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We identify a new class of algebraic relations satisfied by the zeros of orthogonal polynomials that are eigen-
functions of linear differential operators of order higher than two, known as Krall polynomials. Given an orthog-
onal polynomial family {pν (x)}∞

ν=0, we relate the zeros of the polynomial pN with the zeros of pm for each
m ≤ N (the case m = N corresponding to the relations that involve the zeros of pN only). These identities are
obtained by finding exact expressions for the similarity transformation that relates the spectral and the (inter-
polatory) pseudospectral matrix representations of linear differential operators, while using the zeros of the
polynomial pN as the interpolation nodes. The proposed framework generalizes known properties of classical
orthogonal polynomials to the case of nonclassical polynomial families of Krall type. We illustrate the gen-
eral result by proving new identities satisfied by the Krall-Legendre, the Krall-Laguerre and the Krall-Jacobi
orthogonal polynomials.

Keywords: Zeros of orthogonal polynomials; nonclassical orthogonal polynomials; Krall polynomials; spectral
methods; pseudospectral methods.
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1. Introduction and Main Results

We identify a class of algebraic relations satisfied by the zeros of a wide class of orthogonal poly-
nomials. The proposed general result holds for all polynomial families {pν(x)}∞

ν=0 orthogonal with
respect to a measure satisfying some standard assumptions, as long as the polynomials in the fam-
ily are eigenfunctions of a linear differential operator. We show that this result generalizes known
properties of the classical Jacobi, generalized Laguerre and Hermite polynomials to the case of the
nonclassical orthogonal polynomials of Krall type that are eigenfunctions of linear differential oper-
ators of order higher than two [30]. We illustrate the main theorem by proving new properties of the
Krall-Legendre, the Krall-Laguerre and the Krall-Jacobi orthogonal polynomials.

This paper generalizes results on the properties of the zeros of classical orthogonal polynomials
proved in [1, 28] to the case of nonclassical orthogonal polynomials of Krall type, see Subsec-
tion 2.1 for more details. While [28] and other papers presenting results of similar nature [5–8] use
linearization of certain nonlinear systems of ODEs about their equilibria, we propose a different
method that utilizes approaches of numerical analysis, in particular the spectral methods for solv-
ing differential equations, cf. [2]. Our choice of basis for the construction of the spectral matrix
representations leads to a particularly straightforward proof of identities presented in [28] and their
natural generalization to the nonclassical orthogonal polynomials of Krall type.
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This paper is a contribution to the study of orthogonal polynomials: see [29] for a classical treat-
ment, [19] for a compilation of results on Askey scheme polynomials, [18] for a modern treatment
with a list of open problems and [17, 24, 25] for applications to interpolation, numerical integra-
tion and other areas. In particular, we focus on the zeros of orthogonal polynomials and propose
several remarkable identities satisfied by them, continuing the pursuit undertaken in several recent
developments [2, 5–8, 28]. This pursuit is motivated by the understanding that the zeros of orthog-
onal polynomials appear in several areas of mathematics and physics. For example, the zeros of
orthogonal polynomials can be used as interpolation nodes to yield high accuracy approximation
schemes in numerical analysis [24, 26], some zeros turn out to be equilibria of important N-body
problems [10–12], others transpire as building blocks of remarkable isospectral matrices [5–8]. The
remarkable and distinct feature of the proposed identities is that they relate the zeros of the polyno-
mial pN(x) from an orthogonal family {pν(x)}∞

ν=0 with the zeros of a polynomial pm(x) from the
same family, where m≤ N (in the case where m = N the identities relate the zeros of pN(x) among
themselves). These identities can be viewed as properties of certain isospectral matrices defined in
terms of the zeros of orthogonal polynomials; in this paper we provide both the eigenvalues and the
eigenvectors of the matrices.

Here and throughout the rest of the paper N denotes a fixed positive integer. The small Latin
letters n,m, j,k etc. denote integer indices that run from 1 to N (except for ` that is reserved to
denote polynomials in the Lagrange interpolation basis), while the small Greek letter ν denotes an
integer index that takes values 0,1,2 . . ., unless otherwise indicated. Also, δ (x) and H(x) denote the
standard Dirac delta and the Heaviside functions, respectively.

Let {pν(x)}∞
ν=0 be a sequence of polynomials orthogonal with respect to a measure ω and

the corresponding inner product 〈 f ,g〉 =
∫

f g dω . We denote the norm associated with this inner
product by ‖ ·‖, that is, ‖ f‖2 =

∫
f 2 dω . Assume that ω is a Borel measure with support on the real

line satisfying the following three conditions:

(a) ω is positive;
(b) all its moments

∫
xν dω exist and are finite;

(c) ω has infinitely many points in its support I = suppω .

Under the above assumptions on the measure ω , the zeros of each polynomial pν , ν ≥ 1, are real,
simple and belong to the convex hull of the support of ω , see for example [13].

