```
Journal of
NONLINEAR
PHYSICS
```

Norbert Euler Journal of Nonlinearmathematical Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251
Journal Home Page: https://www.atlantis-press.com/journals/jnmp

Ideals generated by traces or by supertraces in the symplectic reflection algebra $H_{1, v}\left(I_{2}(2 m+1)\right)$

S.E. Konstein, I.V. Tyutin

To cite this article: S.E. Konstein, I.V. Tyutin (2017) Ideals generated by traces or by supertraces in the symplectic reflection algebra $H_{1, v}\left(I_{2}(2 m+1)\right)$, Journal of Nonlinear Mathematical Physics 24:3, 405-425, DOI:
https://doi.org/10.1080/14029251.2017.1341702
To link to this article: https://doi.org/10.1080/14029251.2017.1341702

Published online: 04 January 2021

Ideals generated by traces or by supertraces in the symplectic reflection algebra

$$
H_{1, v}\left(I_{2}(2 m+1)\right)
$$

S.E. Konstein
I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninsky prosp. 53, Moscow 119991, Russia konstein@lpi.ru
I.V. Tyutin
I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninsky prosp. 53, Moscow 119991, Russia
tyutin@lpi.ru

Received 6 January 2017
Accepted 10 May 2017

Abstract

For each complex number v, an associative symplectic reflection algebra $\mathscr{H}:=H_{1, v}\left(I_{2}(2 m+1)\right)$, based on the group generated by root system $I_{2}(2 m+1)$, has an m-dimensional space of traces and an $(m+1)$-dimensional space of supertraces. A (super)trace $s p$ is said to be degenerate if the corresponding bilinear (super)symmetric form $B_{s p}(x, y)=s p(x y)$ is degenerate. We find all values of the parameter v for which either the space of traces contains a degenerate nonzero trace or the space of supertraces contains a degenerate nonzero supertrace and, as a consequence, the algebra \mathscr{H} has a two-sided ideal of null-vectors. The analogous results for the case $H_{1, v_{1}, v_{2}}\left(I_{2}(2 m)\right)$ are also presented.

1. Introduction

1.1. Definitions

Let \mathscr{A} be an associative \mathbb{Z}_{2}-graded algebra with unit and with a parity ε. All expressions of linear algebra are given for homogenous elements only and are supposed to be extended to inhomogeneous elements via linearity.

A linear complex-valued function tr on \mathscr{A} is called a trace if $\operatorname{tr}(f g-g f)=0$ for all $f, g \in \mathscr{A}$. A linear complex-valued function str on \mathscr{A} is called a supertrace if $\operatorname{str}\left(f g-(-1)^{\varepsilon(f) \varepsilon(g)} g f\right)=0$ for all $f, g \in \mathscr{A}$. These two definitions can be unified as follows.

Let $\varkappa= \pm 1$. A linear complex-valued function $s p$ on \mathscr{A} is called \varkappa-trace if $s p\left(f g-\varkappa^{\varepsilon(f) \varepsilon(g)} g f\right)=0$ for all $f, g \in \mathscr{A}$.

The element $K \in \mathscr{A}$ is called a Klein operator if $K^{2}=1, \varepsilon(K)=0$, and $K f=(-1)^{\varepsilon(f)} f K$ for any $f \in \mathscr{A}$. If the algebra \mathscr{A} contains Klein operator K, then the linear function $f \mapsto \operatorname{tr}\left(f K^{\varepsilon(f)+1}\right)$ is a supertrace, and the linear function $f \mapsto \operatorname{str}\left(f K^{\varepsilon(f)+1}\right)$ is a trace.

Each nonzero (super)trace $s p$ defines the nonzero (super)symmetric bilinear form $B_{s p}(f, g):=$ $s p(f g)$.

If this bilinear form is degenerate, then the set of its null-vectors is a proper ideal in \mathscr{A}. We say that the (super)trace $s p$ is degenerate if the bilinear form $B_{s p}$ is degenerate.

1.2. The goal and structure of the paper

In a number of papers the simplicity (or, alternatively, existence of ideals) of Symplectic Reflection Algebras or. briefly, SRA (for definition, see [1]) was investigated, see, e.g., [2], [3]. In particular, it is shown that all SRA with zero parameters of deformation are simple (see [4], [2]).

It follows from [9] and [8] that an associative algebra of observables of the Calogero model with harmonic term in the potential and with coupling constant v based on the root system $I_{2}(2 m+1)$ (this algebra is SRA $H_{1, v}\left(I_{2}(2 m+1)\right)$) has an m-dimensional space of the traces and an $(m+1)$ dimensionsl space of supertraces.

We say that the parameter v is singular, if the algebra $H_{1, v}\left(I_{2}(n)\right)$ has a degenerate trace or supertrace.

The goal of this paper is to find all singular values of v for the algebras $\mathscr{H}:=H_{1, v}\left(I_{2}(n)\right)$ and to find corresponding degenerate traces and supertraces for n odd, $n=2 m+1$; the result is formulated in Theorem 9.1.

The consideration generalizes [5], where $H_{1, v}\left(A_{2}\right) \cong H_{1, v}\left(I_{2}(3)\right)$ was considered.
The case of n even is considered in [6] and reproduced here in Appendix. It is shown there that the set of singular values of v-s consists of four families of parallel complex lines on the complex plane $\left(v_{1}, v_{2}\right)$. The results for $H_{1, v}\left(I_{2}(2 m)\right)$ generalize the simplest case $H_{1, v_{1}, v_{2}}\left(I_{2}(2)\right) \cong$ $H_{1, v_{1}}\left(A_{1}\right) \otimes H_{1, v_{2}}\left(A_{1}\right)$; the singular values of v and ideals in $H_{1, v}\left(A_{1}\right)$ were found in [7].

In Sections 2-5 we recall the necessary definitions and prove the preliminary facts. In Section 6 , we show that if the \varkappa-trace is degenerate, then its generating functions are integer. In Section 7, we derive the equations for the generating functions of the x-trace and solve these equations. The solutions are meromorphic functions of their parameter t for every value of v, except degenerate values, which are found in Section 9.

2. The group $I_{2}(n)$

Definition 2.1. The group $I_{2}(n)$ is a finite subgroup of the orthogonal group $O(2, \mathbb{R})$ generated by the root system $I_{2}(n)$.

In this subsection we consider \mathbb{C} instead of \mathbb{R}^{2} for convenience.
The root system $I_{2}(n)$ consists of $2 n$ vectors $v_{k}=\exp \left(\frac{i \pi k}{n}\right)$, where $k=0,1, \ldots, 2 n-1$. The group $I_{2}(n)$ has $2 n$ elements: n reflections R_{k} and n rotations S_{k}. The reflection R_{k} acts on $z \in \mathbb{C}$ as follows:

$$
\begin{align*}
& R_{k}: z \mapsto-z^{*} v_{k}^{2} \\
& R_{k}: z^{*} \mapsto-z v_{k}^{-2} \text { for } k=0,1, \ldots, n-1, \tag{2.1}
\end{align*}
$$

where the generators $z:=e_{x}+i e_{y}$ and $z^{*}:=e_{x}-i e_{y}$ are used instead of basis unit vectors e_{x} and e_{y}, the $\operatorname{sign} *$ means complex conjugation. The rotations S_{k} have the form $S_{k}:=R_{k} R_{0}$ and act on the generators z and z^{*} as follows

$$
\begin{align*}
& S_{k}: z \mapsto z v_{k}^{-2}, \\
& S_{k}: z^{*} \mapsto z^{*} v_{k}^{2} \text { for } k=0,1, \ldots, n-1 . \tag{2.2}
\end{align*}
$$

The element S_{0} is the unit in the group $I_{2}(n)$

It is easy to see from the formulas (2.1), (2.2) that these elements satisfy the relations

$$
R_{k} R_{l}=S_{k-l}, \quad S_{k} S_{l}=S_{k+l}, \quad R_{k} S_{l}=R_{k-l}, \quad S_{k} R_{l}=R_{k+l} .
$$

Obviously, if n is even, then the reflections $R_{2 k}$, where $k=0,2, \ldots, \frac{n}{2}-1$, constitute one conjugacy class, and the $R_{2 k+1}$ constitute another class. If n is odd, then all the reflections R_{k} are in the same conjugacy class.

The rotations S_{k} and S_{l} constitute a conjugacy class if $k+l=n$.
Let

$$
\begin{equation*}
\lambda:=\exp \left(\frac{2 \pi i}{n}\right) \tag{2.3}
\end{equation*}
$$

In the basis z, z^{*}, matrices R_{k} and S_{k} have the form

$$
R_{k}=\left(\begin{array}{cc}
0 & -\lambda^{-k} \tag{2.4}\\
-\lambda^{k} & 0
\end{array}\right), S_{k}=\left(\begin{array}{cc}
\lambda^{-k} & 0 \\
0 & \lambda^{k}
\end{array}\right)
$$

Let

$$
\begin{equation*}
G:=\mathbb{C}\left[I_{2}(n)\right] \tag{2.5}
\end{equation*}
$$

be the group algebra of the group $I_{2}(n)$. In G, it is convenient to introduce the following basis

$$
\begin{equation*}
L_{p}:=\frac{1}{n} \sum_{k=0}^{n-1} \lambda^{k p} R_{k}, \quad Q_{p}:=\frac{1}{n} \sum_{k=0}^{n-1} \lambda^{-k p} S_{k} . \tag{2.6}
\end{equation*}
$$

In what follows, we consider only the case of n odd, $n=2 m+1$.
The result for n even from [6] is reproduced in Appendix. The main differences between odd and even n are as follows:
 $H_{1, v}\left(I_{2}(2 m)\right)$ contains the Klein operator and so the space of traces and the space of supertraces are isomorphic;
\underline{n} odd: the algebra $H_{1, v}\left(I_{2}(2 m+1)\right)$ depends on one complex parameter v, the space of traces is an m-dimensional, the space of supertraces is an ($m+1$)-dimensional.
3. Symplectic reflection algebra $H_{1, v}\left(I_{2}(2 m+1)\right)$

Let n be odd, $n=2 m+1$, and $\lambda=\exp \left(\frac{2 \pi i}{n}\right)$.
Let $V:=\mathbb{C}^{4}$ with symplectic form ω :

$$
\omega=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{3.1}\\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

The Coxeter group $I_{2}(n)$ may be embedded in the group $S p(4, \mathbb{C})$, which preserves the form ω, as follows: let $x \in V, x=\sum_{i} e_{i} x^{i}$, where the vectors e_{i} constitute a basis in $V, x^{i} \in \mathbb{C}$, and let $g \in I_{2}(n)$.

