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For each complex number ν , an associative symplectic reflection algebra H := H1,ν (I2(2m+1)), based on the
group generated by root system I2(2m+1), has an m-dimensional space of traces and an (m+1)-dimensional
space of supertraces. A (super)trace sp is said to be degenerate if the corresponding bilinear (super)symmetric
form Bsp(x,y) = sp(xy) is degenerate. We find all values of the parameter ν for which either the space of traces
contains a degenerate nonzero trace or the space of supertraces contains a degenerate nonzero supertrace and,
as a consequence, the algebra H has a two-sided ideal of null-vectors. The analogous results for the case
H1,ν1,ν2(I2(2m)) are also presented.

1. Introduction

1.1. Definitions

Let A be an associative Z2-graded algebra with unit and with a parity ε . All expressions of linear
algebra are given for homogenous elements only and are supposed to be extended to inhomogeneous
elements via linearity.

A linear complex-valued function tr on A is called a trace if tr( f g−g f ) = 0 for all f ,g ∈A .
A linear complex-valued function str on A is called a supertrace if str( f g− (−1)ε( f )ε(g)g f ) = 0
for all f ,g ∈A . These two definitions can be unified as follows.

Let κ =±1. A linear complex-valued function sp on A is called κ-trace if
sp( f g−κε( f )ε(g)g f ) = 0 for all f ,g ∈A .

The element K ∈A is called a Klein operator if K2 = 1, ε(K) = 0, and K f = (−1)ε( f ) f K for
any f ∈A . If the algebra A contains Klein operator K, then the linear function f 7→ tr( f Kε( f )+1)

is a supertrace, and the linear function f 7→ str( f Kε( f )+1) is a trace.
Each nonzero (super)trace sp defines the nonzero (super)symmetric bilinear form Bsp( f ,g) :=

sp( f g).
If this bilinear form is degenerate, then the set of its null-vectors is a proper ideal in A . We say

that the (super)trace sp is degenerate if the bilinear form Bsp is degenerate.
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1.2. The goal and structure of the paper

In a number of papers the simplicity (or, alternatively, existence of ideals) of Symplectic Reflection
Algebras or. briefly, SRA (for definition, see [1]) was investigated, see, e.g., [2], [3]. In particular,
it is shown that all SRA with zero parameters of deformation are simple (see [4], [2]).

It follows from [9] and [8] that an associative algebra of observables of the Calogero model with
harmonic term in the potential and with coupling constant ν based on the root system I2(2m+ 1)
(this algebra is SRA H1,ν(I2(2m+ 1))) has an m-dimensional space of the traces and an (m+ 1)-
dimensionsl space of supertraces.

We say that the parameter ν is singular, if the algebra H1,ν(I2(n)) has a degenerate trace or
supertrace.

The goal of this paper is to find all singular values of ν for the algebras H := H1,ν(I2(n)) and to
find corresponding degenerate traces and supertraces for n odd, n = 2m+1; the result is formulated
in Theorem 9.1.

The consideration generalizes [5], where H1,ν(A2)∼= H1,ν(I2(3)) was considered.
The case of n even is considered in [6] and reproduced here in Appendix. It is shown there

that the set of singular values of ν-s consists of four families of parallel complex lines on the
complex plane (ν1, ν2). The results for H1,ν(I2(2m)) generalize the simplest case H1,ν1,ν2(I2(2))∼=
H1,ν1(A1)⊗H1,ν2(A1); the singular values of ν and ideals in H1,ν(A1) were found in [7].

In Sections 2-5 we recall the necessary definitions and prove the preliminary facts. In Section
6, we show that if the κ-trace is degenerate, then its generating functions are integer. In Section 7,
we derive the equations for the generating functions of the κ-trace and solve these equations. The
solutions are meromorphic functions of their parameter t for every value of ν , except degenerate
values, which are found in Section 9.

2. The group I2(n)

Definition 2.1. The group I2(n) is a finite subgroup of the orthogonal group O(2,R) generated by
the root system I2(n).

In this subsection we consider C instead of R2 for convenience.
The root system I2(n) consists of 2n vectors vk = exp( iπk

n ), where k = 0,1, ...,2n−1. The group
I2(n) has 2n elements: n reflections Rk and n rotations Sk. The reflection Rk acts on z∈C as follows:

Rk : z 7→ −z∗v2
k ,

Rk : z∗ 7→ −zv−2
k for k = 0, 1, . . . , n−1, (2.1)

where the generators z := ex + iey and z∗ := ex− iey are used instead of basis unit vectors ex and ey,
the sign ∗ means complex conjugation. The rotations Sk have the form Sk := RkR0 and act on the
generators z and z∗ as follows

Sk : z 7→ zv−2
k ,

Sk : z∗ 7→ z∗v2
k for k = 0, 1, . . . , n−1. (2.2)

The element S0 is the unit in the group I2(n)
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It is easy to see from the formulas (2.1), (2.2) that these elements satisfy the relations

RkRl = Sk−l, SkSl = Sk+l, RkSl = Rk−l, SkRl = Rk+l.

Obviously, if n is even, then the reflections R2k, where k = 0,2, ..., n
2 −1, constitute one conjugacy

class, and the R2k+1 constitute another class. If n is odd, then all the reflections Rk are in the same
conjugacy class.

The rotations Sk and Sl constitute a conjugacy class if k+ l = n.
Let

λ := exp
(

2πi
n

)
. (2.3)

In the basis z, z∗, matrices Rk and Sk have the form

Rk =

(
0 −λ−k

−λ k 0

)
, Sk =

(
λ−k 0

0 λ k

)
. (2.4)

Let

G := C[I2(n)] (2.5)

be the group algebra of the group I2(n). In G, it is convenient to introduce the following basis

Lp :=
1
n

n−1

∑
k=0

λ
kpRk, Qp :=

1
n

n−1

∑
k=0

λ
−kpSk. (2.6)

In what follows, we consider only the case of n odd, n = 2m+1.
The result for n even from [6] is reproduced in Appendix. The main differences between odd

and even n are as follows:
n even: the algebra H1,ν(I2(2m)) depends on two complex parameters ν ; the algebra

H1,ν(I2(2m)) contains the Klein operator and so the space of traces and the space of supertraces
are isomorphic;

n odd: the algebra H1,ν(I2(2m+1)) depends on one complex parameter ν , the space of traces is
an m-dimensional, the space of supertraces is an (m+1)-dimensional.

