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We provide an alternative method for obtaining of compatible Poisson structures on Lie groups by means of the
adjoint representations of Lie algebras. In this way we calculate some compatible Poisson structures on four
dimensional and nilpotent six dimensional symplectic real Lie groups. Then using Magri-Morosi’s theorem we
obtain new bi-Hamiltonian systems with four dimensional and nilpotent six dimensional symplectic real Lie
groups as phase spaces.
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1. Introduction

Compatible different Hamiltonian structures have been proved to be a valuable tool in the con-
struction of infinite hierarchies of symmetries and conservation laws for PDEs (see e.g. KdV equa-
tion [5]). Kdv equation can be studied as a bi-Hamiltonian system. The study of bi-Hamiltonian
systems started with the pioneering work of Magri [10] and developed later in many papers (see
for example [8], [9] and [2] ). The bi-Hamiltonian structure has been observed in many of classical
systems and some new interesting examples of bi-Hamiltonian systems have been discovered (see
for example [20], [6] and [21]). In this work, we give a method to construct compatible Poisson
structures on a Lie group by means of the adjoint representation of its Lie algebra and construct
integrable bi-Hamiltonian systems by using Magri-Morosi’s theorem [12] (for a review see [11]).
Of course using of adjoint representation in the context of the coadjoint orbit method applied previ-
ously in the Hamiltonian system (see for example [11] and [18]). We will give a method to produce
integral of motion of a non-degenerate bi-Hamiltonian systems, for which the Lie group is the phase
space.

The outline of the paper is as follows. In section two after reviewing the definition of compat-
ible Poisson structures we give a method for calculating compatible Poisson structures on a Lie
group (in general). Then in section three we have obtained these structures on symplectic four
dimensional real Lie groups. In section four using Magri-Morosi’s theorem we have obtained new
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bi-Hamiltonian systems on symplectic four dimensional real Lie groups (as phase space). In the
same way we have obtained the compatible Poisson structures on symplectic nilpotent six dimen-
sional real Lie groups [14] (see [19] for a rigorous commutative relations) in section five, of course
in this section we have obtained vielbeins on symplectic nilpotent six dimensional real Lie algebras,
where the results are summarized in appendix B. Finally in section six some new bi-Hamiltonian
systems on symplectic nilpotent six dimensional real Lie groups have been obtained. Some conclud-
ing remarks are given in section seven. The list of four dimensional and nilpotent six dimensional
symplectic real Lie algebras are given in appendix A and B.

2. Compatible Poisson structures and bi-Hamiltonian systems on Lie groups
2.1. Definitions and Notations

For the sake of completeness of the paper let us have a short review on the compatible Poisson
structures and bi-Hamiltonian system (for a review see [11]).

Definition: [12] A pair of Poisson brackets {.,.} and {.,.}’ or a pair of Poisson bivectors P and
P’ on an m dimensional manifold M is called compatible if we have:

[P,P]=[P',P| = [P,P]| =0, 2.1)
where [.,.] is the Schouten bracket that have the following forms:

[P,P]*HY = PPA G PHY PPV PAH | PPR G, PYA (2.2)
L S PN g PR L ZEPN e (2.3)

[P, P/ 1Y = PPA G PIHY L PIPR G, PHY PPV 9, P L PPV 9 PAK L PP, PVA L PPH G PV (2.4)

where dp = aan such that (xj,...,x,) is the coordinate of the manifold M. The Poisson bracket
corresponding to the Poisson bivector P has the form

{f.8} =P Iy f dve. (2.5)

The bracket (2.5) satisfies the Jacobi identity i.e. V f,g,h € C*(M),

{f7 {gah}} + {gv {hvf}} + {h7 {f7g}} - [P7P]lﬂ"alf aug aVh =0 (26)

if [P,P] = 0 and vice versa. A manifold M equipped with such compatible Poisson structures is
called bi-Hamiltonian manifold. If a dynamical system on the manifold M for which the number
of functionally independent integrals of motion Hy,...,H, are in bi-involution with respect to this
compatible Poisson brackets,

{H;,H;} = {H;,H;}' =0 (2.7)

then the system is called bi-Hamiltonian [11]. So to introduce the bi-Hamiltonian structure on the
manifold M , we must determine a pair of compatible and independent Poisson bivectors P and P’.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
150



J. Abedi-Fardad et al. / Compatible Poisson structures and integrable bi-Hamiltonian systems

2.2. Compatible Poisson structures on Lie groups

Now we will try to simplify the relations (2.2), (2.3) and (2.4) when M is a Lie group by using
non-coordinate bases.

Definition: [15] In the coordinate basis, T,M spanned by {e;, } = {dy} and T, M by {dx"}, let
us consider their linear combinations,

ei=e" Jy, Oi:ei“ dx* | {e"} € GL(m,R), (2.8)

where det ei“ > 0. In other words , {e;} is the frame of basis vectors which is obtained by a

GL(m,R)-rotation of the basis {e, } and preserving the orientation. In the above ¢’ is inverse of

u
¢;" and we have

e eV =8, ¢, et =56". (2.9)

The bases {e;} and {6’} are called the non-coordinate bases. The coefficients e;* are called the
vielbeins and we have

lei,ej] =C;'ey, (2.10)

where C; j" is a function of coordinates of the manifold M. When M is a Lie group G, these coeffi-
cients are the structure constants of the Lie algebra g of the Lie group G and we have

Cljk:ekv (el“ &“ e]v_ej” a‘u el'v). (211)

Now we write the Poisson structure P in terms of the non-coordinate basis as?