Then

$$
\begin{equation*}
g(x)=\sum_{i, j} e_{i} g_{j}^{i} x^{j} \tag{3.2}
\end{equation*}
$$

and

$$
\left(R_{k}\right)_{j}^{i}=\left(\begin{array}{ccc}
0 & -\lambda^{-k} & 0 \tag{3.3}\\
-\lambda^{k} & 0 & 0 \\
0 & 0 & -\lambda^{k} \\
0 & -\lambda^{-k} & 0
\end{array}\right),\left(S_{k}\right)_{j}^{i}=\left(\begin{array}{ccc}
\lambda^{-k} & 0 & 0 \\
0 & \lambda^{k} & 0 \\
0 & \lambda^{k} & 0 \\
& 0 & \lambda^{-k}
\end{array}\right) .
$$

In this representation, $r k\left(R_{k}-1\right)=2$, so the elements R_{k} are symplectic reflections. They generate the group $I_{2}(n)$.

Let

$$
\begin{equation*}
\omega_{k}:=\left.\omega\right|_{I m\left(R_{k}-1\right)} \tag{3.4}
\end{equation*}
$$

Following [1], we define $H_{1, v}\left(I_{2}(2 m+1)\right)$:
Definition 3.1. The symplectic reflection algebra $\mathscr{H}:=H_{1, v}\left(I_{2}(2 m+1)\right)$ is the associative algebra $T V \rtimes \mathbb{C}\left[I_{2}(2 m+1)\right]$ of polynomials in the generators e_{i}, where $i=1, \ldots, 4$, with coefficients in G satisfying the relations

$$
\begin{aligned}
& R_{k} x=R_{k}(x) R_{k}, \quad S_{k} x=S_{k}(x) S_{k}, \\
& {[x, y]=\omega(x, y)+2 \sum_{k=0}^{n-1} v \omega_{k}(x, y) R_{k}}
\end{aligned}
$$

for any $x, y \in V$.
In what follows, we set

$$
\begin{equation*}
a^{0}:=e_{1}, \quad b^{0}:=e_{2}, \quad b^{1}:=e_{3}, \quad a^{1}:=e_{4} \tag{3.5}
\end{equation*}
$$

and Definition 3.1 reads as
Definition 3.2. The symplectic reflection algebra $\mathscr{H}:=H_{1, v}\left(I_{2}(2 m+1)\right)$ is the associative algebra of polynomials in the generators a^{α} and b^{α}, where $\alpha=0$, 1, with coefficients in G (see Eq. (2.5)), satisfying the relations

$$
\begin{gather*}
R_{k} a^{\alpha}=-\lambda^{k} b^{\alpha} R_{k}, \quad R_{k} b^{\alpha}=-\lambda^{-k} a^{\alpha} R_{k}, \\
S_{k} a^{\alpha}=\lambda^{-k} a^{\alpha} S_{k}, \quad S_{k} b^{\alpha}=\lambda^{k} b^{\alpha} S_{k}, \\
{\left[a^{\alpha}, b^{\beta}\right]=\varepsilon^{\alpha \beta}\left(1+n v L_{0}\right),} \\
{\left[a^{\alpha}, a^{\beta}\right]=\varepsilon^{\alpha \beta} n v L_{1},} \\
{\left[b^{\alpha}, b^{\beta}\right]=\varepsilon^{\alpha \beta} n v L_{-1},} \tag{3.6}
\end{gather*}
$$

where $\varepsilon^{\alpha \beta}$ is the skew-symmetric tensor with $\varepsilon^{01}=1$.

Defining the parity on \mathscr{H} by setting

$$
\varepsilon\left(a^{\alpha}\right)=\varepsilon\left(b^{\alpha}\right)=1, \quad \varepsilon\left(R_{k}\right)=\varepsilon\left(S_{k}\right)=0,
$$

we turn this algebra into a superalgebra.
Introduce a new parameter of the algebra \mathscr{H} :

$$
\begin{equation*}
\mu:=n v, \tag{3.7}
\end{equation*}
$$

and rewrite the relations between the generating elements of \mathscr{H} and elements of the group algebra G :

$$
\begin{array}{cl}
L_{p} a^{\alpha}=-b^{\alpha} L_{p+1}, & L_{p} b^{\alpha}=-a^{\alpha} L_{p-1}, \\
Q_{p} a^{\alpha}=a^{\alpha} Q_{p+1}, & Q_{p} b^{\alpha}=b^{\alpha} Q_{p-1}, \tag{3.8}\\
L_{k} L_{l}=\delta_{k+l} Q_{l}, & L_{k} Q_{l}=\delta_{k-l} L_{l}, \\
Q_{k} L_{l}=\delta_{k+l} L_{l}, & Q_{k} Q_{l}=\delta_{k-l} Q_{l}, \text { where } \delta_{k}:=\delta_{k 0},
\end{array}
$$

4. Subalgebra of singlets

Consider the elements ${ }^{\text {a }} T^{\alpha \beta}:=\frac{1}{2}\left(\left\{a^{\alpha}, b^{\beta}\right\}+\left\{b^{\alpha}, a^{\beta}\right\}\right)$ of the algebra \mathscr{H} and the inner derivations they generate:

$$
D^{\alpha \beta}: f \mapsto\left[f, T^{\alpha \beta}\right] \text { for any } f \in \mathscr{H} .
$$

It is easy to verify that the linear span of these derivations is isomorphic to the Lie algebra $s l_{2}$.
Definition 4.1. A singlet is any element $f \in \mathscr{H}$ such that $\left[f, T^{\alpha \beta}\right]=0$ for all α, β. The subalgebra $H^{0} \subset \mathscr{H}$ consisting of all singlets of the algebra \mathscr{H} is called the subalgebra of singlets.

One can consider the algebra \mathscr{H} as an $s l_{2}$-module and decompose it into the direct sum of irreducible submodules.

Observe, that any x-trace is identically zero on all irreducible $s l_{2}$-submodules of \mathscr{H} except singlets.

Let the skew-symmetric tensor $\varepsilon_{\alpha \beta}$ be normalized so that $\varepsilon_{01}=1$. We set

$$
\mathfrak{s}:=\frac{1}{4 i} \sum_{\alpha, \beta=0,1}\left(\left\{a^{\alpha}, b^{\beta}\right\}-\left\{b^{\alpha}, a^{\beta}\right\}\right) \varepsilon_{\alpha \beta} .
$$

One can prove the following fact:
Proposition 4.1. The subalgebra of singlets H^{0} of the algebra \mathscr{H} is the algebra of polynomials in the element \mathfrak{s} with coefficients in the group algebra $\mathbb{C}\left[I_{2}(2 m+1)\right]$.

[^0]In what follows we need the commutation relations of the singlet \mathfrak{s} with generators of the algebra \mathscr{H} :

$$
\begin{array}{r}
{\left[\mathfrak{s}, Q_{p}\right]=\left[\mathfrak{s}, S_{k}\right]=\left[T^{\alpha \beta}, \mathfrak{s}\right]=0} \tag{4.1}\\
\mathfrak{s} L_{p}=-L_{p} \mathfrak{s}, \quad \mathfrak{s} R_{k}=-R_{k} \mathfrak{s}, \\
\left(\mathfrak{s}-i \mu L_{0}\right) a^{\alpha}=a^{\alpha}\left(\mathfrak{s}+i+i \mu L_{0}\right) .
\end{array}
$$

Theorem 4.1. Let \mathscr{I} be a proper ideal in the algebra $\mathscr{H}, \mathscr{I}_{0}:=\mathscr{I} \bigcap H^{0}$. Then there exist nonzero polynomials $\phi_{k}^{0} \in \mathbb{C}[\mathfrak{s}]$, where $k=0, \ldots, n-1$, such that \mathscr{I}_{0} is the span over $\mathbb{C}[\mathfrak{s}]$ of the elements

$$
\begin{equation*}
\phi_{k}^{0}(\mathfrak{s}) Q_{k}, \quad \phi_{n-k}^{0} L_{k}, \text { where } k=0, \ldots, n-1 \text { and } \phi_{n}^{0}:=\phi_{0}^{0} . \tag{4.2}
\end{equation*}
$$

Before proving Theorem 4.1, we formulate and prove several propositions.
Proposition 4.2. If $\mathscr{I} \subset \mathscr{H}$ is a proper ideal, then $\mathscr{I}_{0}=\mathscr{I} \bigcap H^{0}$ is a proper ideal in H^{0}.
Proof. First, note that $\mathscr{I}_{0} \neq H^{0}$ because \mathscr{I} does not contain unit.
Second, to prove that $\mathscr{I}_{0} \neq 0$, we consider a nonzero element $g \in \mathscr{I}$. The $s l_{2}$-action on g generates an invariant subspace $\mathscr{F} \subset \mathscr{I}$, which can be decomposed into sum of invariant subspaces, $\mathscr{F}=\bigoplus_{s} \mathscr{F}^{s}$, where $\mathscr{F}^{s} \subset \mathscr{I}$ is a direct sum of irreducible $s l_{2}$-modules of spin s (and dimension $2 s+1)$.

We further consider the highest-weight vector $f \in \mathscr{F}^{s}$ and the set of elements $\left\{f Q_{p} \mid p=0, \ldots, n-1\right\}$, belonging to the ideal \mathscr{I}. Not all these elements are equal to zero because $\sum_{p} f Q_{p}=f$. Let $f Q_{p} \neq 0$ and let it be of degree N. We consider the highest-degree part of the polynomial $f Q_{p}$, which has the form $f_{Q} Q_{p}+f_{L} L_{p}$, where f_{Q} and f_{L} are homogeneous polynomials in a^{α}, b^{α} of degree N. We can assume that $f_{Q} \neq 0$ (otherwise we can take an element $\left.\left(f_{L} L_{p}\right) L_{-p}=f_{L} Q_{-p} \neq 0\right)$ and consider the polynomial $\mathfrak{s} f Q_{p}+f Q_{p} \mathfrak{s} \simeq 2 \mathfrak{s} f_{Q} Q_{p}$, where the sign \simeq is used to denote the equality up to polynomials of lesser degrees.

The highest-degree terms of this polynomial have the form

$$
\begin{equation*}
h:=\sum_{l=0}^{2 s} c_{l}\left(a^{1}\right)^{l}\left(b^{1}\right)^{2 s-l} \mathfrak{s}^{(N+2) / 2-s} Q_{p} \tag{4.3}
\end{equation*}
$$

where $N+2$ is the degree of the homogeneous polynomial h.
Let $c_{k} \neq 0$ for some k in Eq. (4.3). Consider the element $\tilde{f}:=\left(b^{0}\right)^{k}\left(a^{0}\right)^{2 s-k}\left(\mathfrak{s} f Q_{p}+f Q_{p} \mathfrak{s}\right)$ in the ideal \mathscr{I} and the invariant subspace that it generates under the $s l_{2}$-action. This subspace contains a nonvanishing subspace of singlets.