3. Symplectic reflection algebra H1,ν(I2(2m+1))

Let n be odd, n = 2m+1, and λ = exp
(2πi

n

)
.

Let V := C4 with symplectic form ω:

ω =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 . (3.1)

The Coxeter group I2(n) may be embedded in the group Sp(4,C), which preserves the form ω ,
as follows: let x∈V , x=∑i eixi, where the vectors ei constitute a basis in V , xi ∈C, and let g∈ I2(n).
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Then

g(x) = ∑
i, j

eigi
jx

j (3.2)

and

(Rk)
i
j =


0 −λ−k

−λ k 0
0

0 0 −λ k

−λ−k 0

 , (Sk)
i
j =


λ−k 0

0 λ k 0

0 λ k 0
0 λ−k

 . (3.3)

In this representation, rk(Rk−1) = 2, so the elements Rk are symplectic reflections. They gen-
erate the group I2(n).

Let

ωk := ω|Im(Rk−1). (3.4)

Following [1], we define H1,ν(I2(2m+1)):

Definition 3.1. The symplectic reflection algebra H := H1,ν(I2(2m+1)) is the associative algebra
TV oC[I2(2m+ 1)] of polynomials in the generators ei, where i = 1, ...,4, with coefficients in G
satisfying the relations

Rkx = Rk(x)Rk, Skx = Sk(x)Sk,

[x, y] = ω(x,y)+2
n−1

∑
k=0

νωk(x,y)Rk

for any x,y ∈V .
In what follows, we set

a0 := e1, b0 := e2, b1 := e3, a1 := e4, (3.5)

and Definition 3.1 reads as

Definition 3.2. The symplectic reflection algebra H := H1,ν(I2(2m+1)) is the associative algebra
of polynomials in the generators aα and bα , where α = 0,1, with coefficients in G (see Eq. (2.5)),
satisfying the relations

Rkaα =−λ
kbαRk, Rkbα =−λ

−kaαRk,

Skaα = λ
−kaαSk, Skbα = λ

kbαSk,

[
aα , bβ

]
= ε

αβ (1+nνL0) ,[
aα , aβ

]
= ε

αβ nνL1,[
bα , bβ

]
= ε

αβ nνL−1, (3.6)

where εαβ is the skew-symmetric tensor with ε01 = 1.
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Defining the parity on H by setting

ε(aα) = ε(bα) = 1, ε(Rk) = ε(Sk) = 0,

we turn this algebra into a superalgebra.
Introduce a new parameter of the algebra H :

µ := nν , (3.7)

and rewrite the relations between the generating elements of H and elements of the group algebra
G:

Lpaα =−bαLp+1, Lpbα =−aαLp−1,

Qpaα = aαQp+1, Qpbα = bαQp−1, (3.8)

LkLl = δk+lQl, LkQl = δk−lLl,

QkLl = δk+lLl, QkQl = δk−lQl, where δk := δk0,

[
aα , bβ

]
= εαβ (1+µL0) ,[

aα , aβ
]
= εαβ µL1,[

bα , bβ
]
= εαβ µL−1.

4. Subalgebra of singlets

Consider the elementsa T αβ := 1
2({a

α , bβ}+{bα , aβ}) of the algebra H and the inner derivations
they generate:

Dαβ : f 7→
[

f ,T αβ

]
for any f ∈H .

It is easy to verify that the linear span of these derivations is isomorphic to the Lie algebra sl2.

Definition 4.1. A singlet is any element f ∈H such that [ f , T αβ ] = 0 for all α,β . The subalgebra
H0 ⊂H consisting of all singlets of the algebra H is called the subalgebra of singlets.

One can consider the algebra H as an sl2-module and decompose it into the direct sum of
irreducible submodules.

Observe, that any κ-trace is identically zero on all irreducible sl2-submodules of H except
singlets.

Let the skew-symmetric tensor εαβ be normalized so that ε01 = 1. We set

s :=
1
4i ∑

α,β=0,1

(
{aα , bβ}−{bα , aβ}

)
εαβ .

One can prove the following fact:

Proposition 4.1. The subalgebra of singlets H0 of the algebra H is the algebra of polynomials in
the element s with coefficients in the group algebra C[I2(2m+1)].

aHere the brackets {·, ·} denote anticommutator.
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In what follows we need the commutation relations of the singlet s with generators of the algebra
H :

[s, Qp] = [s, Sk] = [T αβ , s] = 0, (4.1)

sLp =−Lps, sRk =−Rks,

(s− iµL0)aα = aα(s+ i+ iµL0).

Theorem 4.1. Let I be a proper ideal in the algebra H , I0 := I
⋂

H0. Then there exist nonzero
polynomials φ 0

k ∈ C[s], where k = 0, ...,n−1, such that I0 is the span over C[s] of the elements

φ
0
k (s)Qk, φ

0
n−kLk, where k = 0, ... , n−1 and φ

0
n := φ

0
0 . (4.2)

Before proving Theorem 4.1, we formulate and prove several propositions.

Proposition 4.2. If I ⊂H is a proper ideal, then I0 = I
⋂

H0 is a proper ideal in H0.

Proof. First, note that I0 6= H0 because I does not contain unit.
Second, to prove that I0 6= 0, we consider a nonzero element g ∈I . The sl2-action on g gen-

erates an invariant subspace F ⊂ I , which can be decomposed into sum of invariant subspaces,
F =

⊕
s F

s, where F s ⊂ I is a direct sum of irreducible sl2-modules of spin s (and dimension
2s+1).

