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There are seven time independent, integrable, Hénon-Heiles systems: three with cubic and four with quartic
potential. The cubic and one of the quartic cases have been separated in the last decades. The other three cases
1:6:1, 1:6:8 and 1:12:16 have resisted several attempts in the last years. In this paper we focus our attention on
the 1:12:16 case whose equations of motion have been separated only in the degenerate case ab = 0. We give
here the separation coordinates for the generic case using a method introduced by Franco Magri in 2005 under
the name of Kowalevski’s Conditions.
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1. Introduction

We consider, in the symplectic space R4 endowed with the standard symplectic structure

d p1∧dx+d p2∧dy ,

the Hamiltonians H of the form

H =
1
2
(p2

1 + p2
2)+V (x,y) .

These systems pass the Painlevé test for 7 polynomial functions V : 3 cubic and 4 quartic. Some
extra non-polynomial terms can be added without destroying the integrability, giving rise to the so
called generalized versions. The cubic cases, called SK, KdV5, KK because of their links with some
well-known ODEs, have been separated decades ago.

• KdV5. This system can be separated in different ways, for instance with parabolic coordi-
nates [12]

h1 =
1
2
(p2

1 + p2
2 +ω1 x2 +ω2 y2)+axy2 +2ax3 +

b
2y2

h2 = 4ap2 (yp1− xp2)+(4ω2−ω1)

(
ω2y2 + p2

2 +
b
y2

)
+a2y2(4x2 + y2)+4ax

(
ω2y2− b

y2

)
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• SK. This case and the next one have been separated and integrated with hyperelliptic func-
tions [11]

h1 =
1
2
(p2

1 + p2
2)+

1
2

ω(x2 + y2)+axy2 +
1
3

ax3− b2

2y2

h2 =
(
3ax2y+ay3 +3ωxy+3p1 p2

)2−3b2
(

3
p2

1
y2 +4ax+2ω

2
)

• KK.

h1 =
1
2
(p2

1 + p2
2)+8ω x2 +

1
2

ω y2 +axy2 +
16
3

ax3 +
1
2

b
y2

h2 =

(
3ω y2 +3 p2

2 +3
b
y2

)2

+12ap2 y2 (−p1 y+3 p2 x)−2a2y4 (6x2 + y2)
+12ax

(
−ω y4 +b

)
−12ω b

The 4 cases with quartic potential are called 1:2:1, 1:6:1, 1:6:8 and 1:12:16 according to the
ratios of the coefficients of the quartic terms of the potential function:

• 1:2:1. It can be integrated with a canonical transformation to elliptical coordinates, reducing
the problem to an ODE which is similar to the one in the KdV5 case [13]

h1 =
1
2
(p2

1 + p2
2)+

1
2

ω1 x2 +
1
2

ω2 y2 +
1
2
(x2 + y2)2− 1

2
a2

x2 −
1
2

b2

y2

h2 = (p1y− p2x)2− y2 a2

x2 − x2 b2

y2 −
1
2
(ω1−ω2)

(
x4− y4 +ω1 x2−ω2 y2 + p2

1− p2
2−

a2

x2 +
b2

y2

)
• 1:6:1. This system has been separated only in the case a2 = b2 [1]:

h1 =
1
2
(p2

1 + p2
2)−

1
2

ω
(
x2 + y2)− 1

32
(x4 +6x2y2 + y4)− a2

2x2 −
b2

2y2

h2 =

(
p1 p2 + xy

(
−1

8
x2− 1

8
y2−ω

))2

−a2
(

p2
2

x2 −
1
4

y2
)
−b2

(
p2

1
y2 −

1
4

x2
)
+

a2b2

x2y2

• 1:6:8. Separated only in the case ab = 0 [8]:

h1 =
1
2
(p2

1 + p2
2)−

1
2

ω
(
4x2 + y2)− 1

2
x4− 3

8
x2y2− 1

16
y4−ax+

b
2y2

h2 =

(
p2

2−
1
8

y2 (2x2 + y2 +8ω
)
+

b
y2

)2

− 1
4

y2 (yp1−2xp2)
2

−a
(

2ay2−4yp1 p2 +
1
2

xy4 + x3y2 +4xp2
2 +4ω xy2 +4b

x
y2

)
• 1:12:16, Separated only in the case ab = 0 [10]:

h1 =
1
2
(p2

1 + p2
2)+

1
8

ω
(
4x2 + y2)− 1

2
x4− 3

8
x2y2− 1

32
y4− a2

2x2 −
b2

2y2

h2 =

(
8p2 (p1y− p2x)− xy4−2x3y2 +2ω xy2 +8b2 x

y2

)2

+16a2
(

y4−4
p2

2 y2

x2

) (1.1)
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All these separation coordinates and the methods to find them are resumed in [3]. The paper
ends with the authors asking for the separation coordinates of the three generic remaining cases
1:6:1, 1:6:8 and 1:12:16.

In this paper we solve one of the three problems asked by Conte, Musette and Verhoeven in
2005 [3] and 2006 [4], namely the 1:12:16 one (see Remark 7.2).

In order to obtain the separation coordinates, we make use of a set of separability conditions,
called Kowalevski’s Conditions (KCs). They come from the bihamiltonian approach to the theory
of integrable systems. In this section and in the next one, we limit ourselves to show how this
method works without giving any proof. This method is inspired by the one used by Franco Magri
in [6]. The reader interested in understanding the theoretical background of the KCs is invited to
read [6], [7] and [9] where more examples can be found.

2. Kowalevski’s conditions

To present the KCs in their simplest form, in accordance with the needs of this paper, it is sufficient
to consider the case of an integrable Hamiltonian system on R4 in the form of a pair of commuting
Hamiltonian vector fields Xh1 and Xh2 . We agree to denote by

.
F = Xh1(F) F ′ = Xh2(F)

the derivatives of a function F along the given Hamiltonian fields. Our goal is to find the separation
coordinates of both h1 and h2.

To this purpose, we build a 2x2 matrix

M =

(
m1 m2

m3 m4

)
called control matrix, whose eigenvalues are the desired coordinates. It is the object which is
submitted to KCs. For the sake of clarity, these conditions are splitted in two sets.

Definition 2.1 (The reduced Kowalevski’s Conditions). The matrix M is said to obey the reduced
set of Kowalevski’s conditions if its entries verify the differential constraints:

Xh1(m3) = Xh2(m1)

Xh1(m4) = Xh2(m2).

These conditions have a simple geometric meaning, which comes to light when one considers
the tensor field of type (1,1)

MXh1 = m1Xh1 +m2Xh2

MXh2 = m3Xh1 +m4Xh2 ,

on the Lagrangian leaves spanned by the vector fields Xh1 and Xh2 . The reader may check that, if M
is torsionless, there is a second commutator on the vector fields tangent to the Lagrangian foliation,
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given by:

[X ,Y ]M = [MX ,Y ]+ [X ,MY ]−M[X ,Y ].

After that, the reader is in a position to evaluate the commutator [Xh1 ,Xh2 ]M and to check that
it vanishes if the matrix M obeys the reduced KCs. Thus the intrinsic meaning of the reduced con-
ditions is that the Hamiltonian vector fields Xh1 and Xh2 commute with respect to both the standard
commutator and the deformed one:

[Xh1 ,Xh2 ] = 0 [Xh1 ,Xh2 ]M = 0.

Definition 2.2 (The full Kowalevski’s Conditions). If the matrix M2 obeys as well the reduced
Kowalevski’s conditions, the matrix M is said to obey the full set of Kowalevski’s conditions and
its characteristic polynomial s(u) is said to fulfil the Kowalevski’s property. So, the Kowalevski’s
conditions require that the coefficients m1, . . . ,m4 verify the four differential constraints:

Xh1(m3) = Xh2(m1)

Xh1(m4) = Xh2(m2)

Xh1(m1m3 +m3m4) = Xh2(m
2
1 +m2m3)

Xh1(m2m3 +m2
4) = Xh2(m1m2 +m2m4).

(2.1)

With this language the main result of the theory of KCs can now be stated in the following form:

Theorem 2.3 (Magri, 2005). Let s(u) = u2− s1u− s2 be the characteristic polynomial of M and let
u1 and u2 be its roots.