Indeed, let the subscript 0 single out the $s l_{2}$-singlet part $(g)_{0}$ from the polynomial g. Then

$$
\begin{aligned}
\tilde{f}_{0} & =\left(\left(b^{0}\right)^{k}\left(a^{0}\right)^{2 s-k} h\right)_{0} \simeq\left(\left(b^{0}\right)^{k}\left(a^{0}\right)^{2 s-k} \sum_{l=0}^{2 s} c_{l}\left(a^{1}\right)^{l}\left(b^{1}\right)^{2 s-l} \mathfrak{s}^{(N+2) / 2-s} Q_{p}\right)_{0} \simeq \\
& \simeq c_{k}\left(\left(b^{0}\right)^{k}\left(a^{0}\right)^{2 s-k}\left(a^{1}\right)^{k}\left(b^{1}\right)^{2 s-k} \mathfrak{s}^{(N+2) / 2-s} Q_{p}\right)_{0} \simeq c_{k}\left(\left(b^{0} a^{1}\right)^{k}\left(a^{0} b^{1}\right)^{2 s-k} \mathfrak{s}^{(N+2) / 2-s} Q_{p}\right)_{0} \simeq \\
& \left.\simeq(-1)^{k} c_{k}(\mathfrak{s}-\mathfrak{t})^{k}(\mathfrak{s}+\mathfrak{t})^{2 s-k} \mathfrak{s}^{(N+2) / 2-s} Q_{p}\right)_{0}
\end{aligned}
$$

where $t:=\frac{1}{2}\left(a^{0} b^{1}+a^{1} b^{0}\right)$. Next, we use the formula (see also [5]) proved in Proposition 4.3:

$$
\begin{equation*}
\tilde{f}(\mathfrak{s}, \mathfrak{t})_{0} \simeq \frac{1}{2} \int_{0}^{1}(\tilde{f}(\mathfrak{s}, \tau \mathfrak{s})+\tilde{f}(\mathfrak{s},-\tau \mathfrak{s})) d \tau \tag{4.4}
\end{equation*}
$$

which implies (since the integrand is positive)

$$
\begin{equation*}
\tilde{f}(\mathfrak{s}, \mathfrak{t})_{0} \simeq(-1)^{k} \frac{c_{k}}{2} \mathfrak{s}^{\frac{N+2}{2}+s} Q_{p} \int_{0}^{1}\left((1-\tau)^{k}(1+\tau)^{2 s-k}+(1+\tau)^{k}(1-\tau)^{2 s-k}\right) d t \neq 0 . \tag{4.5}
\end{equation*}
$$

Proposition 4.3. Let $t:=\frac{1}{2}\left(a^{0} b^{1}+a^{1} b^{0}\right)$ and let $f(\mathfrak{s}, t)$ be an arbitrary homogeneous polynomial, then

$$
\begin{equation*}
(f(\mathfrak{s}, \mathfrak{t}))_{0} \simeq \frac{1}{2} \int_{0}^{1}(f(\mathfrak{s}, \tau \mathfrak{s})+f(\mathfrak{s},-\tau \mathfrak{s})) d \tau . \tag{4.6}
\end{equation*}
$$

Proof. To prove (4.6), it is sufficient to consider the case $f(\mathfrak{s}, \mathfrak{t})=t^{k}$.
Consider the following sequence of obvious equalities

$$
\begin{aligned}
0 & =\left(\left[T^{11},\left[T^{00}, \mathrm{t}^{k}\right]\right]\right)_{0} \simeq\left(\left[T^{11}, 2 k T^{00} \mathfrak{t}^{k-1}\right]\right)_{0} \simeq \\
& \simeq\left(-k(k-1) \mathfrak{t}^{k-2} T^{00} T^{11}-8 k \mathrm{t}^{k}\right)_{0} \simeq\left(-4 k(k-1) \mathfrak{t}^{k-2}\left(t^{2}-\mathfrak{s}^{2}\right)-8 k \mathrm{t}^{k}\right)_{0}
\end{aligned}
$$

which implies

$$
\left(\mathfrak{t}^{k}\right)_{0} \simeq \mathfrak{s}^{2} \frac{k-1}{k+1}\left(\mathfrak{t}^{k-2}\right)_{0} \simeq \begin{cases}\frac{1}{k+1} \mathfrak{s}^{k}=\int_{0}^{1}(\mathfrak{s} \tau)^{k} d \tau & \text { if } k \text { is even }, \\ 0 & \text { if } k \text { is odd }\end{cases}
$$

Definition 4.2. For each $p=0, \ldots, 2 m$, we define the ideals \mathscr{J}_{p} and \mathscr{J}^{p} in the algebra $\mathbb{C}[\mathfrak{s}]$, by setting

$$
\mathscr{J}_{p}:=\left\{f \in \mathbb{C}[\mathfrak{s}] \mid f(\mathfrak{s}) Q_{p} \in \mathscr{I}\right\}, \quad \mathscr{J}^{p}:=\left\{f \in \mathbb{C}[\mathfrak{s}] \mid f(\mathfrak{s}) L_{p} \in \mathscr{I}\right\} .
$$

Proposition 4.4. We have $\mathscr{J}_{p}=\mathscr{J}^{-p}$.
Proof. It follows from the identities $f(\mathfrak{s}) Q_{p} L_{-p}=f(\mathfrak{s}) L_{-p}$ and $f(\mathfrak{s}) L_{-p} L_{p}=f(\mathfrak{s}) Q_{p}$.
Proposition 4.5. We have $\mathscr{J}_{p} \neq 0$ for any $p=0, \ldots, 2 m$.
Proof. Let us consider a nonzero element $f \in \mathscr{I}_{0}$.
By Proposition 4.1, $f=\sum_{p}\left(\phi_{p}(\mathfrak{s}) Q_{p}+\psi_{p}(\mathfrak{s}) L_{-p}\right)$. Obviously, there exists a p such that either $\phi_{p} \neq 0$ or $\psi_{p} \neq 0$. So, at least one of the elements $\mathfrak{s} Q_{p} f+Q_{p} f \mathfrak{s}=2 \mathfrak{s} \phi_{p}(\mathfrak{s}) Q_{p} \in \mathscr{I}_{0}$ and $\mathfrak{s} Q_{p} f-$ $Q_{p} f_{\mathfrak{s}}=2 \mathfrak{s} \psi_{p}(\mathfrak{s}) L_{-p} \in \mathscr{I}_{0}$ is nonzero. Hence, $\mathscr{J}_{p} \neq 0$.

Further, we prove that if $\mathscr{J}_{p} \neq 0$, then $\mathscr{J}_{p+1} \neq 0$, and therefore $\mathscr{J}_{k} \neq 0$ for $k=0,1, \ldots n-1$.
Let $g \in \mathscr{J}_{p}, g \neq 0$. Then $g Q_{p} \in \mathscr{I}$, and the element $\tilde{g}:=\varepsilon_{\alpha \beta} b^{\alpha} g Q_{p} a^{\beta} \in \mathscr{I}$ is also nonzero.
By relation (3.8), $\tilde{g}=\varepsilon_{\alpha \beta} b^{\alpha} g a^{\beta} Q_{p+1}$, with $\tilde{g} \in \mathscr{I}_{0}$, and hence $\tilde{g}=\sum_{k}\left(\phi_{k}(\mathfrak{s}) Q_{k}+\psi_{k}(\mathfrak{s}) L_{-k}\right)$ by Proposition 4.1. Because $0 \neq \mathfrak{s} \tilde{g} Q_{p+1}+\tilde{g} Q_{p+1} \mathfrak{s} \in \mathscr{I}_{0}$, as can be verified, we have $\mathfrak{s} \phi_{p+1}(\mathfrak{s}) \neq 0$, and $\mathfrak{s} \phi_{p+1}(\mathfrak{s}) Q_{p+1} \in \mathscr{J}_{0}$, i.e., $\mathfrak{s} \phi_{p+1}(\mathfrak{s}) \in \mathscr{J}_{p+1} \neq 0$.

Since $\mathbb{C}[\mathfrak{s}]$ is a principal ideal ring, we have the following statement:

Corollary 4.1. For any $p=0, \ldots, 2 m$, there exists a nonzero polynomial $\phi_{p}^{0} \in \mathbb{C}[\mathfrak{s}]$ such that $\mathscr{J}_{p}=$ $\phi_{p}^{0} \mathbb{C}[\mathfrak{s}]$.

Theorem 4.1 evidently follows from Corollary 4.1.

5. Generating functions of \varkappa-traces

For each \varkappa-trace $s p$ on \mathscr{H}, one can define the following set of generating functions, which allows one to calculate the \varkappa-trace of arbitrary element in H^{0} via finding the derivatives of these functions with respect to parameter t at zero:

$$
\begin{align*}
& F_{p}^{s p}(t):=s p\left(\exp \left(t\left(\mathfrak{s}-i \mu L_{0}\right)\right) Q_{p}\right) \tag{5.1}\\
& \Psi_{p}^{s p}(t):=\operatorname{sp}\left(\exp (t \mathfrak{s}) L_{p}\right)
\end{align*}
$$

where $p=0, \ldots, 2 m$.
Since $L_{0} Q_{p}=0$ for any $p \neq 0$, it follows from the definition Eq. (5.1) that

$$
\begin{aligned}
& F_{p}^{s p}(t)=s p\left(\exp (t \mathfrak{s}) Q_{p}\right) \text { if } p \neq 0 \\
& F_{0}^{s p}(t)=\operatorname{sp}\left(\exp \left(t\left(\mathfrak{s}-i \mu L_{0}\right)\right) Q_{0}\right)
\end{aligned}
$$

It is easy to find $\Psi_{p}^{s p}$ for $p \neq 0$. Since $\mathfrak{s} L_{q}=-L_{q} \mathfrak{s}$ for any $q=0, \ldots, 2 m$, we have

$$
\begin{equation*}
\Psi_{q}^{s p}(t)=s p\left(\exp (t \mathfrak{s}) L_{q}\right)=s p\left(L_{q}\right) \tag{5.2}
\end{equation*}
$$

Next, since $\operatorname{sp}\left(R_{k}\right)$ does not depend on k, we have $\operatorname{sp}\left(L_{p}\right)=0$ for any $p \neq 0$ and

$$
\begin{equation*}
\Psi_{p}^{s p}(t) \equiv 0 \text { for any } p \neq 0 \tag{5.3}
\end{equation*}
$$

The value of $\operatorname{sp}\left(L_{0}\right)$ will be calculated later, in Section 8.
We consider also the functions $\Phi_{p}^{s p}(t):=\operatorname{sp}\left(\exp \left(t\left(\mathfrak{s}+i \mu L_{0}\right)\right) Q_{p}\right)$. It is easily verified, by expanding the exponential in a series, that these functions are related with the functions $F_{p}^{s p}$ by the formula

$$
\Phi_{p}^{s p}(t)=F_{p}^{s p}(t)+2 i \Delta_{p}^{s p}(t), \text { where } \Delta_{p}(t)^{s p}=\delta_{p} \sin (\mu t) s p\left(L_{0}\right)
$$

The form of generating functions is related with (non)degeneracy of bilinear form $B_{s p}$ by Proposition 6.1 below.