PHY =t e Y Pl (2.12)

1

Note that in general P"/’s are antisymmetric tensors and functions of the group parameters x;’s. As
a first case we consider P/ and P’ as constant antisymmetric matrices

0 pi2 pi3z ..pim 0 ply Py P
-pi2 O P23 .- Pom —Pllz 0 p/23 P’zm
—p13 —p23 0 ... p3n —Pis =P 0 .. D,
P= ) . ., P = . ) o, (2.13)
—Plm —P2m —P3m --- 0 7p/1m *Plzm 7pgm .. 0

where p;; and p;; are real constants. Now using (2.1), (2.11) and (2.12) one can rewrite the rela-
tions (2.1) with (2.2), (2.3) and (2.4) as follows:

4Here the indices u, v, ... related to the coordinates of the group G and the indices i, j, ...related to the group parameter
{x;}. Furthermore, in the following we will consider G as a phase space of the dynamical system, hence m = 2n must be
even.
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C'PHP +C, j}/P P C PP =0, (2.15)
G (PP + PRPT) £ G (PSP 1 PPY) £ (PP 4 PUPY) =0, (216)

then using the adjoint representation of the Lie algebra g, i.e.: (%)}‘ = —C;jf and (Z%);; = —Cift,

one can rewrite the above relations in the following matrix forms:®

P2;PT+PHYP+PY2.'P=0, (2.17)
P2iPY+P"P +P7 2P =0, (2.18)
P2 PY"+P Z;PY+PHYP +P WY P+PY 2, P +P 2" P=0. (2.19)

In this way having the structure constants of the Lie algebra g, one can solve the matrix equations
(2.17) - (2.19) in order to obtain P and P’. Here we will consider four dimensional real Lie algebras
[17]. For all of the symplectic® four dimensional real Lie algebras [16], one can see that all the
solutions of (2.17) - (2.19) are equivalent.

For this reason as a second case we consider P/ as (2.13) but P’/ as a linear functions of group
parameters x; of the Lie group G as follows:

/ / /
0 P12 +Z?1:102ixi P13 +Z;'n:1a3ixi P1m+2;n:1“mixi
/ / /
=Py — LIl a2ixi 0 Pyt Xl bsixi . phy, + XL buii
/ / / 4
—P13— ):2'71:103ixi —Pr3— Z;'n:lbﬁxi 0 N Y1 CmiXi
P = . . . . , (2.20)
/ / / 4
—Pim— Z?n:ﬂmixi —Pom — Z;-":lbm[x,- Pz Zi:]cmixi 0

where p;; and a;;’s are real constants; then relations (2.1) with (2.3) and (2.4) have the following
matrix forms:

YHere the upper index ¢ represents the transpose of a matrix.
“Note that here we will consider symplectic four dimensional real Lie algebras [1] and not all of them [17], because we
will construct integrable systems over these related Lie groups.
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P2 PY+P VP 4PV 2P+ (PP +A+B=0, (2.21)

PLPY+ P 2P+ PHYP + PP+ PY 2, P+ P2, 'P+ (PO P +A +B =0, (2.22)
where ¢’ is a transpose of the vielbein ¢4 and A, B,A” and B have the following forms:
(etP’)klﬁkP’W (etP/)klakP/ZY (etP/)klakP/my

(etP/)kZakP/ly )
A= . . . , (2.23)

(etP/)kmakplly (etP/)kmakPay (etP/)kmakP/my
(etP’)“&kP/yl (etP/)kZakP/yl (etP/)kmakPWl
(e'P)M P :

B— . . . , (2.24)

(etP/)kl akplym (etP/)kZakP/ym (etP/)kmakP/ym
(e'P) ' OPY (e PY P ... (€' P)K O P™Y
(etP)kZakP/Iy .

A = , . . ; (2.25)

(etp)kmakplly (etp)kmakP/Zy (etP)kmakP/my
(etp)kl akP/yl (etp)kZakP/yl (etP)k”@kP’Yl
(e'P)K o P’ .

B = . . . . (2.26)

(e P)KLoP'™ (&' P)R2pP'™ ... (€' P)km oy Pt

Now we will try to solve (2.17), (2.21) and (2.22) for four dimensional real Lie groups.

3. Some compatible Poisson structures on symplectic four dimensional real Lie
groups

Having the structure constants of the Lie algebra g, we will solve matrix equations (2.17), (2.21)
and (2.22) in order to obtain P (2.13) and P’ (2.20). For completeness the list of symplectic four
dimensional real Lie algebras [1] are brought in appendix A.

Let us consider an example; for Lie algebra A4 we have the following non zero commutators
and the matrices .2; and %"

le2,e4] =€, [es,eq] =€y, 3.1
0000 0 000 0000 0000
0000 0 000 0000 1000

2= 0000 , 2= 0 000 » 3 = 0000 » o= o100}’ 3.2)
0000 —1000 0-100 0000

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
153



J. Abedi-Fardad et al. / Compatible Poisson structures and integrable bi-Hamiltonian systems

000 O 000 O 0000 0000
000-—1 000 0 0000 0000
1_ 2 _ 3_ 4 _
V= 000 0 » &= 000 -1 &= 0000 &= 0000’ 3-3)
0100 0010 0000 0000
also according to [13] for Lie algebra A4 ; the matrix el has the following form:

1 000
uy | x4 100
0 001

inserting 2;, %' and el in (2.17), (2.21) and (2.22) one can obtain the compatible Poisson structure
P and P’ for the Lie algebra A4 1. One of the solutions has the following forms:

0pi2 0 pis 0 ply — (ass + phy) X2+ axx3 + araxs pl; + aaaxs asaxs

% 0 ps O ;| 0 0 Pha

P= * %« 0 0 » P = * * 0 0 3.5)
* x % 0 * * * 0

Here pi2,pia, p23, P, Pl3, Phs,023,a44 and aps arbitrary real constants. In this way we have
obtained some compatible Poisson structure (P is constant and P’ is linear function of Lie group
coordinates) on symplectic four dimensional real Lie algebras, the results being summarized in
Table 1. Note that all parameters a;;, p;j and p! ; are arbitrary real constants.