We further consider the highest-weight vector f ∈ F s and the set of elements
{ f Qp | p = 0, ...,n−1}, belonging to the ideal I . Not all these elements are equal to zero because
∑p f Qp = f . Let f Qp 6= 0 and let it be of degree N. We consider the highest-degree part of the
polynomial f Qp, which has the form fQQp + fLLp, where fQ and fL are homogeneous polyno-
mials in aα , bα of degree N. We can assume that fQ 6= 0 (otherwise we can take an element
( fLLp)L−p = fLQ−p 6= 0) and consider the polynomial s f Qp + f Qps' 2s fQQp, where the sign
' is used to denote the equality up to polynomials of lesser degrees.

The highest-degree terms of this polynomial have the form

h :=
2s

∑
l=0

cl(a1)l(b1)2s−ls(N+2)/2−sQp, (4.3)

where N +2 is the degree of the homogeneous polynomial h.
Let ck 6= 0 for some k in Eq. (4.3). Consider the element f̃ := (b0)k(a0)2s−k(s f Qp + f Qps) in

the ideal I and the invariant subspace that it generates under the sl2-action. This subspace contains
a nonvanishing subspace of singlets.

Indeed, let the subscript 0 single out the sl2-singlet part (g)0 from the polynomial g. Then

f̃0 = ((b0)k(a0)2s−kh)0 ' ((b0)k(a0)2s−k
2s

∑
l=0

cl(a1)l(b1)2s−ls(N+2)/2−sQp)0 '

' ck((b0)k(a0)2s−k(a1)k(b1)2s−ks(N+2)/2−sQp)0 ' ck((b0a1)k(a0b1)2s−ks(N+2)/2−sQp)0 '
' (−1)kck(s− t)k(s+ t)2s−ks(N+2)/2−sQp)0,

where t := 1
2(a

0b1 +a1b0). Next, we use the formula (see also [5]) proved in Proposition 4.3:

f̃ (s, t)0 '
1
2

∫ 1

0
( f̃ (s,τs)+ f̃ (s,−τs))dτ, (4.4)
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which implies (since the integrand is positive)

f̃ (s, t)0 ' (−1)k ck

2
s

N+2
2 +sQp

∫ 1

0
((1− τ)k(1+ τ)2s−k +(1+ τ)k(1− τ)2s−k)dt 6= 0. (4.5)

Proposition 4.3. Let t := 1
2(a

0b1 +a1b0) and let f (s, t) be an arbitrary homogeneous polynomial,
then

( f (s, t))0 '
1
2

∫ 1

0
( f (s, τs)+ f (s,−τs))dτ. (4.6)

Proof. To prove (4.6), it is sufficient to consider the case f (s, t) = tk.
Consider the following sequence of obvious equalities

0 =
([

T 11,
[
T 00, tk

]])
0
'
([

T 11, 2kT 00tk−1
])

0
'

'
(
−k(k−1)tk−2T 00T 11−8ktk

)
0
'
(
−4k(k−1)tk−2(t2− s2)−8ktk

)
0

which implies

(
tk
)

0
' s2 k−1

k+1

(
tk−2

)
0
'


1

k+1
sk =

∫ 1

0
(sτ)k dτ if k is even,

0 if k is odd,

Definition 4.2. For each p = 0, ...,2m, we define the ideals Jp and J p in the algebra C[s], by
setting

Jp := { f ∈ C[s] | f (s)Qp ∈I }, J p := { f ∈ C[s] | f (s)Lp ∈I }.

Proposition 4.4. We have Jp = J −p.

Proof. It follows from the identities f (s)QpL−p = f (s)L−p and f (s)L−pLp = f (s)Qp.

Proposition 4.5. We have Jp 6= 0 for any p = 0, ...,2m.

Proof. Let us consider a nonzero element f ∈I0.
By Proposition 4.1, f = ∑p(φp(s)Qp +ψp(s)L−p). Obviously, there exists a p such that either

φp 6= 0 or ψp 6= 0. So, at least one of the elements sQp f +Qp f s = 2sφp(s)Qp ∈ I0 and sQp f −
Qp f s= 2sψp(s)L−p ∈I0 is nonzero. Hence, Jp 6= 0.

Further, we prove that if Jp 6= 0, then Jp+1 6= 0, and therefore Jk 6= 0 for k = 0,1, ...n−1.
Let g ∈Jp, g 6= 0. Then gQp ∈I , and the element g̃ := εαβ bαgQpaβ ∈I is also nonzero.
By relation (3.8), g̃ = εαβ bαgaβ Qp+1, with g̃ ∈I0, and hence g̃ = ∑k(φk(s)Qk +ψk(s)L−k) by

Proposition 4.1. Because 0 6= sg̃Qp+1 + g̃Qp+1s ∈ I0, as can be verified, we have sφp+1(s) 6= 0,
and sφp+1(s)Qp+1 ∈I0, i.e., sφp+1(s) ∈Jp+1 6= 0.

Since C[s] is a principal ideal ring, we have the following statement:
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Corollary 4.1. For any p = 0, ...,2m, there exists a nonzero polynomial φ 0
p ∈ C[s] such that Jp =

φ 0
pC[s].

Theorem 4.1 evidently follows from Corollary 4.1.

5. Generating functions of κ-traces

For each κ-trace sp on H , one can define the following set of generating functions, which allows
one to calculate the κ-trace of arbitrary element in H0 via finding the derivatives of these functions
with respect to parameter t at zero:

Fsp
p (t) := sp(exp(t(s− iµL0))Qp), (5.1)

Ψ
sp
p (t) := sp(exp(ts)Lp),

where p = 0, ...,2m.
Since L0Qp = 0 for any p 6= 0, it follows from the definition Eq. (5.1) that

Fsp
p (t) = sp(exp(ts)Qp) if p 6= 0,

Fsp
0 (t) = sp(exp(t(s− iµL0))Q0).