6. Degeneracy conditions for the \varkappa-trace

Proposition 6.1. The \varkappa-trace on the algebra \mathscr{H} is degenerate if and only if the generating functions $F_{p}^{s p}$ defined by formula (5.1) have the following form

$$
\begin{equation*}
F_{p}^{s p}(t)=\sum_{j=1}^{j_{p}} \exp \left(t \omega_{j, p}\right) \varphi_{j, p}(t) \tag{6.1}
\end{equation*}
$$

where $\omega_{j, p} \in \mathbb{C}$ and $\varphi_{j, p} \in \mathbb{C}[t]$.

Proof. Sufficiency. Let the functions $F_{p}^{s p}$ defined by Eq. (5.1) have the form (6.1).
We introduce the polynomials $D_{p} \in \mathbb{C}[x]$ by the formulas

$$
\begin{aligned}
& D_{p}(x):=\prod_{j=1}^{j_{p}}\left(x-\omega_{j, p}\right)^{1+\operatorname{deg} \varphi_{j, p}} \quad \text { for } p \neq 0, \\
& D_{0}(x):=\prod_{j=1}^{j_{0}}\left(x^{2}-\omega_{j, 0}^{2}\right)^{1+\operatorname{deg} \varphi_{j, 0} .}
\end{aligned}
$$

By definition, these polynomials satisfy the conditions $D_{p}\left(\frac{d}{d t}\right) F_{p}^{s p}(t)=0$ for any p. Besides, introduce the polynomial \tilde{D}_{0} by setting

$$
\tilde{D}_{0}\left(x^{2}\right)=D_{0}(x) .
$$

Since the \varkappa-trace $s p$ we consider is non-zero, there exists a p such that $F_{p}^{s p} \neq 0$.
Now, we see that if $F_{p}^{s p} \neq 0$ for some $p \neq 0$, then the element $D_{p}(\mathfrak{s}) Q_{p} \in \mathscr{H}$ is a null-vector of the bilinear form $B_{s p}$; we also see that if $F_{0}^{s p} \neq 0$, then the element $\widehat{D}(\mathfrak{s}) Q_{0}:=\mathfrak{s}^{2} \tilde{D}_{0}\left(\mathfrak{s}^{2}-\mu^{2}\right) Q_{0} \in \mathscr{H}$ is a null-vector of the bilinear form $B_{s p}$.

Indeed, if $f \in \mathscr{H}$ belongs to a nonsinglet irreducible $s l_{2}$-module, then $s p\left(D_{p}(\mathfrak{s}) Q_{p} f\right)=0$ for any $p \neq 0$ and $s p\left(\widehat{D}_{0}(\mathfrak{s}) Q_{0} f\right)=0$. If $f \in H^{0}$, then $f=\sum_{q}\left(f_{q}(\mathfrak{s}) Q_{q}+g_{q}(\mathfrak{s}) L_{q}\right)$ and, taking in account Eq. (5.3),

$$
s p\left(D_{p}(\mathfrak{s}) Q_{p} f\right)=\operatorname{sp}\left(D_{p}(\mathfrak{s}) Q_{p} f_{p}\right)=\left.f_{p}\left(\frac{d}{d t}\right) D_{p}\left(\frac{d}{d t}\right) F_{p}^{s p}\right|_{t=0}=0 \text { for } p \neq 0 .
$$

Further, let us decompose the polynomial f_{0} in the sum of even and odd polynomials:

$$
f_{0}(\mathfrak{s})=f_{0}^{+}\left(\mathfrak{s}^{2}\right)+\mathfrak{s} f_{0}^{-}\left(\mathfrak{s}^{2}\right) .
$$

Since $s p\left(\mathfrak{s}^{k} Q_{0}\right)=0$ when k is odd ${ }^{\mathrm{b}}$, since

$$
s p\left(\mathfrak{s}^{2} \tilde{D}_{0}\left(\mathfrak{s}^{2}-\mu^{2}\right) Q_{0} g_{0} L_{0}\right)=0
$$

and

$$
\frac{d^{2}}{d t^{2}} \exp \left(t\left(\mathfrak{s}-i \mu L_{0}\right)\right)=\exp \left(t\left(\mathfrak{s}-i \mu L_{0}\right)\right)\left(\mathfrak{s}^{2}-\mu^{2} Q_{0}\right)
$$

it follows that

$$
\begin{aligned}
& s p\left(\mathfrak{s}^{2} \tilde{D}_{0}\left(\mathfrak{s}^{2}-\mu^{2}\right) Q_{0} f\right)=\operatorname{sp}\left(\mathfrak{s}^{2} \tilde{D}_{0}\left(\mathfrak{s}^{2}-\mu^{2}\right) Q_{0} f_{0}^{+}\left(\mathfrak{s}^{2}\right)\right)= \\
& =\left.\left(\frac{d^{2}}{d t^{2}}+\mu^{2}\right) f_{0}^{+}\left(\frac{d^{2}}{d t^{2}}+\mu^{2}\right) \tilde{D}_{0}\left(\frac{d^{2}}{d t^{2}}\right) F_{0}(t)\right|_{t=0}= \\
& =\left.\left(\frac{d^{2}}{d t^{2}}+\mu^{2}\right) f_{0}^{+}\left(\frac{d^{2}}{d t^{2}}+\mu^{2}\right) D_{0}\left(\frac{d}{d t}\right) F_{0}(t)\right|_{t=0}=0 .
\end{aligned}
$$

Thus, the sufficiency of Proposition 6.1 is proved.

[^1]Necessity. We now prove that if the \varkappa-trace is degenerate, then there exist polynomials $D_{p} \in \mathbb{C}[x]$ such that $D_{p}\left(\frac{d}{d t}\right) F_{p}(t)=0$ for $p=0, \ldots, 2 m$, and therefore the generating functions F_{p} have the form (6.1).

Let an ideal $\mathscr{I} \subset \mathscr{H}$ consist of null-vectors of the bilinear form $B_{s p}$. Then \mathscr{I}_{0} consists of singlet null-vectors, and the vectors $\phi_{k}^{0}(\mathfrak{s}) Q_{k}$ and $\phi_{k}^{0}(\mathfrak{s}) L_{2 m+1-k}$ defined by the conditions of Theorem 4.1 generate an ideal \mathscr{I}_{0} in \mathscr{H}_{0}.

Let $p \neq 0$. Then

$$
0 \equiv s p\left(\phi_{p}^{0}(\mathfrak{s}) Q_{p} e^{t s} Q_{p}\right)=\phi_{p}^{0}\left(\frac{d}{d t}\right) F_{p}(t)
$$

and, therefore, the function F_{p} has the form (6.1).
Further,
we consider the null-vector $\phi\left(\mathfrak{s}^{2}\right) Q_{0}$ of the bilinear form $B_{s p}$, where $\phi\left(\mathfrak{s}^{2}\right):=\phi_{0}^{0}(\mathfrak{s}) \phi_{0}^{0}(-\mathfrak{s})$. We note that

$$
\frac{d^{2}}{d t^{2}} F_{0}=s p\left(e^{t\left(\mathfrak{s}-i \mu L_{0}\right)}\left(\mathfrak{s}-i \mu L_{0}\right)^{2} Q_{0}\right)=\operatorname{sp}\left(e^{t\left(\mathfrak{s}-i \mu L_{0}\right)}\left(\mathfrak{s}^{2}-\mu^{2}\right) Q_{0}\right),
$$

hence

$$
s p\left(e^{t\left(\mathfrak{s}-i \mu L_{0}\right)} \mathfrak{s}^{2} Q_{0}\right)=\left(\frac{d^{2}}{d t^{2}}+\mu^{2}\right) F_{0}
$$

and

$$
0 \equiv \operatorname{sp}\left(e^{t\left(\mathfrak{s}-i \mu L_{0}\right)} \phi_{0}^{0}(\mathfrak{s}) \phi_{0}^{0}(-\mathfrak{s}) Q_{0}\right)=\operatorname{sp}\left(e^{t\left(\mathfrak{s}-i \mu L_{0}\right)} \phi\left(\mathfrak{s}^{2}\right) Q_{0}\right)=\phi\left(\frac{d^{2}}{d t^{2}}+\mu^{2}\right) F_{0}(t),
$$

i.e., the function F_{0} also has the form (6.1).

7. Equations for the generating functions $F_{p}^{s p}$

Let us differentiate the generating function $F_{p}^{s p}$:

$$
\frac{d}{d t} F_{p}^{s p}(t)=\operatorname{sp}\left(e^{t\left(\mathfrak{s}-i \mu L_{0}\right)}\left(\mathfrak{s}-i \mu L_{0}\right) Q_{p}\right)=\operatorname{sp}\left(e^{t\left(\mathfrak{s}-i \mu L_{0}\right)}\left(-i a^{\alpha} \varepsilon_{\alpha \beta} b^{\beta}+i\right) Q_{p}\right)
$$

The second equality here holds because

$$
\mathfrak{s}=-i a^{\alpha} \varepsilon_{\alpha \beta} b^{\beta}+i\left(1+\mu L_{0}\right) .
$$

Next,

$$
\begin{aligned}
& s p\left(e^{t\left(\mathfrak{s}-i \mu L_{0}\right)}\left(-i a^{\alpha} \varepsilon_{\alpha \beta} b^{\beta}\right) Q_{p}\right)=\operatorname{sp}\left(a^{\alpha} e^{t\left(\mathfrak{s}+i \mu L_{0}\right)}\left(-i \varepsilon_{\alpha \beta} b^{\beta}\right) Q_{p}\right)= \\
& =\varkappa s p\left(e^{t\left(\mathfrak{s}+i+i \mu L_{0}\right)}\left(-i \varepsilon_{\alpha \beta} b^{\beta} a^{\alpha}\right) Q_{p+1}\right)=\varkappa s p\left(e^{t\left(\mathfrak{s}+i+i \mu L_{0}\right)}\left(\mathfrak{s}+i+i \mu L_{0}\right) Q_{p+1}\right)= \\
& =\varkappa \frac{d}{d t}\left(e^{i t} \Phi_{p+1}(t)\right) .
\end{aligned}
$$

Thus, we obtain a system of differential equations for the generating functions:

$$
\begin{equation*}
\frac{d}{d t} F_{p}^{s p}-\varkappa e^{i t} \frac{d}{d t} F_{p+1}^{s p}=i F_{p}^{s p}+\varkappa i e^{i t} F_{p+1}^{s p}+2 \varkappa i \frac{d}{d t}\left(e^{i t} \Delta_{p+1}^{s p}\right) . \tag{7.1}
\end{equation*}
$$