4. Integrable bi-Hamiltonian systems on symplectic four dimensional real Lie
groups

In this section, we will construct the integrable bi-Hamiltonian systems with four dimensional real
Lie groups as phase space. For this purpose, in the previous section we consider four dimensional
real Lie groups such that they have symplectic structures [16], [1]. Here, we will construct the mod-
els on these Lie groups separately as follows.

An important class of bi-Hamiltonian manifold occurs when one of the compatible Poisson struc-
tures is invertible i.e., the Poisson bracket {.,.} associated with P is invertible. Then one can define
a linear map N : TM — TM acting on the tangent bundle by [11]

N=PPL 4.1)

Theorem (Magri-Morosi): [12], [8] A remarkable consequence of the compatibility of P and P’ is
that the torsion of Nijenhuis tensor N

Tn(X,Y) = [NX,NY] — N|NX,Y] — N[X,NY] + N?[X,Y] (4.2)

identically vanishes ; where X and Y are arbitrary vector fields and the bracket [X,Y| denotes the
Lie bracket (commutator). One of the main properties of N is that the normalized traces of the
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Table 1: Compatible Poisson structure on symplectic four dimensional real Lie algebras.

g P P Comments
Opi2 0 pu 0 ply — (aas + phy)xo +araxs +asaxs pls+asaxs asxs
* 0 pp O * 0 0 !
A4 . s p03 0 . . 0 pé“ P14ap23 #0
x x x 0 * * * 0
0pi2pi3 O 0 p'y +a23x3 + azsxy %)@ 0
_ x 0 p3 pu * 0 as3x3  ph, + agax.
A4,5 5 x po po N . 5(3) 3 Pu 0 644 p13p24 # 0
¥ % % 0 * * * 0
0p2 0 pua 0 pl, +axxs+axxs a33x3 aszxy
x 0 0 * 0 aszx3+ P8y,
A4z . s p83 0 . . 0 Pu 0 P1ap23 #0
* % x 0 * * * 0
00 p13 p1a 00 pl; +aspxy +azaxs asxs
a— * 0 py3 0 0 phytasnx 0
Ads xx 0 0 * % 0 0 p14p23 #0
% % 0 * % * 0
0 p(;g p1i3 0 0 pl, +axx3 +azxs a“[f’%
—1,—1 * 23 D2 * 0 a53X3  AgaxX.
Ays % p03 p04 N . 5(3) 3 6?) * p13p24 70
x x x 0 * * * 0
00 0 pig 00 0 aq1x1 +agaxy
a0 *0py3 O * 0 aspxy + aszx; 0
Age % 0 0 % 0 0 P1ap23 #0
*x x 0 * % * 0
00 p13 p23 0 0 pl5 +aspxi +azpxy +asax3 +azaxs ph; +asoxs +assxs
0 * 0 py3 0 * 0 Phy +asaxs +asaxy 0
A479 *x 0 0 * % 0 0 P23 #0
**%x x 0 * ok * 0
00 0 puy 0 0 —asqx3 +agaxs —asax3 —asqxs
*0—py O * 0 agax3 +asqxs —asgxs+apgsxs
Ag12 ‘s g 0 ‘s 0 0 P1a#0
* k% 0 * % * 0
0pi2pi3 0 0 agaxs p'3+azxy — (ags + ph3)x3 asxy
*x 0 0 0 * 0 Dhs 0
I &R f 5 0 pa . x 0 0 P12p34 # 0
* % x 0 * ok * 0
Opizpiz O 0 aszx3 aszx3 0
*x 0 0 * 0 0 aegx
HI®R e o pé“ L. o e P13p24 #0
* % *x 0 * % * 0
0pi20 O 0 p/12+a22x1 +axx, 0 0
* 000 * 0 0 0
Vh ok * 0 payg * * 0 piy +az3x3+azaxy pi2p 70
* x *x 0 * * * 0
0pir0 O 0 arjx; +axx 0 0
* 000 * 0 0 0
VIly®R © % 0pu . . 0 araxs 1 dnars P12p3a #0
¥ x x 0 * * * 0
0 P12 00 0 ajyXxi 0 0
* 0 0pnu * 0 0 phy+asixi +agx;
Ay DAy « % 0py . % 0 a73%3 p12p34 # 0
* x % 0 * ok ok 0
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powers of N are integrals of motion

1 k
Hy = 5 TN, 4.3)

and satisfying Lenard-Magri recurrent relations [11]
P dH; =P dH;,,. (4.4)

In Table 1, the matrices P and P’ have been given for the various symplectic Lie algebras. Now
inserting P and P in (2.12) and using the related vielbeins [13] the compatible Poisson structures
P and P’ on Lie groups are obtained, then using (4.1) and (4.3) one can find the Hamiltonian and
integrals of motions of bi-Hamiltonian systems. In the following we will perform this work sepa-
rately for symplectic four dimensional real Lie groups. In this way we obtain new bi-Hamiltonian
systems over four dimensional real Lie groups as phase spaces.