It is easy to find Ψ
sp
p for p 6= 0. Since sLq =−Lqs for any q = 0, ...,2m, we have

Ψ
sp
q (t) = sp(exp(ts)Lq) = sp(Lq). (5.2)

Next, since sp(Rk) does not depend on k, we have sp(Lp) = 0 for any p 6= 0 and

Ψ
sp
p (t)≡ 0 for any p 6= 0. (5.3)

The value of sp(L0) will be calculated later, in Section 8.
We consider also the functions Φ

sp
p (t) := sp(exp(t(s+ iµL0))Qp). It is easily verified, by

expanding the exponential in a series, that these functions are related with the functions Fsp
p by

the formula

Φ
sp
p (t) = Fsp

p (t)+2i∆sp
p (t),where ∆p(t)sp = δp sin(µt)sp(L0).

The form of generating functions is related with (non)degeneracy of bilinear form Bsp by Propo-
sition 6.1 below.

6. Degeneracy conditions for the κ-trace

Proposition 6.1. Theκ-trace on the algebra H is degenerate if and only if the generating functions
Fsp

p defined by formula (5.1) have the following form

Fsp
p (t) =

jp

∑
j=1

exp(tω j,p)ϕ j,p(t), (6.1)

where ω j,p ∈ C and ϕ j,p ∈ C[t].
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Proof. Sufficiency. Let the functions Fsp
p defined by Eq. (5.1) have the form (6.1).

We introduce the polynomials Dp ∈ C[x] by the formulas

Dp(x) :=
jp

∏
j=1

(x−ω j,p)
1+degϕ j,p for p 6= 0,

D0(x) :=
j0

∏
j=1

(x2−ω
2
j,0)

1+degϕ j,0 .

By definition, these polynomials satisfy the conditions Dp(
d
dt )F

sp
p (t) = 0 for any p. Besides, intro-

duce the polynomial D̃0 by setting

D̃0(x2) = D0(x).

Since the κ-trace sp we consider is non-zero, there exists a p such that Fsp
p 6= 0.

Now, we see that if Fsp
p 6= 0 for some p 6= 0, then the element Dp(s)Qp ∈ H is

a null-vector of the bilinear form Bsp; we also see that if Fsp
0 6= 0, then the element

D̂(s)Q0 := s2D̃0(s
2−µ2)Q0 ∈H is a null-vector of the bilinear form Bsp.

Indeed, if f ∈H belongs to a nonsinglet irreducible sl2-module, then sp(Dp(s)Qp f ) = 0 for
any p 6= 0 and sp(D̂0(s)Q0 f ) = 0. If f ∈H0, then f =∑q( fq(s)Qq+gq(s)Lq) and, taking in account
Eq. (5.3),

sp(Dp(s)Qp f ) = sp(Dp(s)Qp fp) = fp

(
d
dt

)
Dp

(
d
dt

)
Fsp

p |t=0 = 0 for p 6= 0.

Further, let us decompose the polynomial f0 in the sum of even and odd polynomials:

f0(s) = f+0 (s2)+ s f−0 (s2).

Since sp(skQ0) = 0 when k is oddb, since

sp(s2D̃0(s
2−µ

2)Q0g0L0) = 0

and

d2

dt2 exp(t(s− iµL0)) = exp(t(s− iµL0))(s
2−µ

2Q0),

it follows that

sp(s2D̃0(s
2−µ

2)Q0 f ) = sp(s2D̃0(s
2−µ

2)Q0 f+0 (s2)) =

= (
d2

dt2 +µ
2) f+0 (

d2

dt2 +µ
2) D̃0(

d2

dt2 )F0(t)|t=0 =

= (
d2

dt2 +µ
2) f+0 (

d2

dt2 +µ
2)D0(

d
dt
)F0(t)|t=0 = 0.

Thus, the sufficiency of Proposition 6.1 is proved.

bIndeed,
sp(skQ0) = sp(skL0L0) = sp(L0s

kL0) = sp((−1)kskL0L0) = sp((−1)kskQ0).

.
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Necessity. We now prove that if theκ-trace is degenerate, then there exist polynomials Dp ∈C[x]
such that Dp(

d
dt )Fp(t) = 0 for p = 0, ...,2m, and therefore the generating functions Fp have the form

(6.1).
Let an ideal I ⊂H consist of null-vectors of the bilinear form Bsp. Then I0 consists of singlet

null-vectors, and the vectors φ 0
k (s)Qk and φ 0

k (s)L2m+1−k defined by the conditions of Theorem 4.1
generate an ideal I0 in H0.

Let p 6= 0. Then

0≡ sp(φ 0
p(s)QpetsQp) = φ

0
p

(
d
dt

)
Fp(t)

and, therefore, the function Fp has the form (6.1).
Further,

we consider the null-vector φ(s2)Q0 of the bilinear form Bsp, where φ(s2) := φ 0
0 (s)φ

0
0 (−s). We

note that

d2

dt2 F0 = sp
(

et(s−iµL0)(s− iµL0)
2Q0

)
= sp

(
et(s−iµL0)(s2−µ

2)Q0

)
,

hence

sp
(

et(s−iµL0)s2Q0

)
=

(
d2

dt2 +µ
2
)

F0

and

0≡ sp
(

et(s−iµL0)φ
0
0 (s)φ

0
0 (−s)Q0

)
= sp

(
et(s−iµL0)φ(s2)Q0

)
= φ

(
d2

dt2 +µ
2
)

F0(t),

i.e., the function F0 also has the form (6.1).

7. Equations for the generating functions Fsp
p

Let us differentiate the generating function Fsp
p :

d
dt

Fsp
p (t) = sp

(
et(s−iµL0)(s− iµL0)Qp

)
= sp

(
et(s−iµL0)(−iaα

εαβ bβ + i)Qp

)
.

The second equality here holds because

s=−iaα
εαβ bβ + i(1+µL0).

Next,

sp
(

et(s−iµL0)(−iaα
εαβ bβ )Qp

)
= sp

(
aαet(s+iµL0)(−iεαβ bβ )Qp

)
=

= κsp
(

et(s+i+iµL0)(−iεαβ bβ aα)Qp+1

)
= κsp

(
et(s+i+iµL0)(s+ i+ iµL0)Qp+1

)
=

= κ
d
dt

(
eit

Φp+1(t)
)
.