The initial conditions for this system are:

$$
F_{p}^{s p}(0)=s p\left(Q_{p}\right) .
$$

To solve the system (7.1), we consider its Fourier transform. Let

$$
\begin{align*}
& \lambda:=e^{2 \pi i /(2 m+1)}, \\
& G_{k}^{s p}:=\sum_{p=0}^{2 m} \lambda^{k p} S_{p}^{s p}, \text { where } k=0, \ldots, 2 m, \tag{7.2}\\
& \widetilde{\Delta}_{k}^{s p}:=\sum_{p=0}^{2 m} \lambda^{k p} \Delta_{p+1}^{s p}=\lambda^{-k}\left(\sin (\mu t) s p\left(L_{0}\right)\right), \text { where } k=0, \ldots, 2 m .
\end{align*}
$$

For the functions $G_{k}^{s p}$, we then obtain the equations

$$
\begin{equation*}
\frac{d}{d t} G_{k}^{s p}=i \frac{\lambda^{k}+\varkappa e^{i t}}{\lambda^{k}-\varkappa e^{i t}} G_{k}^{s p}+\frac{2 i \varkappa \lambda^{k}}{\lambda^{k}-\varkappa e^{i t}} \frac{d}{d t}\left(e^{i t} \widetilde{\Delta}_{k}^{s p}\right) \tag{7.3}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
G_{k}^{s p}(0)=s p\left(S_{k}\right) \tag{7.4}
\end{equation*}
$$

We choose the solution of the system (7.3) in the form:

$$
\begin{equation*}
G_{k}^{s p}(t)=\frac{\varkappa e^{i t}}{\left(\varkappa e^{i t}-\lambda^{k}\right)^{2}} \lambda^{k} g_{k}^{s p}(t), \tag{7.5}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{k}^{s p}(t)=\left(\frac{2}{\mu}(\cos (t \mu)-1)+2 i \lambda^{-k}\left(\lambda^{k}-\varkappa e^{i t}\right) \sin (t \mu)\right) s p\left(L_{0}\right)+\varkappa \lambda^{-k}\left(\varkappa-\lambda^{k}\right)^{2} s p\left(S_{k}\right) . \tag{7.6}
\end{equation*}
$$

Evidently, this solution satisfies initial condition (7.4) for each \varkappa and k, except for the case $\varkappa=+1$ and $k=0$.

If $\varkappa=+1$ and $k=0$, then the expression Eq. (7.5) for $G_{0}^{t r}$ has a removable singularity at $t=0$. In this case, we consider the condition $\lim _{t \rightarrow 0} G_{0}^{t r}(t)=\operatorname{tr}\left(S_{0}\right)$ instead of $G_{0}^{t r}(0)=\operatorname{tr}\left(S_{0}\right)$.

When $\varkappa=+1$ the solution (7.5) - (7.6) gives

$$
\begin{equation*}
G_{0}^{t r}(t)=\frac{e^{i t}}{\left(e^{i t}-1\right)^{2}}\left(\frac{2}{\mu}(\cos (t \mu)-1)+2 i\left(1-e^{i t}\right) \sin (t \mu)\right) \operatorname{tr}\left(L_{0}\right) \tag{7.7}
\end{equation*}
$$

and one can easily see that

$$
\begin{equation*}
\lim _{t \rightarrow 0} G_{0}^{\operatorname{tr}}(t)=-\mu \operatorname{tr}\left(L_{0}\right) . \tag{7.8}
\end{equation*}
$$

It is shown in Subsection 8.1 using Ground Level Conditions, that if $\varkappa=+1$, then

$$
\begin{equation*}
\operatorname{tr}\left(S_{0}\right)=-\mu \operatorname{tr}\left(L_{0}\right) \tag{7.9}
\end{equation*}
$$

for any trace $t r$ on \mathscr{H}.
So, $G_{0}^{t r}(t)$ satisfies the initial conditions (7.4) also.
For the case $\varkappa=-1$, the x-trace is a supertrace (see [9]). In this case, the $m+1$ values $\operatorname{str}\left(S_{k}\right)=$ $\operatorname{str}\left(S_{2 m+1-k}\right)$ for $k=0, \ldots, m$ completely define the supertrace on \mathscr{H} (see [8]).

For the case $\varkappa=+1$, the x-trace is a trace (see [9]). In this case, the m values $\operatorname{tr}\left(S_{k}\right)=\operatorname{tr}\left(S_{2 m+1-k}\right)$ for $k=1, \ldots, m$ completely define the trace on \mathscr{H} (see [8]). The value $\operatorname{tr}\left(S_{0}\right)$ linearly depends on parameters $\operatorname{tr}\left(S_{k}\right)$, where $k=1, \ldots, m$, and it is found in Subsection 8.1 (see Eqs. (8.7) - (8.8)).

8. Values of the \varkappa-trace on $\mathbb{C}\left[I_{2}(2 m+1)\right]$

To use the generating functions (7.5), we need to express the values $\operatorname{sp}\left(S_{k}\right)$ and $\operatorname{sp}\left(L_{0}\right)$ via some independent parameters which completely define x-trace.

The results are different for traces $(\varkappa=+1)$ and for supertraces $(\varkappa=-1)$. First, we express $s p\left(L_{0}\right)$ via $s p\left(S_{k}\right)=s p\left(S_{2 m+1-k}\right)$, where $k=1, \ldots, m$ if $\varkappa=+1$ and $k=0,1, \ldots, m$ if $\varkappa=-1$.

Let

$$
\begin{equation*}
c_{k}^{\alpha}:=a^{\alpha}-\varkappa \lambda^{k} b, \text { so } R_{k} c_{k}^{\alpha}=\varkappa c_{k}^{\alpha} R_{k} . \tag{8.1}
\end{equation*}
$$

We consider the chain of equalities

$$
\begin{equation*}
s p\left(c_{k}^{0} c_{k}^{1} R_{k}\right)=\varkappa s p\left(c_{k}^{1} R_{k} c_{k}^{0}\right)=\varkappa^{2} s p\left(c_{k}^{1} c_{k}^{0} R_{k}\right), \tag{8.2}
\end{equation*}
$$

which results in

$$
\begin{equation*}
s p\left(\left[c_{k}^{0}, c_{k}^{1}\right] R_{k}\right)=0 \tag{8.3}
\end{equation*}
$$

The conditions like (8.3) are called Ground Level Conditions in [10], [9]. It follows from (8.3) that

$$
\left.-2 \lambda^{k} \varkappa s p\left(R_{k}-\frac{\mu}{2} \varkappa\left(\lambda^{-k} L_{1}-2 \varkappa L_{0}+\lambda^{k} L_{-1}\right) R_{k}\right)\right)=0
$$

which gives

$$
\begin{equation*}
s p\left(R_{k}\right)=-\frac{2 \mu}{2 m+1}\left(\frac{1+\varkappa}{2} X^{s p}+\frac{1-\varkappa}{2} Y^{s p}\right), \tag{8.4}
\end{equation*}
$$

where

$$
\begin{align*}
X^{s p} & :=\sum_{r=1}^{2 m} \sin ^{2}\left(\frac{\pi r}{2 m+1}\right) \operatorname{sp}\left(S_{r}\right), \tag{8.5}\\
Y^{s p} & :=\sum_{r=0}^{2 m} \cos ^{2}\left(\frac{\pi r}{2 m+1}\right) \operatorname{sp}\left(S_{r}\right) . \tag{8.6}
\end{align*}
$$

Below we consider these values for the traces and supertraces separately.

8.1. Values of the traces on $\mathbb{C}\left[I_{2}(2 m+1)\right]$

The group $I_{2}(2 m+1)$ has m conjugacy classes without the eigenvalue +1 in the spectrum:

$$
\left\{S_{p}, S_{2 m+1-p}\right\}, \text { where } p=1, \ldots, m
$$

By Theorem 2.3 in [9], the values of the trace on these conjugacy classes

$$
s_{k}:=\operatorname{tr}\left(S_{k}\right), \quad \text { where } s_{2 m+1-k}=s_{k}, \quad k=1, \ldots, m,
$$

are arbitrary and completely define the trace on the algebra \mathscr{H}, and therefore the dimension of the space of traces is m.

Further, the group $I_{2}(2 m+1)$ has one conjugacy class with one eigenvalue +1 in its spectrum:

$$
\left\{R_{1}, \ldots, R_{2 m+1}\right\}
$$

The value of $\operatorname{tr}\left(R_{k}\right)$ is expressed via s_{k} by formula (8.4).
Besides, the group $I_{2}(2 m+1)$ has one conjugacy class with two eigenvalues +1 in its spectrum: $\left\{S_{0}\right\}$.

The traces on conjugacy classes with two eigenvalues +1 in the spectrum can also be calculated using Ground Level Conditions (see [9]):

$$
\operatorname{tr}\left(\left[a^{0}, b^{1}\right] S_{0}\right)=0
$$

which gives

$$
\begin{equation*}
\operatorname{tr}\left(S_{0}\right)=2 v^{2}(2 m+1) X^{t r} \tag{8.7}
\end{equation*}
$$

where

$$
\begin{equation*}
X^{t r}:=\sum_{l=1}^{2 m} s_{l} \sin ^{2}\left(\frac{2 \pi l}{2 m+1}\right) \tag{8.8}
\end{equation*}
$$

We also note that

$$
\operatorname{tr}\left(L_{0}\right)=-\frac{2 \mu}{2 m+1} X^{\operatorname{tr}}, \quad \operatorname{tr}\left(L_{p}\right)=0 \text { for } p \neq 0, \quad \operatorname{tr}\left(S_{0}\right)=-\mu \operatorname{tr}\left(L_{0}\right)
$$

8.2. Values of the supertraces on $\mathbb{C}\left[I_{2}(2 m+1)\right]$

The group $I_{2}(2 m+1)$ has $m+1$ conjugacy classes without the eigenvalue -1 in the spectrum:

$$
\left\{S_{0}\right\},\left\{S_{p}, S_{2 m+1-p}\right\}, \text { where } p=1, \ldots, m
$$

By Theorem 2.3 in [9], the values of the supertrace on these conjugacy classes

$$
u_{k}:=\operatorname{str}\left(S_{k}\right)=\operatorname{str}\left(S_{2 m+1-k}\right), \quad \text { where } \quad k=0, \ldots, m
$$

are arbitrary parameters that completely define the supertrace str on the algebra \mathscr{H}, and therefore the dimension of the space of supertraces is $m+1$.

Besides, the group $I_{2}(2 m+1)$ has one conjugacy class with one eigenvalue -1 in the spectrum:

$$
\left\{R_{1}, \ldots, R_{2 m+1}\right\}
$$

The supertraces of the conjugacy class with eigenvalue -1 in its spectrum are calculated via Ground Level Conditions in Section 8. These conditions give

$$
\operatorname{str}\left(R_{k}\right)=-2 v Y^{s t r}, \quad k=0,1, \ldots, 2 m
$$

where

$$
Y^{s t r}:=\sum_{r=0}^{2 m} u_{r} \cos ^{2}\left(\frac{\pi r}{2 m+1}\right)
$$

9. Singular values of the parameter μ

We now find the values of the parameter μ for which there exists a nonzero \varkappa-trace $s p$, i.e., the values $s p\left(S_{k}\right)$ such that the the generating functions F_{p} (5.1) have the form (6.1). Since the functions G_{k} (7.2) are linear combinations of the functions F_{p}, and vice versa, the algebra \mathscr{H} has a degenerate \varkappa-trace if and only if the functions $G_{k}(7.2)$ have the form (6.1) also.