Lie group Ay :

Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
group Ay 1 as follows:

2
P23X,
0 p12+ =5 p23x4 pia

p_|* O ps 0 f (4.5)
* * 0 O
* * * 0

/ / / /
0 az3x3 — (aaa + phy)X2 + A2aXa + Pl3Xa + Qaax3Xs P+ asaxs (poy +aaa)xs

R 0 0 Phy
P=1, X 0 0 . (4.6)
* * * 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

_Q44X4 . 2p1aPhy(P3 + asaxs) + 61341723)63
H=——, 6 H= .

pis 2p},p23

4.7)

Lie group A;;:
Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
group AZ_% as follows:

0 pr2+pi3xa pi3 0

* 0 > o3 €% oy
L Op é’ , (4.8)
* * * 0
0 piy +a23xs + angxy + 2L 0531%13”3 , 0
X4 X4
P — * 0 asze~*x3 e (p24 +a64X4) (4.9)
* * 0 0
* * * 0
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By means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

_ P23Phy +a53P24X3 + A64P23Xy Hy — 1 (a§3x% (Phy + 6164)64)2)

Hl ) 2 2
1 20%] P24

= (4.10)

P23P24 2
Lie group A4 3:

Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie

group Ay 3 as follows:

0 prae* 0 pige™ 0 (Pl +anxs +axuxs+azxsxs)  ane®xs  azety
p * 0 pa3 O p' * 0 asyx + B0
T lx o ox 0 0 LR * 0 0
* 0 % * 0 * * * 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

2 2
assxs  2azzxy 1 a33x; assxs  aszxg,,
H = + , Hy =S ( + )%)-

P23 P4 2" pl, P23 P4

“.11)

Lie group Ay “:
Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
group Ay’5“ as follows:

00 p13e(l_a)x4 plae™ 00 ell-a)x (p,13 + aspxp + azaxs) asae™xy
| * 0 P23 0 N 0 p/23 “+ asyxn 0
P= % % 0 0 b= % % 0 0 - (412)
* % * 0 * % * 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

/ / 2 2 .2
Doz +asaxy  agaxa 1, (py; +asax a; x
_ P n Hy = (( 23 )" )

by 2
Pis

H (4.13)

D23 pia 2 P

Lie group Alé’_lz
Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
group A;é’fl as follows:

Opiz pi3 0 0 plo+azsxs+anxy  “2LE2 0
p_|*0 paze > page™ o 0 asze”>"x3 agae xy (4.14)
* % 0 0 ’ " % 0 0 . (4.
o ¥ 0 * * * 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

as3x3 | AeaXs 1, as3x3 64Xy
H = + Hy = ~(( 24 )%).

, (4.15)
D23 D24 2% pa3 D24

Lie group Angz
Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
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group Ang as follows:

00 0 prge™™ 00 0 x4 (a41x1 —|—a44x4)
| *0p23 O ;| * 0 asaxz +assx; 0
P= x% 0 0 P= * % 0 0 (4.16)
* ok ok 0 * % * 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

a4 X1+ asaxs  aspx2 +as3xs 1 asgix; +assxs asyxy + as3x3
H = + . Hy = ~(( )2+ ( ). (417)
P14 D23 2 P14 P23
Lie group A4 1o:

Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
group Ay 12 as follows:

00 —prae“sin(xs) praecos(xs)
% 0 —prae®cos(xs) —praesin(xy)

P - 0 0 , (4.18)
* % * 0
00 &% (—acos(xs) + Bsin(xs)) —e*(Bcos(xs) + asin(xs))
P/ _ x0 v (ﬁcos(m)—i—asin(m)) €x3(—O£C0S(X4)+ﬁSl'n(X4)) ’ (419)
% % 0 0
* % * 0

where & = asax3 — agaxs and B = aeax3 + asaxs. Now by means of (4.1) and (4.3), the integrals of
motion can be found for this Lie group as follows:

H] _ —2a64x3 — 2a54x4 : Hz _ (a%4 - a§4)x§ + 461546134)63)(4 + (Cl§4 - aé)xﬁ . (4'20)
P14 P14
Lie group A; © Aj:

Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
group Ay B A, as follows:

0p20 O 0azx 0 0

po|* 0 0pu| p_ [+ O 0pytasitacs | 4.21)
* % 0p34 * * 0 ar3xs
x x x 0 * ook % 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

2,2 2.2
_ aaxi | 473X _ay Xy | agxg

H = , Hy = .
P12 D34 2p,  2p%,

(4.22)

Lie group VII ® R:
Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
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group VIIy & R as follows:
0pi20 O 0 azix1 +axpx; 0 0
p_ * 000 P * 0 0 0 - (4.23)
* % 0 paa * * 0 a73x3 + az4x4
* % x 0 * * * 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

ar X1 +anx a73X3 + aj4x 1, arix1 +axnx ar3xs + ajax
Hy — 21X1 22 2+ 73X3 74 47 Hy = ~(( 21X1 22 2)2+( 73X3 74 4)2)' (4.24)
P12 P34 2 P12 D34
Lie group VI, ®R:

Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
group VIy @R as follows:

0pi20 0O 0 ply +an(x1+x2) 0 0

p= [+ 000 p|* 0 0 ) 0 (4.25)
* x 0 pag * * 0p34—|—a73x3 +a74x4)
* % x 0 * * * 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

/ /
Py tanxi+anxy | pigtazxz4-aaxs

H, =+ ,
P12 P34
1, ply+axnx +anx Pha + a73x3 + azaxy
Hy = 2 (( 12 )2+ (2 ). (4.26)
P12 P34
Lie group III & R:

Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
group III® R as follows:

0pi3pi3 O 0 aszsxz azzx3 0

* 0 0 P24 ; * 0 0 aeaX4

* x 0 0 |’ P = x ok 0 0 4.27)
* x x 0 * % * 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

azzxz  AeaXs 1, azx3 A64X4
H, = + Hy = (( >+ )).