Thus, we obtain a system of differential equations for the generating functions:

d
dt

Fsp
p −κeit d

dt
Fsp

p+1 = iFsp
p +κieitFsp

p+1 +2κi
d
dt

(
eit

∆
sp
p+1

)
. (7.1)
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The initial conditions for this system are:

Fsp
p (0) = sp(Qp).

To solve the system (7.1), we consider its Fourier transform. Let

λ := e2πi/(2m+1),

Gsp
k :=

2m

∑
p=0

λ
kpFsp

p , where k = 0, ...,2m, (7.2)

∆̃
sp
k :=

2m

∑
p=0

λ
kp

∆
sp
p+1 = λ

−k (sin(µt)sp(L0)) , where k = 0, ...,2m.

For the functions Gsp
k , we then obtain the equations

d
dt

Gsp
k = i

λ k +κeit

λ k−κeit Gsp
k +

2iκλ k

λ k−κeit
d
dt

(
eit

∆̃
sp
k

)
(7.3)

with the initial conditions

Gsp
k (0) = sp(Sk). (7.4)

We choose the solution of the system (7.3) in the form:

Gsp
k (t) =

κeit

(κeit −λ k)2 λ
kgsp

k (t), (7.5)

where

gsp
k (t) =

(
2
µ
(cos(tµ)−1)+2iλ−k(λ k−κeit)sin(tµ)

)
sp(L0)+κλ

−k(κ−λ
k)2sp(Sk). (7.6)

Evidently, this solution satisfies initial condition (7.4) for each κ and k, except for the case
κ =+1 and k = 0.

If κ =+1 and k = 0, then the expression Eq. (7.5) for Gtr
0 has a removable singularity at t = 0.

In this case, we consider the condition limt→0 Gtr
0 (t) = tr(S0) instead of Gtr

0 (0) = tr(S0).
When κ =+1 the solution (7.5) – (7.6) gives

Gtr
0 (t) =

eit

(eit −1)2

(
2
µ
(cos(tµ)−1)+2i(1− eit)sin(tµ)

)
tr(L0) (7.7)

and one can easily see that

lim
t→0

Gtr
0 (t) =−µtr(L0). (7.8)

It is shown in Subsection 8.1 using Ground Level Conditions, that if κ =+1, then

tr(S0) =−µtr(L0) (7.9)

for any trace tr on H .
So, Gtr

0 (t) satisfies the initial conditions (7.4) also.
For the case κ=−1, the κ-trace is a supertrace (see [9]). In this case, the m+1 values str(Sk) =

str(S2m+1−k) for k = 0, ...,m completely define the supertrace on H (see [8]).
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For the case κ = +1, the κ-trace is a trace (see [9]). In this case, the m values
tr(Sk) = tr(S2m+1−k) for k = 1, ...,m completely define the trace on H (see [8]). The value tr(S0)

linearly depends on parameters tr(Sk), where k = 1, ...,m, and it is found in Subsection 8.1 (see Eqs.
(8.7) – (8.8)).

8. Values of the κ-trace on C[I2(2m+1)]

To use the generating functions (7.5), we need to express the values sp(Sk) and sp(L0) via some
independent parameters which completely define κ-trace.

The results are different for traces (κ = +1) and for supertraces (κ = −1). First, we express
sp(L0) via sp(Sk) = sp(S2m+1−k), where k = 1 , ... , m if κ =+1 and k = 0, 1 , ... , m if κ =−1.

Let

cα
k := aα −κλ

kb, so Rkcα
k = κcα

k Rk. (8.1)

We consider the chain of equalities

sp(c0
kc1

kRk) = κsp(c1
kRkc0

k) = κ
2sp(c1

kc0
kRk), (8.2)

which results in

sp([c0
k , c1

k ]Rk) = 0. (8.3)

The conditions like (8.3) are called Ground Level Conditions in [10], [9]. It follows from (8.3) that

−2λ
kκsp

(
Rk−

µ

2
κ(λ−kL1−2κL0 +λ

kL−1)Rk)
)
= 0,

which gives

sp(Rk) =−
2µ

2m+1

(
1+κ

2
X sp +

1−κ
2

Y sp
)
, (8.4)

where

X sp :=
2m

∑
r=1

sin2
(

πr
2m+1

)
sp(Sr), (8.5)

Y sp :=
2m

∑
r=0

cos2
(

πr
2m+1

)
sp(Sr). (8.6)

Below we consider these values for the traces and supertraces separately.

8.1. Values of the traces on C[I2(2m+1)]

The group I2(2m+1) has m conjugacy classes without the eigenvalue +1 in the spectrum:

{Sp,S2m+1−p}, where p = 1, ...,m.

By Theorem 2.3 in [9], the values of the trace on these conjugacy classes

sk := tr(Sk), where s2m+1−k = sk, k = 1, ...,m,

are arbitrary and completely define the trace on the algebra H , and therefore the dimension of the
space of traces is m.
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Further, the group I2(2m+1) has one conjugacy class with one eigenvalue +1 in its spectrum:

{R1, ... , R2m+1}.

The value of tr(Rk) is expressed via sk by formula (8.4).
Besides, the group I2(2m+1) has one conjugacy class with two eigenvalues +1 in its spectrum:

{S0}.
The traces on conjugacy classes with two eigenvalues +1 in the spectrum can also be calculated

using Ground Level Conditions (see [9]):

tr([a0, b1]S0) = 0,

which gives

tr(S0) = 2ν
2(2m+1)X tr, (8.7)

where

X tr :=
2m

∑
l=1

sl sin2
(

2πl
2m+1

)
. (8.8)

We also note that

tr(L0) =−
2µ

2m+1
X tr, tr(Lp) = 0 for p 6= 0, tr(S0) =−µtr(L0).