In particular, it is necessary that the numerator of the expression (7.5) contains all the zeros of the denominator of the expression.

The denominator of the function G_{k} is equal to

$$
\left(e^{i t}-\varkappa \lambda^{k}\right)^{2}
$$

and has doubled zeros at

$$
t_{k, l}=\frac{2 \pi}{n} k+2 \pi l+\pi \theta, \text { where } \quad l=0, \pm 1, \pm 2, \ldots
$$

and

$$
\theta=\left\{\begin{array}{l}
0 \text { if } \varkappa=1 \tag{9.1}\\
1 \text { if } \varkappa=-1 .
\end{array}\right.
$$

It is easy to check that $\frac{d}{d t} g_{k}^{s p}\left(t_{k, l_{k}}\right)=0$ for each $k=0, \ldots, 2 m$ and each integer l_{k}.
The equalities $g_{k}^{s p}\left(t_{k, l_{k}}\right)=0$ can be considered as a system of linear equations for the values $\operatorname{tr}\left(S_{k}\right)=\operatorname{tr}\left(S_{n-k}\right)$, where $k=1, \ldots, 2 m$ if $\varkappa=1$, and for the values $\operatorname{str}\left(S_{k}\right)=\operatorname{str}\left(S_{n-k}\right)$, where $k=$ $0, \ldots, n$ if $\varkappa=-1$:

$$
\begin{equation*}
g_{k}^{s p}\left(t_{k, l_{k}}\right)=\frac{2}{\mu}\left(\cos \left(t_{k, l_{k}} \mu\right)-1\right) s p\left(L_{0}\right)+\varkappa \lambda^{-k}\left(\varkappa-\lambda^{k}\right)^{2} s p\left(S_{k}\right)=0 . \tag{9.2}
\end{equation*}
$$

Our goal is to find the μ for which the system (9.2) has nonzero solutions.
Note that $s p\left(L_{0}\right) \neq 0$ otherwise the \varkappa-trace would be zero. We consider the subsystem of two equations with $l_{k}=0$:

$$
\begin{array}{r}
\frac{2}{\mu}\left(\cos \left(\left(\frac{2 \pi k}{n}+\pi \theta\right) \mu\right)-1\right) s p\left(L_{0}\right)+\varkappa \lambda^{-k}\left(\varkappa-\lambda^{k}\right)^{2} s p\left(S_{k}\right)=0, \\
\frac{2}{\mu}\left(\cos \left(\left(\frac{2 \pi(n-k)}{n}+\pi \theta\right) \mu\right)-1\right) s p\left(L_{0}\right)+\varkappa \lambda^{k-n}\left(\varkappa-\lambda^{n-k}\right)^{2} s p\left(S_{n-k}\right)=0 . \tag{9.4}
\end{array}
$$

Since $\frac{\varkappa\left(\varkappa-\lambda^{k}\right)^{2}}{\lambda^{k}}=\frac{\varkappa\left(\varkappa-\lambda^{n-k}\right)^{2}}{\lambda^{n-k}}$ and $s p\left(S_{n-k}\right)=s p\left(S_{k}\right)$, it follows that Eqs. (9.3) - (9.4) imply that

$$
\begin{equation*}
\cos \left(\left(\frac{2 \pi k}{n}+\pi \theta\right) \mu\right)-\cos \left(\left(\frac{2 \pi(n-k)}{n}+\pi \theta\right) \mu\right)=0 \tag{9.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\sin (\pi \mu(1+\theta)) \sin \left(\frac{2 k-n}{n} \pi \mu\right)=0 . \tag{9.6}
\end{equation*}
$$

Eq. (9.6) implies that

$$
\begin{equation*}
\mu=\frac{z}{1+\theta}, \text { where } z \in \mathbb{Z} \tag{9.7}
\end{equation*}
$$

Next, we consider the two cases separately:
A) $\mu \in \mathbb{Z}, \varkappa= \pm 1$,
B) $\mu=z+\frac{1}{2}$, where $z \in \mathbb{Z}, \varkappa=-1$.

In the case A), we note that Eq. (9.2) gives for μ integer:

$$
\begin{equation*}
0=\sum_{k=0}^{n-1} g_{k}^{s p}\left(t_{k, l_{k}}\right)=\frac{2}{\mu} \sum_{k=0}^{n-1} \cos \left(\frac{2 k \pi}{n} \mu\right)(-1)^{\theta \mu} \operatorname{sp}\left(L_{0}\right) \tag{9.8}
\end{equation*}
$$

Since $\operatorname{sp}\left(L_{0}\right) \neq 0$, Eq. (9.8) gives the following restriction on the integer μ :

$$
\begin{equation*}
\sum_{k=0}^{n-1} \cos \left(\frac{2 k \pi}{n} \mu\right)=0 \tag{9.9}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\mu \in \mathbb{Z} \backslash n \mathbb{Z} \tag{9.10}
\end{equation*}
$$

Now consider the case B), i.e., $\varkappa=-1, \theta=1, \mu=z+\frac{1}{2}$, where $z \in \mathbb{Z}$. Namely, consider the following two equations of the system (9.2):

$$
\begin{aligned}
& g_{k}^{s t r}\left(t_{k, 0}\right)=\frac{2}{\mu}\left(\cos \left(\frac{2 \pi k z}{n}+\frac{\pi k}{n}+\pi z+\frac{\pi}{2}\right)-1\right) \operatorname{sp}\left(L_{0}\right)-\frac{\left(1+\lambda^{k}\right)^{2}}{\lambda^{k}} \operatorname{str}\left(S_{k}\right)=0 \\
& g_{k}^{s t r}\left(t_{k, 1}\right)=\frac{2}{\mu}\left(\cos \left(\frac{2 \pi k z}{n}+\frac{\pi k}{n}+\pi z+\frac{\pi}{2}+\pi\right)-1\right) \operatorname{sp}\left(L_{0}\right)-\frac{\left(1+\lambda^{k}\right)^{2}}{\lambda^{k}} \operatorname{str}\left(S_{k}\right)=0
\end{aligned}
$$

which give

$$
\begin{equation*}
\cos \left(\frac{2 \pi k z}{n}+\frac{\pi k}{n}+\pi z+\frac{\pi}{2}\right)=0 \tag{9.11}
\end{equation*}
$$

or

$$
\begin{equation*}
2 z+1=n r \text { for some odd } r, \text { or } \mu=\frac{n r}{2} \tag{9.12}
\end{equation*}
$$

One easily checks that for every μ found, the system (9.2) does not depend on l_{k} and so has a nonzero solution.

Thus, we have proved the following theorem:
Theorem 9.1. Let $m \in \mathbb{Z}, m \geqslant 1$ and $n=2 m+1$. Then

1) The associative algebra $H_{1, v}\left(I_{2}(n)\right)$ has a 1-parametric set of nonzero traces $t r_{z}$ such that the symmetric invariant bilinear form $B_{t r_{z}}(x, y)=\operatorname{tr}(x y)$ is degenerate if and only if $v=\frac{z}{n}$, where $z \in \mathbb{Z} \backslash n \mathbb{Z}$. These traces are completely defined by their values on S_{k} for $k=1, \ldots, m$:

$$
\begin{equation*}
\operatorname{tr}_{z}\left(S_{k}\right)=\frac{\tau}{n \sin ^{2}\left(\frac{\pi k}{n}\right)}\left(1-\cos \left(\frac{2 \pi k z}{n}\right)\right), \text { where } \tau \in \mathbb{C}, \tau \neq 0 \tag{9.13}
\end{equation*}
$$

2) The associative superalgebra $H_{1, v}\left(I_{2}(n)\right)$ has a 1-parametric set of nonzero supertraces str r_{z} such that the supersymmetric invariant bilinear form $B_{s t r_{z}}(x, y)=\operatorname{str}(x y)$ is degenerate if $v=\frac{z}{n}$, where $z \in \mathbb{Z} \backslash n \mathbb{Z}$. These supertraces are completely defined by their values on S_{k} for $k=0, \ldots, m$:

$$
\begin{equation*}
\operatorname{str}_{z}\left(S_{k}\right)=\frac{\tau}{n \cos ^{2}\left(\frac{\pi k}{n}\right)}\left(1-(-1)^{z} \cos \left(\frac{2 \pi k z}{n}\right)\right), \text { where } \tau \in \mathbb{C}, \tau \neq 0 \tag{9.14}
\end{equation*}
$$

3) The associative superalgebra $H_{1, v}\left(I_{2}(n)\right)$ has a 1-parametric set of nonzero supertraces str $r_{1 / 2}$ such that the supersymmetric invariant bilinear form $B_{\text {str }_{1 / 2}}(x, y)=\operatorname{str}_{1 / 2}(x y)$ is degenerate if $v=$
$z+\frac{1}{2}$, where $z \in \mathbb{Z}$. These supertraces are completely defined by their values on S_{k} for $k=0, \ldots, m$:

$$
\begin{equation*}
\operatorname{str}_{1 / 2}\left(S_{k}\right)=\frac{\tau}{n \cos ^{2}\left(\frac{\pi k}{n}\right)}, \text { where } \tau \in \mathbb{C}, \tau \neq 0 \tag{9.15}
\end{equation*}
$$

4) For all other values of v, all nonzero traces and supertraces are nondegenerate.

Remark 9.1. Theorem 9.1 implies that if $z \in \mathbb{Z} \backslash n \mathbb{Z}$, then the trace (9.13) generates the ideal $\mathscr{I}_{t r_{z}}$ consisting of null-vectors of the degenerate form $B_{t r_{z}}(x, y)=t r_{z}(x y)$, and simultaneously the supertrace (9.14) generates the ideal $\mathscr{I}_{\text {str }}$ consisting of null-vectors of the degenerate form $B_{s t r_{z}}(x, y)=\operatorname{str} r_{z}(x y)$. A question arises: is it true that $\mathscr{I}_{t r_{z}}=\mathscr{I}_{s t r_{z}}$?

Conjecture 9.1. $\mathscr{I}_{t r_{z}}=\mathscr{I}_{s t r_{z}}$.
Our observation, that the set of coefficients $\omega_{j, p}$ in Eq. (6.1) for $F_{p}^{t r_{z}}$ is the same as for $F_{p}^{s t r_{z}}$, is an argument in favor of this conjecture.

Acknowledgments

The authors (S.K. and I.T.) are grateful to Russian Fund for Basic Research (grant No. 14-02-01171) for partial support of this work.