Let Pν denote the space of all algebraic polynomials with real coefficients of degree at most ν .
Assume that for every ν , {p j(x)}ν

j=0 is a basis of Pν . Let A be a linear differential operator acting
on functions of one variable. Assume that A has the property

A Pν ⊆ Pν (1.1)

for all ν . For example, the differential operator D = a0 + a1(x) d
dx + . . .+ aq(x) dq

dxq with q ∈ N and
a j(x) ∈ P j for all j = 0,1,2, . . . ,q has property (1.1).

Suppose that the orthogonal polynomials {pν(x)}∞
ν=0 form a system of eigenfunctions for the

differential operator A . We prove algebraic relations satisfied by the zeros of the polynomial pN(x)
from the orthogonal family {pν(x)}∞

ν=0. Our method is to compare the spectral and the pseudospec-
tral matrix representations of the differential operator A , while choosing the zeros of pN(x) as the
nodes for the Lagrange collocation in the pseudospectral method.
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More precisely, we define the N×N spectral matrix representation Aτ of the linear differential
operator A componentwise by

Aτ
k j =

〈A p j−1, pk−1〉
‖pk−1‖2 , (1.2)

where the superscript τ indicates that the τ-variant of the spectral method is used [15].
Using the pseudospectral method, which is also known as spectral collocation method [15], we

define another N×N matrix representation Ac of A as in [3, 4] by

Ac
k j = (A ` j)(xk), (1.3)

where the superscript “c” stands for “collocation”, x1, . . . ,xN are N distinct interpolation nodes and
` j(x) are the Lagrange interpolation polynomials of degree N−1 with respect to these nodes. Recall
that

` j(x) =
ψN(x)

ψ ′N(x j)(x− x j)
, (1.4)

where ψN(x) = (x− x1)(x− x2) · · ·(x− xN) is the node polynomial.
We show that the N×N matrices Aτ and Ac are similar:

Ac = L−1AτL, (1.5)

where the similarity matrix L is given in Theorem 3.1 stated and proved in Section 3. This simi-
larity property allows to recover several known isospectral matrices constructed using the N nodes
x1, . . . ,xN [9, 10, 28]. Indeed, because the eigenvalues of the matrix Ac coincide with those of Aτ ,
these eigenvalues are independent of the nodes x1, . . . ,xN as long as the eigenvalues of Aτ do not
depend on the nodes.

We focus on the case where the interpolation nodes x1, . . . ,xN are the zeros of the polynomial
pN(x) from the orthogonal family {pν(x)}∞

ν=0. Recall that under assumptions (a,b,c) on the measure
ω the nodes are distinct and real. In this case the similarity matrix L becomes particularly neat:
L = PΛ, where the N×N matrix P is given componentwise by Pjk = p j−1(xk)/‖p j−1‖2 and Λ is a
diagonal matrix with the Christoffel numbers λ j on its diagonal, see Theorem 3.1.

Christoffel numbers play an important role in the proof of Theorem 3.1, although they are elim-
inated from the main identity of Theorem 1.1 in the process of inversion of the matrix L = PΛ,
see (3.12). Recall that Christoffel numbers arise in the Gaussian quadrature numerical integration
formulas. They are defined by

λ j =
∫

` j(x)dω (1.6)

and are always positive [24].
Using the similarity transformation for the matrices Aτ and Ac, we prove the following properties

of the zeros of the polynomial pN .

Theorem 1.1. Suppose that the polynomials pν in the orthogonal family {pν(x)}∞
ν=0 are the eigen-

functions of a linear differential operator D with the corresponding eigenvalues µν ,

D pν(x) = µν pν(x), (1.7)

so that condition (1.1) is satisfied. Let ~x = (x1, . . . ,xN) be a vector that consists of the N distinct
real zeros of the polynomial pN from the orthogonal family {pν(x)}∞

ν=0. Let Dc ≡ Dc(~x) be the
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pseudospectral matrix representation of the operator D defined by (1.3). Then for all integer m,n
such that 0≤ m≤ N−1 and 1≤ n≤ N the following algebraic relations hold:

N

∑
k=1

[Dc]nk(~x)pm(xk) = µm pm(xn). (1.8)

In other words, the N-vectors v(m) defined componentwise by v(m)
n = pm(xn) are eigenvectors of the

matrix Dc with the corresponding eigenvalues µm, where m = 0,1, . . . ,N−1. In particular, if m = 0,
identity (1.8) reduces to

N

∑
k=1

[Dc]nk(~x) = µ0, (1.9)

where 1≤ n≤ N.

This theorem is proved in Section 3.

Remark 1.1. Note that identity (1.8) relates the zeros x1, . . . ,xN of the polynomial pN with the
zeros of the polynomial pm if 1 ≤ m ≤ N− 1, while identity (1.9) relates the zeros of pN among
themselves.