8.2. Values of the supertraces on C[I2(2m+1)]

The group I2(2m+1) has m+1 conjugacy classes without the eigenvalue −1 in the spectrum:

{S0}, {Sp,S2m+1−p}, where p = 1, ...,m.

By Theorem 2.3 in [9], the values of the supertrace on these conjugacy classes

uk := str(Sk) = str(S2m+1−k), where k = 0, ...,m,

are arbitrary parameters that completely define the supertrace str on the algebra H , and therefore
the dimension of the space of supertraces is m+1.

Besides, the group I2(2m+1) has one conjugacy class with one eigenvalue −1 in the spectrum:

{R1, ... , R2m+1}.

The supertraces of the conjugacy class with eigenvalue −1 in its spectrum are calculated via
Ground Level Conditions in Section 8. These conditions give

str(Rk) =−2νY str, k = 0,1, ...,2m,

where

Y str :=
2m

∑
r=0

ur cos2
(

πr
2m+1

)
.
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9. Singular values of the parameter µ

We now find the values of the parameter µ for which there exists a nonzero κ-trace sp, i.e., the
values sp(Sk) such that the the generating functions Fp (5.1) have the form (6.1). Since the functions
Gk (7.2) are linear combinations of the functions Fp, and vice versa, the algebra H has a degenerate
κ-trace if and only if the functions Gk (7.2) have the form (6.1) also.

In particular, it is necessary that the numerator of the expression (7.5) contains all the zeros of
the denominator of the expression.

The denominator of the function Gk is equal to

(eit −κλ
k)2

and has doubled zeros at

tk,l =
2π

n
k+2πl +πθ , where l = 0,±1,±2, ...

and

θ =

{
0 if κ = 1
1 if κ =−1.

(9.1)

It is easy to check that d
dt gsp

k (tk,lk) = 0 for each k = 0, ...,2m and each integer lk.
The equalities gsp

k (tk,lk) = 0 can be considered as a system of linear equations for the values
tr(Sk) = tr(Sn−k), where k = 1, ...,2m if κ = 1, and for the values str(Sk) = str(Sn−k), where k =

0, ... , n if κ =−1:

gsp
k (tk, lk) =

2
µ
(cos(tk, lk µ)−1)sp(L0)+κλ

−k(κ−λ
k)2sp(Sk) = 0. (9.2)

Our goal is to find the µ for which the system (9.2) has nonzero solutions.
Note that sp(L0) 6= 0 otherwise the κ-trace would be zero. We consider the subsystem of two

equations with lk = 0:

2
µ
(cos((

2πk
n

+πθ)µ)−1)sp(L0)+κλ
−k(κ−λ

k)2sp(Sk) = 0, (9.3)

2
µ
(cos((

2π(n− k)
n

+πθ)µ)−1)sp(L0)+κλ
k−n(κ−λ

n−k)2sp(Sn−k) = 0. (9.4)

Since κ(κ−λ k)2

λ k = κ(κ−λ n−k)2

λ n−k and sp(Sn−k) = sp(Sk), it follows that Eqs. (9.3) – (9.4) imply that

cos((
2πk

n
+πθ)µ)− cos((

2π(n− k)
n

+πθ)µ) = 0 (9.5)

or

sin(πµ(1+θ))sin(
2k−n

n
πµ) = 0. (9.6)

Eq. (9.6) implies that

µ =
z

1+θ
, where z ∈ Z. (9.7)

Next, we consider the two cases separately:
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A) µ ∈ Z, κ =±1,
B) µ = z+ 1

2 , where z ∈ Z, κ =−1.
In the case A), we note that Eq. (9.2) gives for µ integer:

0 =
n−1

∑
k=0

gsp
k (tk, lk) =

2
µ

n−1

∑
k=0

cos(
2kπ

n
µ)(−1)θ µsp(L0). (9.8)

Since sp(L0) 6= 0, Eq. (9.8) gives the following restriction on the integer µ:

n−1

∑
k=0

cos(
2kπ

n
µ) = 0, (9.9)

i.e.,

µ ∈ Z\nZ. (9.10)

Now consider the case B), i.e., κ = −1, θ = 1, µ = z+ 1
2 , where z ∈ Z. Namely, consider the

following two equations of the system (9.2):

gstr
k (tk,0) =

2
µ
(cos(

2πkz
n

+
πk
n

+πz+
π

2
)−1)sp(L0)−

(1+λ k)2

λ k str(Sk) = 0,

gstr
k (tk,1) =

2
µ
(cos(

2πkz
n

+
πk
n

+πz+
π

2
+π)−1)sp(L0)−

(1+λ k)2

λ k str(Sk) = 0,

which give

cos(
2πkz

n
+

πk
n

+πz+
π

2
) = 0 (9.11)

or

2z+1 = nr for some odd r, or µ =
nr
2

. (9.12)

One easily checks that for every µ found, the system (9.2) does not depend on lk and so has a
nonzero solution.

Thus, we have proved the following theorem:

Theorem 9.1. Let m ∈ Z, m > 1 and n = 2m+1. Then
1) The associative algebra H1,ν(I2(n)) has a 1-parametric set of nonzero traces trz such that

the symmetric invariant bilinear form Btrz(x,y) = tr(xy) is degenerate if and only if ν = z
n , where

z ∈ Z\nZ. These traces are completely defined by their values on Sk for k = 1, . . . ,m:

trz(Sk) =
τ

nsin2(πk
n )

(1− cos(
2πkz

n
)), where τ ∈ C, τ 6= 0. (9.13)

2) The associative superalgebra H1,ν(I2(n)) has a 1-parametric set of nonzero supertraces strz

such that the supersymmetric invariant bilinear form Bstrz(x,y) = str(xy) is degenerate if ν = z
n ,

where z ∈ Z\nZ. These supertraces are completely defined by their values on Sk for k = 0, . . . ,m:

strz(Sk) =
τ

ncos2(πk
n )

(1− (−1)z cos(
2πkz

n
)), where τ ∈ C, τ 6= 0. (9.14)

3) The associative superalgebra H1,ν(I2(n)) has a 1-parametric set of nonzero supertraces str1/2
such that the supersymmetric invariant bilinear form Bstr1/2(x,y) = str1/2(xy) is degenerate if ν =
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z+ 1
2 , where z ∈ Z. These supertraces are completely defined by their values on Sk for k = 0, . . . ,m:

str1/2(Sk) =
τ

ncos2(πk
n )

, where τ ∈ C, τ 6= 0. (9.15)

4) For all other values of ν , all nonzero traces and supertraces are nondegenerate.