Appendix A. The case $H_{1, v_{1}, v_{2}}\left(I_{2}(n)\right)$ with n even

Here we, following [6], briefly describe the degenerate traces generating the ideals in the Symplectic Reflection Algebra $H_{1, v_{1}, v_{2}}\left(I_{2}(2 m)\right)$.

This algebra has two complex parameters; for every value of these parameters the algebra has an m-dimensional space of traces and, due to presence of the Klein operator, the isomorphic space of supertraces.

A.1. The group $I_{2}(2 m)$

Definition A.1. The group $I_{2}(2 m)$ is a finite subgroup of $O(2, \mathbb{R})$, generated by the root system $I_{2}(2 m)$. It consists of $2 m$ reflections R_{k}, acting on $z \in \mathbb{C}$ as follows

$$
\begin{equation*}
R_{k} z=-z^{*} v_{k}^{2} R_{k}, \quad k=0, \ldots, 2 m-1 \tag{A.1}
\end{equation*}
$$

and $2 m$ rotations $S_{k}:=R_{k} R_{0}$, where S_{0} is the unit in $I_{2}(2 m)$ and S_{m} is the Klein operator. As we see from (A.1), these elements satisfy the relations

$$
R_{k} R_{l}=S_{k-l}, \quad S_{k} S_{l}=S_{k+l}, \quad R_{k} S_{l}=R_{k-l}, \quad S_{k} R_{l}=R_{k+l}
$$

Evidently, the $R_{2 k}$ belong to one conjugacy class and the $R_{2 k+1}$ belong to another class. The rotations S_{k} and S_{l} constitute a conjugacy class if $k+l=2 m$.

Definition A.2.

$$
\begin{align*}
& L_{p}:=\frac{1}{n} \sum_{k=0}^{2 m-1} \lambda^{k p} R_{k}, \quad Q_{p}:=\frac{1}{n} \sum_{k=0}^{2 m-1} \lambda^{-k p} S_{k} \tag{A.2}\\
& \text { where } \lambda=\exp \left(\frac{\pi i}{m}\right)
\end{align*}
$$

A.2. Symplectic reflection algebra $H_{1, v_{0}, v_{1}}\left(I_{2}(2 m)\right)$

Definition A.3. The symplectic reflection algebra $\mathscr{H}:=H_{1, v_{0}, v_{1}}\left(I_{2}(2 m)\right)$ is an associative algebra of polynomials in a^{α}, b^{α}, where $\alpha=0,1$, with coefficients in $\mathbb{C}\left[I_{2}(2 m)\right]$, satisfying the relations

$$
\begin{aligned}
R_{k} a^{\alpha}=-\lambda^{k} b^{\alpha} R_{k}, & R_{k} b^{\alpha}=-\lambda^{-k} a^{\alpha} R_{k} \\
S_{k} a^{\alpha}=\lambda^{-k} a^{\alpha} S_{k}, & S_{k} b^{\alpha}=\lambda^{k} b^{\alpha} S_{k}
\end{aligned}
$$

$$
\begin{array}{cl}
L_{p} a^{\alpha}=-b^{\alpha} L_{p+1}, & L_{p} b^{\alpha}=-a^{\alpha} L_{p-1} \\
Q_{p} a^{\alpha}=a^{\alpha} Q_{p+1}, & Q_{p} b^{\alpha}=b^{\alpha} Q_{p-1} \\
L_{k} L_{l}=\delta_{k+l} Q_{l}, & L_{k} Q_{l}=\delta_{k-l} L_{l} \\
Q_{k} L_{l}=\delta_{k+l} L_{l}, & Q_{k} Q_{l}=\delta_{k-l} Q_{l}, \text { where } \delta_{k}:=\delta_{k 0},
\end{array}
$$

$$
\begin{gathered}
{\left[a^{\alpha}, b^{\beta}\right]=\varepsilon^{\alpha \beta}\left(1+\mu_{0} L_{0}+\mu_{1} L_{m}\right)} \\
{\left[a^{\alpha}, a^{\beta}\right]=\varepsilon^{\alpha \beta}\left(\mu_{0} L_{1}+\mu_{1} L_{m+1}\right)} \\
{\left[b^{\alpha}, b^{\beta}\right]=\varepsilon^{\alpha \beta}\left(\mu_{0} L_{-1}+\mu_{1} L_{m-1}\right)}
\end{gathered}
$$

where $\varepsilon^{\alpha \beta}$ is the skew-symmetric tensor with $\varepsilon^{01}=1$ and

$$
\begin{equation*}
\mu_{0}:=m\left(v_{0}+v_{1}\right), \quad \mu_{1}:=m\left(v_{0}-v_{1}\right) \tag{A.4}
\end{equation*}
$$

The basis elements of Lie algebra $s l_{2}$ of inner derivations $T^{\alpha \beta}:=\frac{1}{2}\left(\left\{a^{\alpha}, b^{\beta}\right\}+\left\{b^{\alpha}, a^{\beta}\right\}\right)$ act on \mathscr{H} as follows

$$
f \mapsto\left[f, T^{\alpha \beta}\right] \text { for each } f \in \mathscr{H}
$$

Let the skew-symmetric tensor $\varepsilon_{\alpha \beta}$ be such that $\varepsilon_{01}=1$. Set

$$
\mathfrak{s}:=\sum_{\alpha, \beta=0,1} \frac{1}{4 i}\left(\left\{a^{\alpha}, b^{\beta}\right\}-\left\{b^{\alpha}, a^{\beta}\right\}\right) \varepsilon_{\alpha \beta}
$$

Then

$$
\begin{array}{r}
{\left[\mathfrak{s}, Q_{p}\right]=\left[\mathfrak{s}, S_{k}\right]=\left[T^{\alpha \beta}, \mathfrak{s}\right]=0,} \\
\mathfrak{s} L_{p}=-L_{p} \mathfrak{s}, \quad \mathfrak{s} R_{k}=-R_{k} \mathfrak{s}, \\
\left(\mathfrak{s}-i\left(\mu_{0} L_{0}+\mu_{1} L_{m}\right)\right) a^{\alpha}=a^{\alpha}\left(\mathfrak{s}+i+i\left(\mu_{0} L_{0}+\mu_{1} L_{m}\right)\right) .
\end{array}
$$

A.3. The values of the trace on $\mathbb{C}\left[I_{2}(2 m)\right]$

The group $I_{2}(2 m)$ has m conjugacy classes without the eigenvalue +1 in their spectra:

$$
\left\{S_{p}, S_{n-p}\right\}, \text { where } p=1, \ldots, m-1, \text { and also }\left\{S_{m}\right\}
$$

Due to Theorem 2.3 in [9], the values of the trace on these conjugacy classes

$$
\begin{equation*}
s_{k}:=\operatorname{tr}\left(S_{k}\right), \quad \text { where } s_{2 m-k}=s_{k}, \quad k=1, \ldots, m \tag{A.5}
\end{equation*}
$$

completely define the trace on \mathscr{H}, and therefore the dimension of the space of traces is equal to m.
The group $I_{2}(2 m)$ has two conjugacy classes each having one eigenvalue +1 in its spectrum:

$$
\left\{R_{2 l} \mid l=0, \ldots, m-1\right\},\left\{R_{2 l+1} \mid l=0, \ldots, m-1\right\}
$$

and one conjugacy class with two eigenvalues +1 in its spectrum: $\left\{S_{0}\right\}$.
The traces on these conjugacy classes are calculated via Ground Level Conditions [9]:

$$
\begin{aligned}
& \operatorname{tr}\left(\left[c_{k}^{0}, c_{k}^{1}\right] R_{k}\right)=0, \text { where } c_{k}^{\alpha}:=a^{\alpha}-\lambda^{k} b^{\alpha} \text { are eigenvectors of } R_{k}, \quad R_{k} c_{k}^{\alpha}=c_{k}^{\alpha} R_{k} \\
& \operatorname{tr}\left(\left[a^{0}, b^{1}\right] S_{0}\right)=0
\end{aligned}
$$

and are equal to

$$
\begin{align*}
\operatorname{tr}\left(R_{2 l}\right)= & -2 v_{2} X_{1}-2 v_{1} X_{2} \\
\operatorname{tr}\left(R_{2 l+1}\right)= & -2 v_{1} X_{1}-2 v_{2} X_{2} \tag{A.6}\\
& l=0,1, \ldots, m-1 \\
\operatorname{tr}\left(S_{0}\right)= & 2\left(v_{1}^{2}+v_{2}^{2}\right) m X_{1}+4 v_{1} v_{2} m X_{2} \tag{A.7}
\end{align*}
$$

where

$$
\begin{aligned}
& X_{1}:=\sum_{l=1}^{m-1} s_{2 l} \sin ^{2}\left(\frac{\pi l}{m}\right) \\
& X_{2}:=\sum_{l=0}^{m-1} s_{2 l+1} \sin ^{2}\left(\frac{\pi(2 l+1)}{2 m}\right)
\end{aligned}
$$

We note also that

$$
\begin{aligned}
& \operatorname{tr}\left(L_{0}\right)=-\frac{\mu_{0}}{m}\left(X_{1}+X_{2}\right), \quad \operatorname{tr}\left(L_{m}\right)=-\frac{\mu_{1}}{m}\left(X_{1}-X_{2}\right), \quad \operatorname{tr}\left(L_{p}\right)=0 \text { for } p \neq 0, m \\
& \operatorname{tr}\left(S_{0}\right)=-\mu_{0} \operatorname{tr}\left(L_{0}\right)-\mu_{1} \operatorname{tr}\left(L_{m}\right)
\end{aligned}
$$

A.4. Generating functions of the trace

Set $\mathscr{L}:=\mu_{0} L_{0}+\mu_{1} L_{m}$.