Remark 1.2. Note that D pν = µν pν implies Dα pν = (µν)
α pν for every positive integer α . There-

fore, Theorem 1.1 can be applied to the operator Dα . The algebraic relations (1.8) and (1.9) are thus
valid if the matrix Dc is replaced by (Dc)α and the eigenvalues µm are replaced by (µm)

α .

Remark 1.3. Note that the matrix Dc has the eigenvalues µ0,µ1, . . . ,µN−1 as long as x1, . . . ,xN are
N distinct real numbers, which follows from the similarity of the matrices Dc and Dτ and the fact
that Dτ is diagonal with the main diagonal (µ0,µ1, . . . ,µN−1), see (1.5), (1.2) and (1.7). Therefore,
the properties of the zeros x1, . . . ,xN of the polynomial pN are not revealed by the fact that the matrix
Dc has the eigenvalues µm, but rather by the fact that this matrix has the eigenpairs

(
µm,v(m)

)
with

the components of the eigenvectors defined by v(m)
n = pm(xn), where m = 0,1, . . . ,N−1.

Remark 1.4. The orthogonality property of the polynomials {pν(x)}∞
ν=0 is crucial in the proof of

Theorem 1.1. In particular, the neat relations for the transition matrix L outlined in the paragraph
after display (3.1) hold only for the case where x1, . . . ,xN are the zeros of the polynomial pN from
an orthogonal family {pν(x)}∞

ν=0. Moreover, the spectral matrix representation Dτ of the differen-
tial operator D in Theorem 1.1 is a diagonal matrix if and only if the polynomials {pν(x)}∞

ν=0 are
orthogonal with respect to the measure ω . On the other hand, relation (1.5) is true for all polyno-
mials, orthogonal or not, whether or not these polynomials are eigenfunctions of the differential
operator A . This relation is essentially a statement about N arbitrary distinct numbers x1, . . . ,xN ,
which are the interpolation nodes that are used to construct the pseudospectral representation of the
differential operator A . In the case where the polynomials {pν(x)}∞

ν=0 satisfy differential equa-
tions (1.7), regardless of whether they are orthogonal or not, the zeros~x = (x1, . . . ,xN) of the poly-
nomial pN(x) from the family {pν(x)}∞

ν=0 satisfy the relation Dc(~x) = L−1Dτ(~x)L, where the matrix
Dτ(~x), given componentwise by Dτ

k j = µ j−1
〈p j−1, pk−1〉
‖pk−1‖2 , is not necessarily diagonal.

In the next section titled “Examples” we apply Theorem 1.1 to several orthogonal polynomial
families. We show that the theorem yields known results if applied to classical orthogonal polyno-
mials and prove new identities satisfied by the zeros of some nonclassical orthogonal polynomials.
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In Section 3, “Proofs”, we elaborate on the proofs of most of the theorems of this paper, except for
those that are straightforward consequences of another theorem. In Section 4 titled “Conclusion and
Outlook” we summarize the results proposed in this paper and discuss their importance, possible
applications and further developments. Appendix A is devoted to computation of pseudospectral
matrix representations of several differential operators.

2. Examples

In this section we use Theorem 1.1 to recover known properties of the classical Jacobi, generalized
Laguerre and Hermite orthogonal polynomials, thus showing that Theorem 1.1 generalizes known
properties of classical orthogonal polynomials to the case of nonclassical orthogonal polynomials.
We then illustrate the general result of Theorem 1.1 by proving new and remarkable properties of
the nonclassical Krall-Legendre, Krall-Laguerre and Krall-Jacobi orthogonal polynomials.

2.1. Classical Orthogonal Polynomials

Suppose that {pν(x)}∞
ν=0 is one of the classical orthogonal polynomial families – Jacobi, general-

ized Laguerre or Hermite – meaning that these polynomials are eigenfunctions of a second order
linear differential operator

D = σ(x)
d2

dx2 + τ(x)
d
dx

, (2.1)

where σ ,τ are polynomials of degree at most two and one, respectively. In formulas,

D pν = µν pν , (2.2)

where the eigenvalues µν are real and are given by [25]

µν = ν [τ ′+
1
2
(ν−1)σ ′′], τ

′ 6= 0. (2.3)

Suppose that a weight w(x) satisfies the Pearson equation d
dx [σ(x)w(x)] = τ(x)w(x) and the condi-

tions σ(x)w(x)xk = 0 on the boundary of an interval (a,b). Then the polynomials {pν(x)}∞
ν=0 are

orthogonal with respect to the weight w(x) on the interval (a,b). For each of the three cases of the
classical orthogonal polynomials – Jacobi, generalized Laguerre or Hermite – the specific values
of the coefficients σ(x) and τ(x) in the differential operator (2.1) and of the weight function w(x)
together with the orthogonality interval (a,b) can be found in [25].