Assume that:

(1) the four equations (2.1) are verified;
(2) the roots u1 and u2 are real and almost everywhere distinct;
(3) its coefficients s1 and s2 commute with respect to the canonical Poisson brackets:

{s1,s2}= 0;

(4) s1 and s2 are functionally independent from h1 and h2 almost everywhere on R4:

ds1∧ds2∧dh1∧dh2 6= 0.

Then the roots u1 and u2 are separation coordinates for both vector fields Xh1 and Xh2 .

3. The method of syzygies

The idea is to use the KCs to construct directly half of the separation coordinates. For what has
been said before, this goal is reached if one is able to construct a 2×2 matrix whose entries verify
the four equations (2.1), and whose characteristic polynomial has coefficients s1 = m1 +m4 and
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s2 = m2m3−m1m4 which are in involution and generically independent of the Hamiltonians. The
starting point is the equation

F ′ =
.

G (3.1)

modelling the reduced KCs. This equation is nothing else than a special linear combination of the
equations of motion, of the form

∂F
∂ p1

p1
′+

∂F
∂ p2

p2
′+

∂F
∂x

x′+
∂F
∂y

y′ =
∂G
∂ p1

.p1 +
∂G
∂ p2

.p2 +
∂G
∂x

.x+ ∂G
∂y

.y. (3.2)

When the equations of motion are rational functions, it is natural to search solutions of this
equation in the field of rational functions. After cancellation of the denominators, one ends up to
the search of eight polynomials (A1, . . . ,A4,B1, . . . ,B4) such that

A1 p1
′+A2 p2

′+A3x′+A4y′ = B1
.p1 +B2

.p2 +B3
.x+B4

.y. (3.3)

This equation is a syzygy of the equations of motion, and the solution of this equation is the
starting point of the method of syzygies.

Once calculated F and G the next step is to guess the form of the control matrix M whose
characteristic polynomial is s(u) (see Theorem 2.3). It seems natural to look first for the entries of
the control matrix, m1, m2, m3 and m4, as linear functions in F and G:

m1 = α0 +α1 F +α2 G

m2 = β0 +β1 F +β2 G

m3 = γ0 + γ1 F + γ2 G

m4 = δ0 +δ1 F +δ2 G

(3.4)

where the α,β ,γ and δ are constants of the motion. Let’s see how the method works with the simple
example a = b = 0.

4. The degenerate case a = b = 0

Replacing a = b = 0 in equations (1.1) we obtain the simplified Hamiltonians

h1 =
1
2
(p2

1 + p2
2)+

1
8

ω
(
4x2 + y2)− 1

2
x4− 3

8
x2y2− 1

32
y4

h2 =
(
8p2 (p1y− p2x)− xy4−2x3y2 +2ωxy2)2

(4.1)

and the system can be simplified further in this way:

h1 =
1
2
(p2

1 + p2
2)+

1
8

ω
(
4x2 + y2)− 1

2
x4− 3

8
x2y2− 1

32
y4

h2 =8p2 (p1y− p2x)− xy4−2x3y2 +2ωxy2
(4.2)

This system can be easily separated in several ways but we choose here to apply the method of
the KCs for a double reason: first it gives us the opportunity the show how the method works in a
very simple situation; second it provides the form of the functions F and G that will be generalized
in (4.5) and, successively, in (5.3).
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The canonical equations can be written in this form

.p1 =
1
4

x
(
8x2 +3y2−4ω

)
.p2 =

1
8

y
(
6x2 + y2−2ω

)
.x = p1
.y = p2

and

p′1 = y4 +
(
6x2−2ω

)
y2 +8 p2

2

p′2 = 4xy3 +
(
4x3−4ω x

)
y−8 p2 p1

x′ = 8 p2y

y′ = −16xp2 +8yp1

The syzygy of the equations of motion is easy to find:

x′ = 8p2y = 8y .y = (4y2)
.

which is equation (3.1) with

F = x G = 4y2

The syzygy left us with two fundamental functions verifying the condition F ′ =
.

