We write g1 = z`h with ` an integer satisfying 0 < ` < n and h a
homogeneous polynomial of degree n− ` that satisfies

X (h) = (−n(x+ y+ z)+(`+1)(a3x+b3y+ z))h.

Let h∗ be the restriction of h to z = 0. Then by assumptions of we have that h∗ 6= 0 and so, h∗ is a
homogeneous Darboux polynomial of degree n− ` of system (3.1) with cofactor −n(x+ y)+ (`+

1)(a3x+b3y). It follows from the arguments used in the proof of Theorem 3.1 that in this last case
we must have

(1−b2)m2−n =−n+(`+1)a3, (1−a1)m1−n =−n+(`+1)b3,

which is not possible because b2 > 1 and 0 < a3 < 1. So this case is not possible.
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In short g1 = 0 and it follows from (4.8) that f = c̃0Gn in contradiction with the fact that f is
irreducible because n > 1. This concludes the proof of the theorem.

Now we prove Theorem 1.3.

Proof of Theorem 1.3. The proof follows directly from Proposition 2.4 and Theorem 4.1.

5. Proof of Theorem 1.2

Let f be a homogeneous polynomial first integral of degree n. It follows from Theorem 3.1 that f
can be written as f = zh1 with h1 a polynomial of degree n−1. Moreover it follows from Theorem
3.2 that f can also be written as f = xh2 with h2 a polynomial of degree n− 1 and in view of
Theorem 3.3 it can also be written as f = yh3 with h3 a polynomial of degree n−1. Hence, f can
be written as

f = zh1, f = xh2, f = yh3

which yields

f = xyzg,

where g is a polynomial of degree n−3. Taking into account that X ( f ) = 0 we get that

xyzX (g)−
(
(1+b2 +a3)x+(a1 +1+b3)y+(b1 +a2 +1)z

)
xyzg = 0,

that is, after simplifying by xyz,

X (g) =
(
(1+b2 +a3)x+(a1 +1+b3)y+(b1 +a2 +1)z

)
g.

This yields that g is either 0 (which is not possible because then f = 0 and this is in contradiction
with the fact that f is a homogeneous polynomial first integral, or g is a Darboux polynomial.
Now taking into account that by Proposition 2.1 any Darboux polynomial factorizes in irreducible
Darboux polynomials, by Propositions 2.2 and 2.4 and Theorem 1.3 any first integral (either a
polynomial or a proper rational function) must be of the form

f =

{
xm1ym2zm3 if b3 6= b∗3,

xm1ym2zm3Gm4 if b3 = b∗3,
(5.1)

where m1,m2,m3,m4 are integers. We consider two different cases.
Case 1: b3 6= b∗3. In this case we have that f is a polynomial or a proper rational first integral if
and only if f = xm1ym2zm3 , for some integers m1,m2,m3 with m1 +m2 +m3 +m4 6= 0. Therefore,
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computing the cofactor K of f and setting it equal to zero we get the equation

0 = (m1 +m2b2 +m3a3)x+(m1a1 +m2 +m3b3)y+(m1b1 +m2a2 +m3)z,

that is,

m1 +m2b2 +m3a3 = 0, m1a1 +m2 +m3b3 = 0, m1b1 +m2a2 +m3 = 0. (5.2)

This is a linear system in the variables (m1,m2,m3) that can be written as AM = 0 where M =

(m1,m2,m3). We compute the determinant of the matrix A and we get

detA = 1+a1a2a3−a3b1−a1b2−a2b3 +b1b2b3

= 1−a2 +a2a3−a3b1−b2 +b1b2 +a1(a2a3−b2)

− (a2a3−b2)+b3(b1b2−a2)− (b1b2−a2)

= (1−a2)(1−a3)+(b1−1)(b2−a3)+(b3−1)(b1b2−a2)

+(a1−1)(a2a3−b2)> 0

(5.3)

because ai ∈ (0,1) and bi > 1 for i = 1,2,3. So, the unique solution of (5.2) is m1 = m2 = m3 = 0,
that is not possible.
Case 1: b3 = b∗3. In this case we have that f is as in (5.1), i.e., f = xm1ym2zm3Gm4 for some integers
m1,m2,m3 and m4 with m1 +m2 +m3 +m4 6= 0. Computing the cofactor K of f and setting it equal
to zero we get the equation

(m1 +m2b2 +m3a3 +m4)x+(m1a1 +m2 +m3b3 +m4)y+(m1b1 +m2a2 +m3 +m4)z = 0.

Solving K = 0 in the variables m1,m2,m3,m4 we get

m2 =
b1−1
1−a2

m1, m3 =
(b1−1)(b2−1)
(1−a2)(1−a3)

m1,

m4 =−
1−a2 +a2a3−a3b1−b2 +b1b2

(1−a1)(1−a3)
m1,

with m1 ∈ Z. From (1.3) we have m2 = k∗1m1, m3 = k∗2m1 and m4 = k∗3m1. Now we consider
xyk∗1 zk∗2 Gk∗3 . Since k∗1,k

∗
2 > 0 and they must be integers, we conclude that k∗1,k

∗
2 ∈ N. Moreover,

proceeding as in (5.3) we get that

1−a2 +a2a3−a3b1−b2 +b1b2 = (1−a2)(1−a3)+(b1−1)(b2−a3)> 0,

and so k∗3 < 0. Since it must be an integer we conclude that k∗3 is a negative integer. This completes
the proof of the theorem.
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[1] M.A. Almeida, M.E. Magalhães and I.C. Moreira, Lie symmetries and invariants of the Lotka–Volterra

system, J. Math. Phys. 36 (1995) 1854–1867.
[2] R.F.S. Andrade and A. Rauh, The Lorenz model and the method of Carleman embedding, Phys. Lett.

A 82 (1981) 276–278.
[3] T. Bountis, B. Grammaticos and A. Ramani, On the complete and partial integrability of non-

Hamiltonian systems, Phys. Rep. 180 (1989) 159.
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