Let x1, . . . ,xN be the N distinct real zeros of pN . Let {` j(x)}N
j=1 with ` j(x) =

pN(x)
p′N(x j)(x−x j)

be
the standard interpolation basis constructed using the zeros x1, . . . ,xN of pN(x) as the interpola-
tion nodes, compare with (1.4). Then the pseudospectral matrix representation of the differential
operator D is given by

Dc
mn = (D`n)(xm)

=

{
− 2σ(xm)

(xm−xn)2
p′N(xm)
p′N(xn)

if m 6= n,

− τ(xn)
6σ(xn)

[τ(xn)−2σ ′(xn)]+
1
3(N−1)[τ ′+ 1

2 Nσ ′′] if m = n,
(2.4)

see Appendix A.1. Upon substitution of (2.3) and (2.4) into equality (1.8) of Theorem 1.1, we obtain
remarkable identities for the zeros x1, . . . ,xN of pN(x). These identities are known, see [1, 28], thus
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we do not state them here explicitly. More precisely, in [28] it is shown that the N ×N matrix
M defined componentwise by Mnm = −(D −µN)

[
πm
πn
`m(x)

]∣∣∣
x=xn

= πm
πn

(−[Dc]nm +µNδnm) has the

eigenvalues µN − µm and the corresponding eigenvectors v(m) defined componentwise by v(m)
n =

pm(xn)
πn

, where πn are defined by (A.2). The last result also follows from Theorem 1.1 in this special
case of classical orthogonal polynomials. Thus, Theorem 1.1 generalizes the results proved in [1,28]
to the case of nonclassical orthogonal polynomials. It is interesting to note that the result in [28] is
obtained using a different method of perturbations of certain dynamical systems around the zeros of
classical orthogonal polynomials. The method employed in this paper reveals additional meaning of
the identities obtained in [28], by showing that these identities stem from the similarity of two matrix
representations of the differential operator that characterizes the classical orthogonal polynomials.

2.2. Krall Orthogonal Polynomials that Are Eigenfunctions of Linear Differential
Operators of Order Four

H.L. Krall and A.M. Krall classified orthogonal polynomials that are families of eigenfunctions for
fourth order linear differential operators [20–23]. At present, the term “Krall polynomials” refers
to orthogonal polynomial families {pν(x)}∞

ν=0 such that the degree of each polynomial pν(x) is
ν and, in addition, the polynomials are eigenfunctions of a linear differential operator of order
higher than two [30]. In this section we apply the general result of Theorem 1.1 to prove remarkable
properties of the zeros of the nonclassical orthogonal polynomials of Krall type that are families
of eigenfunctions for fourth order linear differential operators. To the best of our knowledge, these
properties are new. We then consider the particular cases of the Krall-Legendre, the Krall-Laguerre
and the Krall-Jacobi polynomials.

Theorem 1.1 holds also for other orthogonal polynomials satisfying differential equations of
order higher than four, see, for example, [13, 14] and references therein. We leave the derivation of
the properties of the zeros of the latter Krall polynomials to interested readers.

Assume that the orthogonal polynomials {pν(x)}∞
ν=0 are eigenfunctions of a fourth order linear

differential operator

D = a4(x)
d4

dx4 +a3(x)
d3

dx3 +a2(x)
d2

dx2 +a1(x)
d
dx

, (2.5)

where each coefficient a j(x) is a polynomial of degree at most j, j = 1,2,3,4. That is,

D pν(x) = µν pν(x), (2.6)

where µν are eigenvalues of D .
Let x1, . . . ,xN be the zeros of the polynomial pN(x) from the orthogonal family {pν(x)}∞

ν=0.
The N×N pseudospectral matrix representation Dc of the differential operator D with respect to
the nodes x1, . . . ,xN is given componentwise by (A.12) and (A.14), see Section A.2 of Appendix A.
Using these expressions for the components of the matrix Dc, from Theorem 1.1 we derive the
following properties of the zeros x1, . . . ,xN .

Theorem 2.1. Suppose that the polynomials {pν(x)}∞
ν=0 orthogonal with respect to the weight ω

that satisfies conditions (a,b,c) form a family of eigenfunctions of the fourth order linear differential
operator D defined by (2.5), that is, differential equations (2.6) hold. Then for every pair of integers
m,n such that 0≤m≤ N−1 and 1≤ n≤ N, the zeros x1, . . .xN of the polynomial pN(x) satisfy the
identity
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N

∑
k=1,k 6=n

(Bnk)
2 pm(xk)

p′N(xk)

{
4a4(xn)p′′′N (xn)+3

[
a3(xn)−4a4(xn)Bnk

]
p′′N(xn)

−2
[
3Bnk

(
a3(xn)−4a4(xn)Bnk

)
−a2(xn)