D13 pa 2% pi3 D24

(4.28)

Lie group II ® R:
Inserting P and P’ in (2.12) one can obtain the compatible Poisson structures P and P’ on the Lie
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group II® R as follows:
Oprapiz O 0 agaxs p'3+aznxy — asaxs asxs
*x0 0 O * 0 2 0
P= P = 23 4.2
x x 0 pag |’ kK 0 0 (4.29)
* x *x 0 * ok * 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

2 !
auxy A44(a44P34X5 — 2P12P3X4)
1= ) =

2 . (4.30)
P2 2ptap3a

5. Some compatible Poisson structures on symplectic nilpotent six dimensional
real Lie algebras

In this section, we will solve matrix equations (2.17), (2.21) and (2.22) for symplectic nilpotent six
dimensional real Lie groups in order to obtain P and P’. The list of symplectic real six dimensional
nilpotent Lie algebras is given in appendix B. Note that for calculating P and P’ from (2.21) and
(2.22) we must first calculate vielbeins e/ for nilpotent 6-dimensional real Lie groups. To this end,
we use the following relation:

g 'dg=elXydx* gc€G (5.1
With the following parameterizations for the real 6-dimensional Lie groups G:

g= X1 X1 eszzex3X3 eX4X4ex5X5 ex6X6 ) (52)

where X; and x; are generators and coordinates of Lie group, respectively. Then, for left invariant
Lie algebra valued one forms, we have:

g 14 g =dx; o X6X6 p—¥5Xs ,—xaXy ,—23X3 ( e X2 X, X2 ) £33 p¥aXa pxsXs x6Xo
+dx2e_x6x6e_x5x5 e 4Xa (e—X3X3X2€X3X3 )6X4X4 555 p¥6Xo

+dxs e ¥6X6 p—X5Xs ( e YaXa X; oF4Xa ) £"5%5 p¥6X6

+-dxge % (e75%5 X, %5%5) %6 |- dxse %o X5e*6%6 1 dxg Xy (5.3)
such that, for this calculation one can use the following relation [7]
(e”‘fX"X jex"X" )= (e""%') ka, 5.4

in which we have a summation over the index k on the right hand side but there is not summation
over the index i. In this way one can calculate all left invariant one forms and vielbeins.

Let us consider an example for calculating of P and P’; for Lie algebra Ag ; we have the follow-
ing non zero commutators and the matrices 2; and %':

lej,ex] =e3, [ej,e3] =e4, [e],es] =eq, (5.5)
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2

A5 =

000001
000000
000000
000000
000000
000000

0000-10
0000 0 O
0000 0O
0000 0O
1000 0 0O
0000 0 O

, Fi=Xe=Y"' =W = =

001000
000000
000000
000000
000000
000000

0-10000
100000
000000
000000
000000
000000

, 23

000100
000000
000000
000000
000000
000000

00-1000
000000
10 0000
00 0000
00 0000
00 0000

000000
000000
000000
000000
000000
000000

For the Lie algebra Ag | the vielbein matrix el has the following form:

10)62)630)65
010000
001000
000100
000010
000001

(5.6)

5.7

Now, substituting 2;, %% and el in (2.17), (2.21) and (2.22) one can obtain the compatible Poisson

structures P and P’ for Lie algebra Ag ;. One of the solutions has the following forms:

00 0 piu0 0
*0pys 0 00

P34 0 p3g
00O

* 0 pse
* x 0

o

* %
* %
* %

* % ¥

X %

00 O

* ok

)

/
, P=
* %

*
x *
X %k *

C44P14X4 0 0
0 0 0

caaxgs 0 0
0 0 O
* 0 €65X5
x *x 0

(5.8)

In this way we have obtained some compatible Poisson structures (P is constant and P’ as linear
function of Lie group coordinates) on symplectic nilpotent six dimensional real Lie algebras, the

results are summarized in Table 2.
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Table 2: Compatible Poisson structures on nilpotent 6-dimensional real Lie algebra.

g Non-zero Poisson structure relations Comments
As1 P {xi,xa}=pu, {x,x3}=px3, {x3,0}=pu, {x,x}=pw, {x5,%} = Pse P1ap2s #0
P {xnxg} =0 o s} = by, {x3,x4} = caaxa, {x5,%6} = eqss
Ae7 P {xixst=pis, {x,x6}=pa, {x3,x} =psa, {xa,x5} = pss P15P26P34 7 0
P {xpast=EEE, {n,x6} = beaxa +beexe , {x3,x4} = ca3x3
Aso P {x1,xa}=pua, {x2,x6} = —p3s, {x3,x5} = p3s, {x3,%} = P36, {x4,%} = pas; P1ap3s #0
{xs5.x6} = ps6
P {x1,xa} = agixy +agxg + 402 {x2,x6}=*%7
{305} = P22 fy w6} = coaxa +coss 5 {2, %6} = dexa , {5, %6} = egpry — 2L
Asps P {x1,x3} =pi13, {x2,x5} = pas, {x4,%} = pas P13P25P4as 7 0
P {x,x3} = azix1 +azzxg , {x2,x5} = bspxa +bssxs , {x4, X6} = deaxs + deeXe
Asos P {x1,x;}=pi13, {x2,x4} =pa, {x3,%} = p3s, {¥5.%} = Ps6 P13p24ps6 7 0
P {xi,x3) =azixn, {x2,x4) = baoxa +bagxs , {x5,%6} = egsxs
Asae P {xixu}=pu, {nxsh=pa, (o) =220 L xs} = pss, {x3,x6} = L3, P13p24pse # 0

d. de
{xa,xs} = SE {o,x6} = L% {xs,x6} = pso

P {x1, ) = asxs, {x2,x3} =bxnxy, {x3,x4} = casxs, {x4,x5} =dsaxy ,

dsseesXe
64

{x4,x6} = doaxs , {x5,%6} = es5x5 —
Aso1 P {xi,x}=pi2, {x1,03} =p13, {x2,x} =pu, {x5,%}=pse P13p24Ps6 7 0
P {xy,x3} =az3xz, {x2,x4} = baaxs, {xs5,%6} = egs5x5 +esx6
ae3 P23 +ars pse