Remark 9.1. Theorem 9.1 implies that if z ∈ Z \ nZ, then the trace (9.13) generates the ideal
Itrz consisting of null-vectors of the degenerate form Btrz(x,y) = trz(xy), and simultaneously
the supertrace (9.14) generates the ideal Istrz consisting of null-vectors of the degenerate form
Bstrz(x,y) = strz(xy). A question arises: is it true that Itrz = Istrz?

Conjecture 9.1. Itrz = Istrz .

Our observation, that the set of coefficients ω j,p in Eq. (6.1) for F trz
p is the same as for Fstrz

p , is
an argument in favor of this conjecture.
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Appendix A. The case H1,ν1,ν2(I2(n)) with n even

Here we, following [6], briefly describe the degenerate traces generating the ideals in the Symplectic
Reflection Algebra H1,ν1,ν2(I2(2m)).

This algebra has two complex parameters; for every value of these parameters the algebra has
an m-dimensional space of traces and, due to presence of the Klein operator, the isomorphic space
of supertraces.

A.1. The group I2(2m)

Definition A.1. The group I2(2m) is a finite subgroup of O(2,R), generated by the root system
I2(2m). It consists of 2m reflections Rk, acting on z ∈ C as follows

Rkz =−z∗v2
kRk, k = 0, ..., 2m−1 (A.1)

and 2m rotations Sk := RkR0, where S0 is the unit in I2(2m) and Sm is the Klein operator. As we see
from (A.1), these elements satisfy the relations

RkRl = Sk−l, SkSl = Sk+l, RkSl = Rk−l, SkRl = Rk+l.

Evidently, the R2k belong to one conjugacy class and the R2k+1 belong to another class. The
rotations Sk and Sl constitute a conjugacy class if k+ l = 2m.
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Definition A.2.

Lp :=
1
n

2m−1

∑
k=0

λ
kpRk, Qp :=

1
n

2m−1

∑
k=0

λ
−kpSk, (A.2)

where λ = exp
(

πi
m

)
.

A.2. Symplectic reflection algebra H1,ν0,ν1(I2(2m))

Definition A.3. The symplectic reflection algebra H := H1,ν0,ν1(I2(2m)) is an associative algebra
of polynomials in aα ,bα , where α = 0,1, with coefficients in C[I2(2m)], satisfying the relations

Rkaα =−λ
kbαRk, Rkbα =−λ

−kaαRk,

Skaα = λ
−kaαSk, Skbα = λ

kbαSk,

Lpaα =−bαLp+1, Lpbα =−aαLp−1,

Qpaα = aαQp+1, Qpbα = bαQp−1, (A.3)

LkLl = δk+lQl, LkQl = δk−lLl,

QkLl = δk+lLl, QkQl = δk−lQl, where δk := δk0,

[
aα , bβ

]
= εαβ (1+µ0L0 +µ1Lm) ,[

aα , aβ
]
= εαβ (µ0L1 +µ1Lm+1) ,[

bα , bβ
]
= εαβ (µ0L−1 +µ1Lm−1) ,

where εαβ is the skew-symmetric tensor with ε01 = 1 and

µ0 := m(ν0 +ν1), µ1 := m(ν0−ν1). (A.4)

The basis elements of Lie algebra sl2 of inner derivations T αβ := 1
2({a

α , bβ}+ {bα , aβ}) act
on H as follows

f 7→
[

f ,T αβ

]
for each f ∈H .

Let the skew-symmetric tensor εαβ be such that ε01 = 1. Set

s := ∑
α,β=0,1

1
4i
({aα , bβ}−{bα , aβ})εαβ .

Then

[s, Qp] = [s, Sk] = [T αβ , s] = 0,

sLp =−Lps, sRk =−Rks,

(s− i(µ0L0 +µ1Lm))aα = aα(s+ i+ i(µ0L0 +µ1Lm)).
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A.3. The values of the trace on C[I2(2m)]

The group I2(2m) has m conjugacy classes without the eigenvalue +1 in their spectra:

{Sp,Sn−p}, where p = 1, ...,m−1, and also {Sm}.

Due to Theorem 2.3 in [9], the values of the trace on these conjugacy classes

sk := tr(Sk), where s2m−k = sk, k = 1, ...,m, (A.5)

completely define the trace on H , and therefore the dimension of the space of traces is equal to m.
The group I2(2m) has two conjugacy classes each having one eigenvalue +1 in its spectrum:

{R2l | l = 0, ...,m−1}, {R2l+1 | l = 0, ...,m−1},

and one conjugacy class with two eigenvalues +1 in its spectrum: {S0}.
The traces on these conjugacy classes are calculated via Ground Level Conditions [9]:

tr([c0
k , c1

k ]Rk) = 0, where cα
k := aα −λ

kbα are eigenvectors of Rk, Rkcα
k = cα

k Rk,

tr([a0, b1]S0) = 0

and are equal to

tr(R2l) = −2ν2X1−2ν1X2,

tr(R2l+1) = −2ν1X1−2ν2X2, (A.6)

l = 0,1, ...,m−1,

tr(S0) = 2(ν2
1 +ν

2
2 )mX1 +4ν1ν2mX2, (A.7)

where

X1 :=
m−1

∑
l=1

s2l sin2
(

πl
m

)
,

X2 :=
m−1

∑
l=0

s2l+1 sin2
(

π(2l +1)
2m

)
.