]
p′N(xn)

}
,

=

(
−µm−

1
4a4(xn)p′N(xn)

{
a3(xn)−

4
5
[
a′4(xn)+a3(xn)

]}
·
[
a3(xn)p′′′N (xn)+a2(xn)p′′N(xn)+a1(xn)p′N(xn)

]
+

p′′′N (xn)

3p′N(xn)

{
a2(xn)−

3
5
[
a′3(xn)+a2(xn)

]}
+

p′′N(xn)

2p′N(xn)

{
a1(xn)−

2
5
[
a′2(xn)+a1(xn)

]}
−1

5
[
a′1(xn)−µN

])
pm(xn), (2.7)

where

Bnk =
1

xn− xk
. (2.8)

Note that if a4(xn) = 0, identity (2.7) must be understood in terms of an appropriate limiting
procedure as x→ xn, see Remark A.2.

In the following two subsections we apply Theorem 2.1 to the cases of the Krall-Legendre, the
Krall-Laguerre and the Krall-Jacobi polynomials.

2.2.1. Krall-Legendre Polynomials

Let α > 0. A Krall-Legendre polynomial Pν(x)≡ P(α)
ν (x) of degree ν is given by [21]

Pν(x)≡ P(α)
ν (x) =

[ν/2]

∑
k=0

(−1)k(2ν−2k)! [α +ν(ν−1)/2+2k]
2νk!(ν− k)!(ν−2k)!

xν−2k. (2.9)

The polynomial family {Pν(x)}∞
ν=0 is orthogonal with respect to the measure ω given by dω =

w(x)dx, where the weight function

w(x) =
1
2
[δ (x+1)+δ (x−1)]+

α

2
[H(x+1)−H(x−1)] . (2.10)

Note that the measure ω has the Legendre weight 1, times α/2, on (−1,1) and, in addition, Stieltjes
jumps at (−1) and 1. The measure ω satisfies conditions (a,b,c) of Section 1, hence the zeros of
each polynomial Pν(x), ν ≥ 1, are distinct and real.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

501



O. Bihun / New Properties of the Zeros of Krall Polynomials

The Krall-Legendre polynomials form a system of eigenfunctions for the fourth order differen-
tial operator D defined by

D =
d2

dx2

[
(1− x2)2 d2

dx2

]
+4

d
dx

{[
α(x2−1)−2

] d
dx

}
= (1− x2)2 d4

dx4 +8x(x2−1)
d3

dx3 +4(3+α)(x2−1)
d2

dx2 +8αx
d
dx

, (2.11)

that is,

DPν(x) = µνPν(x), (2.12)

where

µν = ν(1+ν)(−2+4α +ν +ν
2). (2.13)

Let x1, . . . ,xN be the distinct real zeros of PN(x). The N×N pseudospectral matrix represen-
tation Dc of the operator D with respect to these nodes is then given by (A.16) and (A.17), see
Appendix A.2.1.

By applying Theorem 1.1 in the setting of the Krall-Legendre polynomials, we obtain the fol-
lowing results.

Theorem 2.2. Let x1, . . . ,xN be the zeros of the Krall-Legendre polynomial PN(x) defined by (2.9).
Then for all n = 1,2, . . . ,N and m = 0,1, . . . ,N−1 we have

N

∑
k=1,k 6=n

(Bnk)
2Pm(xk)

P′N(xk)

{
4(1− x2

n)
2P′′′N (xn)

−12(x2
n−1)

[
Bnk(x2

n−1)−2xn

]
P′′N(xn)

+8(x2
n−1)

[
3B2

nk(x
2
n−1)−6Bnkxn +α +3

]
P′N(xn)

}

=

{
−m(m+1)(m2 +m+4α−2)

+
8α(x2

n−1)
15

[
P′′′N (xn)

P′N(xn)

]
+

12αxn

5

[
P′′N(xn)

P′N(xn)

]

+

[
8α(x2

n +1)+N(N +1)(N2 +N +4α−2)(x2
n−1)

5(x2
n−1)

]}
Pm(xn) (2.14)

where the quantities Bnk are given by (2.8).

2.2.2. Krall-Laguerre Polynomials

Let α > 0. A Krall-Laguerre polynomial Rν(x) of degree ν is given by [21]

Rν(x) =
ν

∑
k=0

(−1)k

(k+1)!

(
ν

k

)
[k(α +ν +1)+α]xk, (2.15)

note a misprint in the definition of Krall-Laguerre polynomials in [21].
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The polynomial family {Rν(x)}∞
ν=0 is orthogonal with respect to the measure ω given by dω =

w(x)dx, where the weight function

w(x) =
1
α

δ (x)+ e−xH(x). (2.16)

Note that the measure ω has the Laguerre weight e−x on (0,∞) and, in addition, a Stieltjes jump at
zero. The measure ω satisfies conditions (a,b,c) of Section 1, hence the zeros of each polynomial
Rν(x), ν ≥ 1, are distinct and real.