G.
The next step is to guess the form of the control matrix M. To this purpose, we make use of the

linear conjecture and assume that the entries of the matrix have a linear expression in F and G.a

Replacing now (3.4) into equations (2.1) one finds, for example, this simple solution:

α0 = 0 α1 = 2 α2 = 0
β0 = 1/8 β1 = 0 β2 = 0
γ0 = 0 γ1 = 0 γ2 = 2
δ0 = 0 δ1 = 0 δ2 = 0

which gives us the control matrix

M =

(
2F 1/8
2G 0

)
(4.3)

According to Theorem 2.3, the eigenvalues of M are the separation coordinates of our problem:

x±
√

x2 + y2. (4.4)

aIf a solution can not be found under this hypothesis one has, of course, to look for more complicated expressions. For
instance quadratic functions.
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Remark 4.1. We can eventually complete these coordinates in a canonical transformation:

X = x+
√

x2 + y2

Y = x−
√

x2 + y2

P1 =
p2
√

x2 + y2− p2x+ p1y
2y

P2 =
−p2

√
x2 + y2− p2x+ p1y

2y

In order to get useful informations for the case b = 0 (see next section), let’s see how our
functions F and G have to be modified to solve problem (4.1). The only difference in the equations
of motion is that the coordinates of the vector field Xh2 are now multiplied by the constant factor

2(8p2 (p1y− p2x)− xy4−2x3y2 +2ω xy2).

The form of equation (3.2) suggests to divide F by the same constant factor. After adjusting the
numerical coefficients, our functions take the form

F =
x

8p2 (p1y− p2x)− xy4−2x3y2 +2ω xy2

G = 8y2
(4.5)

These functions still verify equation F ′ =
.

G where the derivatives are now calculated with
respect to the flows of the Hamiltonians in (4.1). Instead of proceeding as before with the linear
conjecture it seems easier, in this case, to find a quadratic solution of (2.1).b This gives us the
following matrix

M =

(
4h2 F2 +G/8 F/8

4h2 F G G/8

)
(4.6)

As before, and according to Theorem 2.3, the eigenvalues of M are the separation coordinates
of our problem:

2x2 + y2±2x
√

x2 + y2 (4.7)

Remark 4.2. The complete canonical transformation is

X = 2x2 + y2 +2x
√

x2 + y2

Y = 2x2 + y2−2x
√

x2 + y2

P1 =
(−2x p2 + y p1)

√
x2 + y2 +2x2 p2− xy p1 + y2 p2

4y3

P2 =
(2x p2− y p1)

√
x2 + y2 +2x2 p2− xy p1 + y2 p2

4y3

bSee the last comment in Remark 7.1.
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5. The degenerate case b = 0

Replacing b = 0 in (1.1) we get:

h1 =
1
2
(p2

1 + p2
2)+

1
8

ω
(
4x2 + y2)− 1

2
x4− 3

8
x2y2− 1

32
y4− a2

2x2

h2 =
(
8p2 (p1y− p2x)− xy4−2x3y2 +2ωxy2)2

+16a2
(

y4−4
p2

2y2

x2

) (5.1)

To find a syzygy from the equations of motion seems quite complicated in this case. Instead,
we’ll take advantage from the form of the functions F and G in (4.5) and we’ll try to generalize
them to the case a 6= 0. We can add a multiple of a to the denominator and try something like:

F =
x+a f2

8p2 (p1y− p2x)− xy4−2x3y2 +2ω xy2 +a f1

G = 8y2 +
ag1

8p2 (p1y− p2x)− xy4−2x3y2 +2ω xy2 +a f1

(5.2)

where f1, f2 and g1 are functions of (p1, p2,x,y). These functions F and G clearly reduce to the
previous ones when a = 0. Writing explicitly equation F ′ =

.
G one finds

f1 =−
8p2y

x
f2 = 0 g1 =−

128y((−xp1 +a)y+2x2 p2)

x

Replacing in F and G and simplifying, we are left with the following functions:

F =− x2

x2y4 +(2x4−2ωx2)y2 +8p2 (−xp1 +a)y+8x2 p2
2

G = 8y2 +
128ay

(
(−xp1 +a)y+2x2 p2

)
x2y4 +(2x4−2ωx2)y2 +8p2 (−xp1 +a)y+8x2 p2

2

(5.3)

With these functions it’s quite hard to solve equations (2.1) (especially if one has to use quadratic
functions in F and G) but here again we can take inspiration from the previous case. It’s easy to
check that the control matrix is here the same as in (4.6):

M =

(
4h2 F2 +G/8 F/8

4h2 F G G/8

)
The eigenvalues of M are separation coordinates for problem (5.1).