Asz2 P {xi,xb=pr2, {x1,x4) = —pa, {x1,%} = 20 {x %3} = pa3, {xs5,%} =pse  P23pse £ 0
33
P {x1,x0} = —b33x1 — baaxy +an3x3 + aaxs +assxs , {x1,x4} = —b33x3 — b3axs,

ae3 (b33bzs+asrsees )x. (5

{xl 7x6} — 6163)63 + ()'5( 33 314)%3 25 6()) 4 JF a25€65l5b33(125366/¥6 R {XQ,X:;} — b33x3 +b34x4 ,
ae3€66X:

{5, X6} = “FEH +eg5x5 + €666

6. Integrable bi-Hamiltonian systems on symplectic nilpotent six dimensional
real Lie groups

In this section, we construct the integrable bi-Hamiltonian systems with symplectic nilpotent six
dimensional real Lie groups as phase space. Using the matrices P and P’ given in Table 2 and
inserting P and P’ in (2.12) and using the related vielbeins as in appendix B the compatible Pois-
son structures P and P’ on Lie groups are obtained, then using (4.1) and (4.3) one can find the
Hamiltonian and integrals of motions of bi-Hamiltonian systems. In the following we perform this
work separately for symplectic nilpotent six dimensional real Lie groups. In this way we obtain new
bi-Hamiltonian systems over nilpotent six dimensional real Lie groups as phase spaces.

Lie group Ag ;:
Inserting P, P’ and vielbeins matrix in (2.12) one can obtain the compatible Poisson structures P

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
162



J. Abedi-Fardad et al. / Compatible Poisson structures and integrable bi-Hamiltonian systems

and P’ on the Lie group Ag.1 as follows:

000 pu 0 0 00 0 =00
* 0 pa3 0 0 0 * 0 b3oxy 0 0 0
0 CaaP14%2%4 () 0
p_|** 0 pa +OP14XQ 8 P | pr_ * % caaxy + HES Do Len
X k% —P14X5 * k% 0 0 —
X ok % * 0 pse Xk ok * 0  eesxs
* ok ok * * 0 * % ok * * 0

Now by means of (4.1) and (4.3), the integrals of motion can be found for this Lie group as follows:

baxxy  caaX4  egs5Xs 1, b3xxs C44X4 €65X5
Hi=="=4+="=4 = W= ((— =P+ (- =)+ (= )),
P23 P34 Ps6 P23 P34 Ps6
1, b3xy 3 CaaXs 3 ,€65X5.3
Hy = — T+ T+ . (6.2)
3(1723) (P34) (P56))
Lie group Ag 7:

Inserting P, P’ and vielbeins matrix in (2.12) one can obtain the compatible Poisson structures P
and P’ on the Lie group Ag 7 as follows:

000 O P15 0 000 O asixi 0
*x00 0 0 P26 *x00 O 0 berxr + begxe
* % 0 p3g 0 0 / * % 0cg3x3 0 0
xx% 0 pas+pisxzs 0 |’ xxx 0 asxx 0 6.3)
%k %k 0 0 ¥k ok % 0 0
* ok ok ok * 0 * % % % * 0
Now by means of (4.3), the integrals of motion can be found for this Lie group as follows:
Hy = 9 berx2 L Casxs besXo CHy— 1((a51x1 24 (SN0, (b62x2+b66x6)2) ’
P15 P26 P34 P26 2% pis P34 P26
1, asix C43X3 berxa + besxe
Hy = S(BE)7 (25)34 ¢ ?). 64)
P15 P34 P26
Lie group Ag o:

Inserting P, P’ and vielbeins matrix in (2.12) one can obtain the compatible Poisson structures P
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and P’ on the Lie group Ag 9 as follows:

000 pa O 0
*x00 0 0 — P35
* x 0 praxa p3s P36
P= 6.5
xxx 0 0 pag+1/2p1ax3 — praxs (6:5)
xxx x 0 Ps6
¥k k% * 0
000 a41x; —i—%’%xz—l-amlm 0 0
£00 0 0 — daapst
2
po | 0 agixix2 + a“%:’xz + agaxaxs % C62X2 + C65X5
B % % 0 0 2dep p3sx2+(ast P3sx1 +aas pagXa+dasp3sxs) (x5 —2xs)
2p3s
% % % * 0 e6axy — dﬁz[i’%xs
%k % * * 0
Now by means of (4.3), the integrals of motion can be found for this Lie group as follows:
H, = 41P3sPeh +2der prap3sxa + asapas(Pasxa + p3sxs)
P14P35D46 ’
H), = 1((4d62X2)2+ (a41p35X1 Jra44p463€2Jra4411735X4)2Jr aq1X1 +“44(p;§:2 +x4)>2)
47" pas P14D35 D14 ’
DagX
H3 = 1((4‘162)62)3 n (61411935?61 +a44p46x2+a44p35x4)3 n (a41x1 +ag (7 +x4))3)‘ 6.6)
6" pas P14P35 P14
Lie group Ag4:

Inserting P, P' and vielbeins matrix in (2.12) one can obtain the compatible Poisson structures P
and P’ on the Lie group Ag 24 as follows:

00 p3 0 0O 00 azix; +azxz 0 0 0
*00 0 pys O * 0 0 0 bspxp + bssxs 0
*xx0 0 0 O , * 0 0 0 0
P= xx*x 0 0 pag B = * % * 0 0 deaxs +deexe | ©.7
xxx x 0 0 % % * * 0 0
xx%x x x 0 % % * * * 0
Now by means of (4.3), the integrals of motion can be found for this Lie group as follows:
b b d d,
Hi — az|xX1 +aszxs n 52X2 1 D55X5 n 64X4 1 de6X6 7
P13 P25 Pas
1, azix) +azsx; bsyxa + bssxs deaxs + desxe
H = (( P+ ( P (T
P13 P25 Pas
1, azix) +azsx; bsyxa + bssxs deaxs + desxe
Hy = 3 (( ) +( )+ (————2)). (6.8)
P13 P25 Pas
Lie group Ag »s:

Inserting P, P’ and vielbeins matrix in (2.12) one can obtain the compatible Poisson structures P
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and P’ on the Lie group Ag »s as follows:

00p;3 00 O 00 aszx 0 0 0
*0 0 p2a 0 poaxs *0 0 bapxp + basxs 0 bapxoxs + baaxsxs
| *x*x 0 0 0 p3 ;| x*x 0 0 0 0
P= xx x 00 O P = * k% 0 0 0 6.9)
x*% x *x 0 psg Xk ok * 0 €65X5
xx % x x 0 * k% * * 0
Now by means of (4.3), the integrals of motion can be found for this Lie group as follows:
aszlx bapxs +baaxs  egsx 1, azx bapxy + baaxy 65X
Hy= =2 2 2 Hy = () PHE),
P13 P24 Ps6 P13 P24 Ps6
1, azix bazxs + baaxy €65X5
Hy = 2 (= =)+ ( )+ (=), (6.10)
P13 P24 Ps6
Lie group Ag »:

Inserting P, P' and vielbeins matrix in (2.12) one can obtain the compatible Poisson structures P
and P’ on the Lie group Ag 26 as follows:

000 P14 0 0
* 0 p23 0 0 0
%k () 4P dosap3s
P= an T P14%2 s (6.11)
% % % O 54P14 64P14
ag am
* ok ok * 0 pss
* k% * * 0
00 O a44X4 0 0
x 0 b3oxn 0 0 0
;| 0  cagxg+agaxoxs O 0
P = * %k * 0 d54)€4 d(,4X4 (6'12)
Kk %k * 0 egsxs— 7‘15456645"6
% %k * * 0
Now by means of (4.3), the integrals of motion can be found for this Lie group as follows:
b3ox a44x ee5(deaxs — dsax 1 bypx 44X, ee5(deaxs — dsax
= R 65 (deaxs — dsa 6)’ Hy = LBy (e 65 (deaxs — dsaxe) \» 7
P23 P4 deapse 2% pxy P4 deapse
1, byoxy 5 assxs 3 ee5(deaxs —dssxe) 5
H; = = + + . (6.13)
3(( P23 o P4 i deapse y)
Lie group Ag7:

Inserting P, P’ and vielbeins matrix in (2.12) one can obtain the compatible Poisson structures P
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and P’ on the Lie group Ag 27 as follows:

0 P12 P13 000 00 aszzxs 0 O 0
* 0 0 D24 00 *x0 O b44)C4 0 0
*x 0 000 , xx 0 0 O 0
P= * « x 000 B = * ok % 0 0 (6.14)
* ok x ok 0psg *x % x 0 epsxs +eeeXs
* % x x x 0 * % % * % 0
Now by means of (4.3), the integrals of motion can be found for this Lie group as follows:
H = a33x3 baaxy | €6s¥s + es6Xe CHy— 1 ( (6133)63 )+ b44X4)2 " (eésxs +e66x62)) 7
P13 P24 Ps6 2% pi3 P24 Ps6
1 ass3x; baaxs €65X5 1 e66X6
Hy= (5 2) (=) +( P). (6.15)
P13 P24 Ps6

7. Concluding remarks

Using a procedure based on the adjoint representation of the Lie algebra we give a method for cal-
culation of compatible Poisson structures on four and nilpotent six dimensional symplectic real Lie
algebras. Also by use of Magri-Morosi’s theorem we have obtained new bi-Hamiltonian systems
with these Lie groups as phase spaces. It seems that using of the adjoint representation of the Lie
algebra (mainly for low dimensions) is simpler than the Lax-pair method (at least in computation).
As an open problem, one can obtain another set of compatible Poisson structures by setting P’ as
a second order functions of the Lie group parameters and in this way obtain new bi-Hamiltonian
systems.

Appendix A: The list of symplectic four dimensional real Lie algebras [1]

g Non-zero commutation relations g Non-zero commutation relations
As [ex,e4] = €1, [e3,e4] =€ AZ_; ler,e4] = —eq, [e2,e4] = €2, [e3,64] = €2+ €3
Asj ler,eq] =€, [e3,e4] =€ A;;iﬁl [er,eq] =er, [ex,e4] = —er, [e3,e4] = —e3
A;;"b [e1,e4] =eq,[e2,e4] = —ep,[e3,e4] =D es AZ:S_I le1,eq] =ej, [er,eq] =aey, [e3,e4] =—e;3
Ays© [e1,e4] = ey, [e2, e4] = aey, [e3,e4] = —ae3 Aijg ler,e4] =aep, [er,eq] = —e3, [e3,e4] =€
Asz le1,e4] = 2e1, [e2,e3] =1, [er,ea] =€ | AJ [er,eq] =er, [ex,e3] =€, [er,e4] =€

le3.e4] = €2+ €3 Ay fened =1/2e1, [eres] =er, [ereq =€
ALg [e1,e4] =2eq, [ez,e3] =€, [er,e4] = €2 [e3,€4] = —1/2e3