We note also that

tr(L0) =−
µ0

m
(X1 +X2), tr(Lm) =−

µ1

m
(X1−X2), tr(Lp) = 0 for p 6= 0, m,

tr(S0) =−µ0tr(L0)−µ1tr(Lm).

A.4. Generating functions of the trace

Set L := µ0L0 +µ1Lm.
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For each trace tr, we define the following set of generating functions on H :

Fp(t) := tr(exp(t(s− iL ))Qp), (A.8)

Ψp(t) := tr(exp(ts)Lp),

where p = 0, ...,2m−1. From sLp =−Lps and definition of the trace it follows that

Ψp(t) = Ψp(0).

We also consider the functions Φp(t) := tr(exp(t(s+ iL ))Qp) related with the functions Fp by the
formula

Φp(t) = Fp(t)+2i∆p(t),where ∆p(t) = δp sin(µ0t)tr(L0)+δm−p sin(µ1t)tr(Lm).

Analogously to our previous consideration, one can get the following system of equations

d
dt

Fp− eit d
dt

Fp+1 = iFp + ieitFp+1 +2i
d
dt

(
eit

∆p+1
)
. (A.9)

Next, we consider the Fourier transform of (A.9), namely, we consider

Gk :=
2m−1

∑
p=0

λ
kpFp, where k = 0, ...,2m−1,

∆̃k :=
2m−1

∑
p=0

λ
kp

∆p+1 = λ
−k
(

sin(µ0t)tr(L0)+λ
km sin(µ1t)tr(Lm)

)
,

where k = 0, ...,2m−1 and λ := eiπ/m,

and obtain the system of equation

d
dt

Gk = i
λ k + eit

λ k− eit Gk +
2i

λ k− eit
d
dt

(
eit

∆̃k

)
with initial conditions

Gk(0) = sk, where k = 0, ...,2m−1, (A.10)

and where the sk are defined by Eq. (A.5) for k = 1, ..., 2m− 1 and s0 := tr(S0) is defined by Eq.
(A.7). The value s0 depends linearly on sk, where k = 1, ...,m (see Eq. (A.7) and take into account
the relations sk = s2m−k).

The solution of the equations for Gk has the form:

Gk(t) =
eit fk(t)

(eit −λ k)2 , (A.11)

where

fk(t) =
2λ k

m
X+[1− cos(tµ0)]+(−1)k 2λ k

m
X−[1− cos(tµ1)]+(1−λ

k)2sk +

+
2i
m
(eit −λ

k)[µ0X+ sin(tµ0)+(−1)k
µ1X− sin(tµ1)], (A.12)

and where X± := X1±X2.
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The following proposition is analogous to Proposition 6.1 but its proof is slightly more difficult:

Proposition A.1. The trace on the algebra H is degenerate if and only if the generating functions
F tr

p defined by formula (A.8) have the following form

F tr
p (t) =

jp

∑
j=1

exp(tω j,p)ϕ j,p(t), (A.13)

where ω j,p ∈ C and ϕ j,p ∈ C[t].

A.5. The degeneracy conditions for the trace

We now find the values of the parameters µ0 and µ1 for which there exists a nonzero trace tr, (i.e.,
the values sk (A.5), not all zero) such that the generating functions (A.11) are of the form (6.1).
Obviously, it is necessary that the numerator of Eq. (A.11) contains all zeros of the denominator of
this expression. The denominator of Gk vanishes at the points

tk,l =
π

m
k+2πl, where l = 0,±1,±2, ...

It so happens that it is sufficient to consider only the points tk,0.
Set

s′k := sk sin2
(

πk
2m

)
, k = 1, ...,2m−1, s′0 = 0.

Then the system of linear equations for s′k has the form(
1− cos

(
π

m
kµ0

))
X++(−1)k

(
1− cos

(
π

m
kµ1

))
X− = 2ms′k, k = 1, ...,2m−1, (A.14)

s′2m−r = s′r, r = 1, ...,m, (A.15)

X± = X1±X2, (A.16)

X1 = ∑
1≤l≤m−1

s′2l, (A.17)

X2 = ∑
0≤l≤m−1

s′2l+1, (A.18)

and the parameters µ0 and µ1 are defined from the condition that this system has a nonzero solution.
Eqs. (A.14) – (A.18) imply that the dimension of the space of solutions is 62 and we can take

the values X1 and X2 as parameters determining the solutions.

Theorem A.1. Let m > 2. Then the system of equations (A.14)-(A.18) has nonzero solutions at the
following values of the parameters µ0 and µ1 only:

µ0 ∈ Z�mZ, µ1 ∈ Z�mZ, (A.19)

µ0 ∈ Z�mZ, any µ1, (A.20)

µ1 ∈ Z�mZ, any µ0, (A.21)

µ0 =±µ1 +m(2l +1), l = 0,±1,±2, ... (A.22)

Here,

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

424



S.E. Konstein and I.V. Tyutin / Ideals generated by traces or by supertraces

1. In case (A.19), the system of equations (A.14)-(A.18) has a 2-parametric family of solutions;
2. In case (A.20), if µ1 /∈ Z�mZ, then the system of equations (A.14)-(A.18) has a 1-parametric

family of solutions with X− = 0,
3. In case (A.21), if µ0 /∈ Z�mZ, then the system of equations (A.14)-(A.18) has a 1-parametric

family of solutions with X+ = 0,
4. In case (A.22), if µ0,µ1 /∈ Z�mZ, then the system of equations (A.14)-(A.18) has a 1-

parametric family of solutions with X1 = 0.

Remark A.1. Theorem A.5 is proved for m > 2, nevertheless it describes also the case m = 1
correctly.

If m = 1, then the cases (A.19) – (A.21) disappear, and the case (A.22) shows that

at least one of ν1 and ν2 is half-integer. (A.23)

Because H1,ν1,ν2(I2(2))∼= H1,ν1(A1)⊗H1,ν2(A1), the statement (A.23) follows also from [7], where
the singular values of ν and ideals in H1,ν(A1) were found.
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