6. The generic case

The generic problem has been presented in page 347:

h1 =
1
2
(p2

1 + p2
2)+

1
8

ω
(
4x2 + y2)− 1

2
x4− 3

8
x2y2− 1

32
y4− a2

2x2 −
b2

2y2

h2 =

(
8p2 (p1y− p2x)− xy4−2x3y2 +2ωxy2 +8b2 x

y2

)2

+16a2
(

y4−4
p2

2y2

x2

) (6.1)

The equations are now so complex than any attempts to generalise (5.3) adding unknown func-
tions, as in (5.2), generate equations that Maple cannot solve. We need an easier guess.
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Let’s take a look at h2 and the denominator D of F and G in the previous case b = 0. D contains
all the terms in the first parentheses of h2 multiplied by x:

D = x2y4 +
(
2x4−2ωx2)y2 +8p2 (−xp1 +a)y+8x2 p2

2

h2 =
(
8p2 (p1y− p2x)− xy4−2x3y2 +2ωxy2)2

+16a2
(

y4−4
p2

2y2

x2

)
When we move to the generic problem, the only difference in h2 is the appearance of an extra

term 8b2x/y2 in the first parentheses. The easiest possible guess one can come up with at this stage,
is to add the same term, multiplied by x, to D. After simplification this gives the functions

F =− x2y2

2x4y4 +(y6−2ω y4 +8y2 p22−8b2)x2−8xy3 p1 p2 +8ay3 p2

G = 8y2 +
128ay3

(
(−xp1 +a)y+2x2 p2

)
2x4y4 +(y6−2ω y4 +8y2 p22−8b2)x2−8xy3 p1 p2 +8ay3 p2

Surprisingly enough these functions continue to verify the reduced KC: F ′ =
.

G. A straightfor-
ward calculation proves that even the form of the control matrix is almost the same:

M =

(
4h2 F2 +G/8 F/8

4h2 F G+8192a2 b2 F G/8

)
According to Theorem 2.3 the eigenvalues of M are separation coordinates for the generic prob-

lem.

7. Final remarks

Remark 7.1.
• It is interesting to remark that, from the standpoint of the KCs, the generic problem is simply

a natural generalisation of the degenerate case b = 0. This generalisation is nothing more
than the addition of the term 8b2x2/y2 in the denominator of F and G.
• This example shows, in our opinion, that the method of the KCs is a powerful tool in separat-

ing the coordinates of complex systems. The key-point is the determination of the functions
F and G, solutions of the reduced KC. This goal can be achieved analysing first the equa-
tions of motion in simple degenerate cases for a possible syzygy, and generalising these
solutions to the more complicated cases.
• In order to guess the form of the entries of the control matrix M, one makes use of functions

of F and G (whose coefficients are constants of the motion). The experience suggests that
linear functions are, in general, possible. At least this is the case for all the other Hénon-
Heiles systems that have been separated till now [9]. It would be interesting to know if
such a linear solution exists even for this system. The separation coordinates would result
significantly simplified.
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Remark 7.2. The 1:12:16 system can be written with 4 constants ω, a, b and c [5], in a more
general form than the one used by Conte, Musette and Verhoeven in [3]:

h1 =
1
2
(p2

1 + p2
2) +

1
8

ω
(
4x2 + y2)− 1

2
x4 − 3

8
x2y2 − 1

32
y4 +

c
(
4x2 + y2

)
y6 − a2

2x2 −
b2

2y2

and

h2 =

(
8p2 (yp1− xp2)− xy4−2x3y2 +2ω xy2 +8b2 x

y2 −32
cx
(
2x2 + y2

)
y6

)2

+16a2
(

y4−32
c
y4 −4

p2
2y2

x2

)
This system clearly reduces to (6.1) if c = 0. The functions F and G can be easily modified

adding an extra c-term in the same way we did in Section 6 for the b-term. The functions so obtained
continue to verify the reduced KC but a solution of equations (2.1) seems hard to find either with
linear or quadratic functions.

The 4 constant problem still remains unsolved.
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