The Krall-Laguerre polynomials form a system of eigenfunctions for the fourth order differential
operator D defined by

D = ex
(

d2

dx2

[
x2e−x d2

dx2

]
− d

dx

{
[(2α +2)x+2]e−x d

dx

})
= x2 d4

dx4 −2x(x−2)
d3

dx3 + x [x−2(α +3)]
d2

dx2 +2 [(α +1)x−α]
d
dx

, (2.17)

that is,

DRν(x) = µνRν(x), (2.18)

where

µν = ν(2α +1+ν). (2.19)

Let x1, . . . ,xN be the distinct real zeros of RN(x). The N×N pseudospectral matrix represen-
tation Dc of the operator D with respect to these nodes is then given by (A.19) and (A.20), see
Appendix A.2.2.

By applying Theorem 2.1 in the setting of the Krall-Laguerre polynomials, we obtain the fol-
lowing results.

Theorem 2.3. Let x1, . . . ,xN be the zeros of the Krall-Laguerre polynomial RN(x) defined by (2.15).
Then for all n = 1,2, . . . ,N and m = 0,1, . . . ,N−1 we have

N

∑
k=1,k 6=n

B2
nkRm(xk)

R′N(xk)

{
4x2

nR′′′N (xn)−6xn [2Bnkxn + xn−2]R′′N(xn)

+2xn

[
12B2

nkxn +6Bnk(xn−2)+ xn−2(α +3)
]
R′N(xn)

}

=

{
−m(m+2α +1)− xn(xn +4α)

15

[
R′′′N (xn)

R′N(xn)

]

+
x2

n +2(2α−1)xn−6α

10

[
R′′N(xn)

R′N(xn)

]

+

[
(α +1)x2

n +(N(N +2α +1)−α)xn−2α

5xn

]}
R′N(xn), (2.20)

where Bnk are given by (2.8).
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2.2.3. Krall-Jacobi Polynomials

Let α >−1 and M > 0. A Krall-Jacobi polynomial Sν(x) of degree ν is given by [21]

Sν(x) =
ν

∑
k=0

(−1)(ν−k)
(

ν

k

)
(α +1)ν+k [k(ν +α)(ν +1)+(k+1)M]

(k+1)!(α +1)ν

xk, (2.21)

note a misprint in the definition of Krall-Jacobi polynomials in [21].
The polynomial family {Sν(x)}∞

ν=0 is orthogonal with respect to the measure ω given by dω =

w(x)dx, where the weight function

w(x) =
1
M

δ (x)+ [H(x)−H(x−1)] (1− x)α . (2.22)

Note that the measure ω has the weight (1− x)α on (0,1) and, in addition, a Stieltjes jump at
zero. The measure ω satisfies conditions (a,b,c) of Section 1, hence the zeros of each polynomial
Sν(x), ν ≥ 1, are distinct and real.

The Krall-Jacobi polynomials form a system of eigenfunctions for the fourth order differential
operator D defined by

D = (1− x)−α

(
d2

dx2

{[
(1− x)α+4−2(1− x)α+3 +(1− x)α+2] d2

dx2

}

+
d
dx

{[
(2α +2+2M)(1− x)α+2− (2α +4+2M)(1− x)α+1] d

dx

})

= x2(x−1)2 d4

dx4 +2x(x−1) [(α +4)x−2]
d3

dx3

+x
[
(α2 +9α +2M+14)x−2(3α +M+6)

] d2

dx2

+[2(α +2)(α +M+1)x−2M]
d
dx

, (2.23)

that is,

DSν(x) = µνSν(x), (2.24)

where

µν = ν(ν +α +1) [2M+(ν +1)(ν +α)] . (2.25)

Let x1, . . . ,xN be the distinct real zeros of SN(x). The N×N pseudospectral matrix represen-
tation Dc of the operator D with respect to these nodes is then given by (A.22) and (A.23), see
Appendix A.2.3.

By applying Theorem 2.1 in the setting of the Krall-Jacobi polynomials, we obtain the following
results.
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Theorem 2.4. Let x1, . . . ,xN be the zeros of the Krall-Jacobi polynomial SN(x) defined by (2.21).
Then for all n = 1,2, . . . ,N and m = 0,1, . . . ,N−1 we have

N

∑
k=1,k 6=n

B2
nkSm(xk)

S′N(xk)

(
4x2

n(xn−1)2S′′′N (xn)

+6xn(xn−1)
[
−2Bnkxn(xn−1)+(4+α)xn−2

]
S′′N(xn)

−2xn

{
−12B2

nkxn(xn−1)2 +6Bnk(xn−1) [(4+α)xn−2]

−(α2 +9α +2M+14)xn +2(3α +M+6)
}

S′N(xn)

)

=

(
−µm +

{
xn
[
(4M−α2 +4)xn−4M

]
15

}[
S′′′N (xn)

S′N(xn)

]

+

{
2M(xn−1)

[
2(α +3)xn−3

]
− (α2−4)xn

[
(α +3)xn−2

]
10(xn−1)

}[
S′′N(xn)

S′N(xn)

]

+

{[
−α3− (M+1)α2 +4α +4M+4+µN

]
xn

5(xn−1)

+

[
M(α−4)−µN

]
xn +2M

5xn(xn−1)

})
Sm(xn) (2.26)

where Bnk are given by (2.8) and µm,µN are given by (2.25).