For each trace $t r$, we define the following set of generating functions on \mathscr{H} :

$$
\begin{align*}
& F_{p}(t):=\operatorname{tr}\left(\exp (t(\mathfrak{s}-i \mathscr{L})) Q_{p}\right), \tag{A.8}\\
& \Psi_{p}(t):=\operatorname{tr}\left(\exp (t \mathfrak{s}) L_{p}\right),
\end{align*}
$$

where $p=0, \ldots, 2 m-1$. From $\mathfrak{s} L_{p}=-L_{p} \mathfrak{s}$ and definition of the trace it follows that

$$
\Psi_{p}(t)=\Psi_{p}(0) .
$$

We also consider the functions $\Phi_{p}(t):=\operatorname{tr}\left(\exp (t(\mathfrak{s}+i \mathscr{L})) Q_{p}\right)$ related with the functions F_{p} by the formula

$$
\Phi_{p}(t)=F_{p}(t)+2 i \Delta_{p}(t), \text { where } \Delta_{p}(t)=\delta_{p} \sin \left(\mu_{0} t\right) \operatorname{tr}\left(L_{0}\right)+\delta_{m-p} \sin \left(\mu_{1} t\right) \operatorname{tr}\left(L_{m}\right) .
$$

Analogously to our previous consideration, one can get the following system of equations

$$
\begin{equation*}
\frac{d}{d t} F_{p}-e^{i t} \frac{d}{d t} F_{p+1}=i F_{p}+i e^{i t} F_{p+1}+2 i \frac{d}{d t}\left(e^{i t} \Delta_{p+1}\right) . \tag{A.9}
\end{equation*}
$$

Next, we consider the Fourier transform of (A.9), namely, we consider

$$
\begin{aligned}
& G_{k}:=\sum_{p=0}^{2 m-1} \lambda^{k p} F_{p}, \text { where } k=0, \ldots, 2 m-1, \\
& \widetilde{\Delta}_{k}:=\sum_{p=0}^{2 m-1} \lambda^{k p} \Delta_{p+1}=\lambda^{-k}\left(\sin \left(\mu_{0} t\right) \operatorname{tr}\left(L_{0}\right)+\lambda^{k m} \sin \left(\mu_{1} t\right) \operatorname{tr}\left(L_{m}\right)\right), \\
& \quad \text { where } k=0, \ldots, 2 m-1 \quad \text { and } \lambda:=e^{i \pi / m},
\end{aligned}
$$

and obtain the system of equation

$$
\frac{d}{d t} G_{k}=i \frac{\lambda^{k}+e^{i t}}{\lambda^{k}-e^{i t}} G_{k}+\frac{2 i}{\lambda^{k}-e^{i t}} \frac{d}{d t}\left(e^{i t} \widetilde{\Delta}_{k}\right)
$$

with initial conditions

$$
\begin{equation*}
G_{k}(0)=s_{k}, \text { where } k=0, \ldots, 2 m-1 \tag{A.10}
\end{equation*}
$$

and where the s_{k} are defined by Eq. (A.5) for $k=1, \ldots, 2 m-1$ and $s_{0}:=\operatorname{tr}\left(S_{0}\right)$ is defined by Eq. (A.7). The value s_{0} depends linearly on s_{k}, where $k=1, \ldots, m$ (see Eq. (A.7) and take into account the relations $s_{k}=s_{2 m-k}$).

The solution of the equations for G_{k} has the form:

$$
\begin{equation*}
G_{k}(t)=\frac{e^{i t} f_{k}(t)}{\left(e^{i t}-\lambda^{k}\right)^{2}}, \tag{A.11}
\end{equation*}
$$

where

$$
\begin{align*}
f_{k}(t) & =\frac{2 \lambda^{k}}{m} X_{+}\left[1-\cos \left(t \mu_{0}\right)\right]+(-1)^{k} \frac{2 \lambda^{k}}{m} X_{-}\left[1-\cos \left(t \mu_{1}\right)\right]+\left(1-\lambda^{k}\right)^{2} s_{k}+ \\
& +\frac{2 i}{m}\left(e^{i t}-\lambda^{k}\right)\left[\mu_{0} X_{+} \sin \left(t \mu_{0}\right)+(-1)^{k} \mu_{1} X_{-} \sin \left(t \mu_{1}\right)\right], \tag{A.12}
\end{align*}
$$

and where $X_{ \pm}:=X_{1} \pm X_{2}$.

The following proposition is analogous to Proposition 6.1 but its proof is slightly more difficult:
Proposition A.1. The trace on the algebra \mathscr{H} is degenerate if and only if the generating functions $F_{p}^{t r}$ defined by formula (A.8) have the following form

$$
\begin{equation*}
F_{p}^{t r}(t)=\sum_{j=1}^{j_{p}} \exp \left(t \omega_{j, p}\right) \varphi_{j, p}(t) \tag{A.13}
\end{equation*}
$$

where $\omega_{j, p} \in \mathbb{C}$ and $\varphi_{j, p} \in \mathbb{C}[t]$.

A.5. The degeneracy conditions for the trace

We now find the values of the parameters μ_{0} and μ_{1} for which there exists a nonzero trace $t r$, (i.e., the values s_{k} (A.5), not all zero) such that the generating functions (A.11) are of the form (6.1). Obviously, it is necessary that the numerator of Eq. (A.11) contains all zeros of the denominator of this expression. The denominator of G_{k} vanishes at the points

$$
t_{k, l}=\frac{\pi}{m} k+2 \pi l, \text { where } \quad l=0, \pm 1, \pm 2, \ldots
$$

It so happens that it is sufficient to consider only the points $t_{k, 0}$.
Set

$$
s_{k}^{\prime}:=s_{k} \sin ^{2}\left(\frac{\pi k}{2 m}\right), \quad k=1, \ldots, 2 m-1, \quad s_{0}^{\prime}=0
$$

Then the system of linear equations for s_{k}^{\prime} has the form

$$
\begin{align*}
& \left(1-\cos \left(\frac{\pi}{m} k \mu_{0}\right)\right) X_{+}+(-1)^{k}\left(1-\cos \left(\frac{\pi}{m} k \mu_{1}\right)\right) X_{-}=2 m s_{k}^{\prime}, \quad k=1, \ldots, 2 m-1 \tag{A.14}\\
& s_{2 m-r}^{\prime}=s_{r}^{\prime}, \quad r=1, \ldots, m \tag{A.15}\\
& X_{ \pm}=X_{1} \pm X_{2} \tag{A.16}\\
& X_{1}=\sum_{1 \leq l \leq m-1} s_{2 l}^{\prime} \tag{A.17}\\
& X_{2}=\sum_{0 \leq l \leq m-1} s_{2 l+1}^{\prime} \tag{A.18}
\end{align*}
$$

and the parameters μ_{0} and μ_{1} are defined from the condition that this system has a nonzero solution.
Eqs. (A.14) - (A.18) imply that the dimension of the space of solutions is $\leqslant 2$ and we can take the values X_{1} and X_{2} as parameters determining the solutions.

Theorem A.1. Let $m \geqslant 2$. Then the system of equations (A.14)-(A.18) has nonzero solutions at the following values of the parameters μ_{0} and μ_{1} only:

$$
\begin{align*}
& \mu_{0} \in \mathbb{Z} \backslash m \mathbb{Z}, \quad \mu_{1} \in \mathbb{Z} \backslash m \mathbb{Z}, \tag{A.19}\\
& \mu_{0} \in \mathbb{Z} \backslash m \mathbb{Z}, \quad \text { any } \mu_{1}, \tag{A.20}\\
& \mu_{1} \in \mathbb{Z} \backslash m \mathbb{Z}, \quad \text { any } \mu_{0}, \tag{A.21}\\
& \mu_{0}= \pm \mu_{1}+m(2 l+1), \quad l=0, \pm 1, \pm 2, \ldots \tag{A.22}
\end{align*}
$$

Here,

1. In case (A.19), the system of equations (A.14)-(A.18) has a 2-parametric family of solutions;
2. In case (A.20), if $\mu_{1} \notin \mathbb{Z} \backslash m \mathbb{Z}$, then the system of equations (A.14)-(A.18) has a 1-parametric family of solutions with $X_{-}=0$,
3. In case (A.21), if $\mu_{0} \notin \mathbb{Z} \backslash m \mathbb{Z}$, then the system of equations (A.14)-(A.18) has a 1-parametric family of solutions with $X_{+}=0$,
4. In case (A.22), if $\mu_{0}, \mu_{1} \notin \mathbb{Z} \backslash m \mathbb{Z}$, then the system of equations (A.14)-(A.18) has a 1parametric family of solutions with $X_{1}=0$.

Remark A.1. Theorem A. 5 is proved for $m \geqslant 2$, nevertheless it describes also the case $m=1$ correctly.

If $m=1$, then the cases (A.19) - (A.21) disappear, and the case (A.22) shows that

$$
\begin{equation*}
\text { at least one of } v_{1} \text { and } v_{2} \text { is half-integer. } \tag{A.23}
\end{equation*}
$$

Because $H_{1, v_{1}, v_{2}}\left(I_{2}(2)\right) \cong H_{1, v_{1}}\left(A_{1}\right) \otimes H_{1, v_{2}}\left(A_{1}\right)$, the statement (A.23) follows also from [7], where the singular values of v and ideals in $H_{1, v}\left(A_{1}\right)$ were found.

References

[1] P. Etingof and V. Ginzburg, "Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism", Inv. Math. 147 (2002), 243 - 348.
[2] K.A. Brown, I. Gordon, "Poisson orders, symplectic reflection algebras and representation theory", J. Reine Angew. Math. 559 (2003), 193 - 216; arXiv:math/0201042v2 [math.RT].
[3] I. Losev, "Completions of symplectic reflection algebras", Selecta Math., 18 (2012), N1, 179-251; arXiv:1001.0239v4.
[4] D.S. Passman, Infinite Crossed Products, Pure and Applied Math vol. 135, Academic Press, San Diego, 1989.
[5] S.E. Konstein, "3-particle Calogero Model: Supertraces and Ideals on the Algebra of Observables", Theor.Math.Phys. 116 (1998) 836 - 845; arXiv:hep-th/9803213.
[6] S. E. Konstein and I. V. Tyutin, "Ideals generated by traces in the algebra of symplectic reflections $H_{1, v_{1}, v_{2}}\left(I_{2}(2 m)\right) "$, Theoretical and Mathematical Physics, 187(2), $706-717$ (2016).
[7] M.A. Vasil'ev, "Quantization on sphere and high-spin superalgebras", JETP Letters, 50 (1989) 344 347; M.A. Vasiliev, "Higher spin algebras and quantization on the sphere and hyperboloid", Int. J. Mod. Phys. A6 (1991) 1115.
[8] S.E. Konstein and R. Stekolshchik, "Klein operator and the Number of Traces and Supertraces on the Superalgebra of Observables of Rational Calogero Model based on the Root System", Journal of Nonlinear Mathematical Physics, Vol. 20:2 (2013), 295 - 308.
[9] S.E. Konstein and I.V. Tyutin, "Traces on the Superalgebra of Observables of Rational Calogero Model based on the Root System", Journal of Nonlinear Mathematical Physics, 20:2 (2013), 271 - 294; arXiv:1211.6600; arXiv:math-ph/9904032.
[10] S.E. Konstein and M.A. Vasiliev, "Supertraces on the Algebras of Observables of the Rational Calogero Model with Harmonic Potential", J. Math. Phys. 37 (1996) 2872.

[^0]: ${ }^{\text {a }}$ Here the brackets $\{\cdot, \cdot\}$ denote anticommutator.

[^1]: ${ }^{\mathrm{b}}$ Indeed,

 $$
 s p\left(\mathfrak{s}^{k} Q_{0}\right)=s p\left(\mathfrak{s}^{k} L_{0} L_{0}\right)=\operatorname{sp}\left(L_{0} \mathfrak{s}^{k} L_{0}\right)=\operatorname{sp}\left((-1)^{k} \mathfrak{s}^{k} L_{0} L_{0}\right)=\operatorname{sp}\left((-1)^{k} \mathfrak{s}^{k} Q_{0}\right) .
 $$