[e3,e4] =e3 Aby ler,e4] = (1+Db)er, [er,e3] =eq, [er,e4] =€)
AZ“ [e1,es] =2be; , [er,e3] =€ [e3,e4] = bes

[e2,e4] = ber —e3, [e3,e4] =€y +De3 Ag1n [er,es]=er, [ej.es] =—er, [er,e5]=¢;
A BAr  [er,e] =€, [e3,e4] =€y [e2.e4] =€
VIp®R  [ej,e3]=ep, [er,e3] =e IIIOR [er,ep] = —er—e3, [e],e3] = —er—e;3
VIh®R [e;,e3] =—ey, [er,e3]=¢; IIGR  [er,e3] =e
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Appendix B: The list of symplectic nilpotent 6-dimensional real Lie algebras and vielbeins matrix

g

Non-zero commutation relations

vielbeins matrix

Ag 1

Ag3

Aga

As6

Ag7

Ag8

10X2X30X5

010000
[er,e2] =e3
RSE N
e1,es] = eg 000 010
000 001
10X2X3X4X5
[e1,e2] =e3 010000
[81,63]264 001 00O
le1,€4] = €5 000100
[61,65]266 000010
000 0 01
100)(3 0X2
0100x30
[e1,e2] = e
SRSE oot
[e2,€3] =es 0000 1 0
0000 0 1
1000)62)63
01000 x4
[er,e2] =es
RSE oot
[e2,€4] = €5 00001 0
00000 1
o IOOOX3 X4
Eﬁﬂ ;zz 0100 x4 axs
[e2.¢3] = a e oo
[ez’:“_]ifS 00001 0
o 00000 1
100)(3)64)65
[el,ez]:e() 0100)63 0
[61,83]264 001000
[81764]285 000100
[e2,e3] = es 000010
0000 01
100)(3)640
0100 0 x3
ler,e3] =eq4
fe1.e4] = es oot
e2,€3] = €6 0000 1 0
0000 01
10x x3 xp fx%/2
[e1,e2] = e3+es 82)(1) 8 8 )2)5
[e1,€3] = €4 00010 0
e2,e5] = eg 00001 0
000 0O 1

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors
167



J. Abedi-Fardad et al. / Compatible Poisson structures and integrable bi-Hamiltonian systems

g Non-zero commutation relations  vielbeins matrix
10xx30 7)(%/24*)(5
[81,82}263 01000 X3
A [91,93}264 00100 0
69 lej,es] =eg 000 10 0
[82,83}266 000 01 0
00000 1
le1,e2] =e3 10x0x3 7ax%/2+X4
[el,eg} =e€5 010 OX4 axs
A [91,94}266 00100 0
610 ey e3] =aeg 00010 0
[eg,e4}:e5 00001 0
a==+1 00000 1
10x x3 x4 fx%/Z
[e1,e2] =e3 01000 x3
A [91,93}264 001 00 0
611 lej,eq] =es 00010 O
[82,83}266 000 01 0
00000 1
10x x3 xp fx%/2+x4
[e1,ex] = ez +es 01000 X5
A [91,93}264 001 00 0
015 ey eq] = e 00010 0
[e2,e5] =eg 000 0 1 0
00000 1
IOOX3 X4 X5
{e"eﬂ;e“ 0100 x3 x4
e1,e] = es 00100 0
Ag16  [e1,e5] =eg 00010 0
[e2,€5] = e 0000 1 0
[e2,€a] = €6 0000 0 1
IOXZ X3 OX4
le1,e2] =e3 010 00uxs
A [61,63}264 001 000
017 ey eq] =eg 000 100
[e2,e5] = eg 000010
000001
le1,e] =e3 10x x3 fx%/Z ax%/6+x4
[el,eg}:e4 0100 X3 axs
A [91,94}296 0010 0 0
618 ey, e3] = e5 0001 O 0
[e2,es] =aeg 000 0 1 0
a# 0000 O 1
_ 10xp x3 x4 —X3/2+xs5
Eiﬁﬂlﬁi 01000  x0
A e ’e}:e 001 00 0
619 [e1,ea] =es 000 10 0
Eiﬂ;zz 00001 0
’ 00000 1
le1,e2] =e3 10 x x3 7x%/2+X4 X5
[81,83}264 0100 X3 X4
A [91,94}:(&5 0010 0 0
620 lej,es] =eg 000 1 0 0
[82,83}265 000 0 1 0
[92,94}266 000 O 0 1
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Non-zero commutation relations

vielbeins matrix

Ag24

Ag 25

Ag.26

Ag 27

Ag 28

Ag 31

Ag32

ler,e0] =e3
ler,ex] =e3
[es,e5] = eg
ler,e2] =e3
le1,e3] =4
[e3,e5] = e
[e4,e5] =€,
[e2,e5] =
[e3.e5] =€)
[e4,€5] = €3
[e3,e4] =€
[e2,e5] =
[e3,e5] = €2

10x000
010000
001000
000100
000010
000001
10x000
010000
001000
000 10xs
000010
000001
10)62)6300
010000
001000
000100
000010
000001
100000
010000
x5 01000
0x0100
000010
000001
1 0 0000
xs 1 0000
x2/2 xs 1000
x3/6x3/2x5 100
0 0 0010
0 0 0001

1 00000
xs 10000
x4+x2/2x51000
0 00100
0 00010
0 00001
1 0 0000
X5 1 0000

x4+x2/2 x5 1000
x3/6 x3/2x5100
0 0 0010
0 0 0001
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