3. Proofs

The proof of Theorem 1.1 is based on the following result.

Theorem 3.1. Let the N × N matrix L be the transition matrix from the polynomial basis
{pm(x)}N−1

m=0 to the basis {`k(x)}N
k=1 defined componentwise by Lm j = 〈` j, pm−1〉/‖pm−1‖2. Let A

be a linear differential operator that satisfies condition (1.1), that is, A Pν ⊆ Pν . Then the two
matrix representations (1.2) and (1.3) of the linear differential operator A satisfy the property

Ac = L−1AτL. (3.1)

Moreover, if the interpolation nodes x1, . . . ,xN are the distinct real zeros of the polynomial pN from
the orthogonal family {pν(x)}∞

ν=0, then the transition matrix L is given by L = PΛ, where the N×N
matrices P and Λ are defined componentwise by Pjk = p j−1(xk)/‖p j−1‖2 and Λ jk = λ

(N−1)
k δ jk,

respectively, and the Christoffel numbers λ
(N−1)
k are given by (1.6). In this case, the inverse matrix

L−1 for L is given componentwise by
[
L−1
]

jk = pk−1(x j).

Remark 3.1. Note that the hypothesis of the last theorem does not require that the polynomials
pν(x) are eigenfunctions of the differential operator A , only that A Pν ⊆ Pν .
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Proof of Theorem 3.1. First, let us prove the similarity property (3.1). Let u be a polynomial of
degree N−1. Then

u(x) =
N

∑
j=1

uc
j ` j(x) and, on the other hand (3.2)

u(x) =
N

∑
j=1

uτ
j p j−1(x), (3.3)

where the coefficient vectors uc and uτ are defined by

uc = (uc
1, . . . ,u

c
N) = (u(x1), . . . ,u(xN)) and (3.4)

uτ = (uτ
1, . . . ,u

τ
N) =

(
〈u, p0〉
‖p0‖2 , . . . ,

〈u, pN−1〉
‖pN−1‖2

)
. (3.5)

We will show that uτ = Luc and LAcuc = Aτuτ . Because the last two equations hold for an arbitrary
polynomial u ∈ PN−1, they imply Ac = L−1AτL.

Let us expand

` j(x) =
N

∑
m=1

Lm j pm−1(x), (3.6)

where the coefficients Lm j = 〈` j, pm−1〉/‖pm−1‖2. Upon a substitution of (3.6) into (3.2), we obtain

uτ = Luc. (3.7)

To obtain the equality LAcuc = Aτuτ , we first notice that because u ∈ PN−1 and the operator A
satisfies A PN−1 ⊆ PN−1, we have

A u(x) =
N

∑
j=1

[Ac uc] j ` j(x) =
N

∑
j=1

[Ac uc] j

N

∑
m=1

Lm j pm−1(x)

=
N

∑
m=1

[LAc uc]m pm−1(x). (3.8)

On the other hand,

A u(x) = A
N

∑
j=1

uτ
j p j−1(x) =

N

∑
j=1

uτ
jA p j−1(x) =

N

∑
j=1

uτ
j

N

∑
m=1

Aτ
m j pm−1(x)

=
N

∑
m=1

[Aτuτ ]m pm−1(x). (3.9)

By comparing the expansions (3.8) and (3.9), we obtain LAcuc = Aτuτ . Because uτ = Luc, we
conclude that LAc = AτL.

Second, let us assume that x1, . . . ,xN are the zeros of pN and prove that the transition matrix
L = PΛ. The Gaussian rule for approximate integration with respect to the measure ω based on
these nodes x1, . . . ,xN has degree of exactness 2N − 1, see, for example, Theorem 5.1.2 of [24].
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Therefore, for the polynomial ` j pm−1 of degree N−1+m−1≤ 2N−1

‖pm−1‖2Lm j =
∫

` j pm−1 dω

=
N

∑
k=1

` j(xk)pm−1(xk)λ
(N−1)
k = pm−1(x j)λ

(N−1)
j (3.10)

and

L = PΛ. (3.11)

Finally, let us prove that the inverse of L is given componentwise by
[
L−1
]

jk = pk−1(x j). Note that
L is invertible because it is a transition matrix from the basis {p j−1(x)}N

j=1 to the basis {` j(x)}N
j=1

of PN−1, see (3.6). Using the exactness of the Gaussian numerical integration rule for the integration

‖pm−1‖2
δmn =

∫
pm−1 pn−1dω =

N

∑
k=1

λk pm−1(xk)pn−1(xk), (3.12)

we conclude that the matrix L̂ defined componentwise by L̂kn = pn−1(xk) satisfies LL̂ = I, thus
L−1 = L̂.

Proof of Theorem 1.1. Let Dc and Dτ , respectively, be the N × N pseudospectral and spectral
matrix representations of D, respectively, defined componentwise by [Dc]nm = [D`m] (xn) and
[Dτ ]nm = µn−1δnm, see (1.2) and (1.3). The first equation (1.8) in the statement of the theorem
follows from the equation

[
DcL−1

]
nm =

[
L−1Dτ

]
nm, which is valid for all m,n ∈ {1,2, . . . ,N} by

Theorem 3.1.

4. Conclusion and Outlook

Theorem 1.1 provides a general set of algebraic relations satisfied by the zeros of classical and
nonclassical orthogonal polynomials {pν(x)}∞

ν=0. The polynomials must be orthogonal with respect
to a measure ω supported on the real line and satisfying conditions (a,b,c) stated in Section 1. In
addition, the orthogonal polynomials must form a family of eigenfunctions for a linear differential
operator D : D pν(x) = µν pν(x), see (1.7). The main statement of Theorem 1.1 follows from the
matrix equality Dc(PΛ)−1 = (PΛ)−1Dτ , where Dc is a pseudospectral and Dτ is the spectral matrix
representation of the differential operator D , see (1.3) and (1.2), while the matrices P and Λ are
defined in Theorem 3.1. Of course, the nodes of the pseudospectral matrix representation Dc of D
must be the zeros x1, . . . ,xN of the polynomial pN(x). Note that the matrix equality Dc(PΛ)−1 =

(PΛ)−1Dτ involves the eigenvalues µm, m = 0,1, . . . ,N−1, via the matrix Dτ , while the Christoffel
numbers λ j on the diagonal of the matrix Λ are eliminated in the process of inverting the matrix
PΛ, see (3.12).

Using the general framework provided by Theorem 1.1, we prove new algebraic relations satis-
fied by the zeros of the nonclassical Krall-Laguerre polynomials, as well as recover known proper-
ties of the classical Jacobi, generalized Laguerre and Hermite polynomials. Of course, Theorem 1.1
may be used to prove new identities satisfied by the zeros of other polynomials, for example, other
types of Krall polynomials that are the eigenfunctions of linear differential operators of order higher
than two. Moreover, because all the identities for the zeros of orthogonal polynomials presented in
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this paper are essentially matrix equations, they can be manipulated to obtain other interesting iden-
tities, such as, for example, the equality of the eigenvalues, the determinants, the traces, or other
functions of the entries of these matrices. Indeed, identity (1.8) is equivalent to the statement that
(µm,v(m)) are eigenpairs of the matrix Dc, where the N-vectors v(m) are defined componentwise
by v(m)

n = pm(xn) for each m = 0,1, . . . ,N− 1. We leave the task of applying the matrix equality
Dc(PΛ)−1 = (PΛ)−1Dτ to derive other identities for the zeros of pN to interested readers.

The results presented in this paper can be utilized to uncover useful properties and simpli-
fied expressions for pseudospectral matrix representations of linear differential operators. Such
matrix representations are fundamental in the pseudospectral methods for solving differential equa-
tions [15]. Theorem 3.1 may be used to calculate the rank of the pseudospectral matrix representa-
tion Dc of a given differential operator D , by using the similarity of Dc and Dτ . On the other hand,
a simplified expression for Dc may be derived using Theorem 1.1, provided that the interpolation
nodes are the zeros of the polynomial pN(x) from the given orthogonal family.

The identities of Theorem 1.1 relate the zeros of the polynomial pN(x) with the zeros of the
polynomial pm(x) from the orthogonal polynomial family {pν(x)}∞

ν=0, where m < N. It would be
interesting to use these identities to prove estimates for the zeros of the polynomials {pν(x)}∞

ν=0,
in particular estimates that would show how the zeros of pN(x) are positioned on the real line with
respect to the zeros of pm(x). Many such estimates are already known for the classical orthogonal
polynomials, for example, the interlacing of the zeros property [24]. The results presented in this
paper invite to explore similar properties for Krall polynomials.

Another possible development is to extend the results of this paper to exceptional orthogonal
polynomials, see, for example, [16, 27], and to orthogonal polynomials that form a family of gen-
eralized, rather than standard, eigenfunctions for certain linear differential operators, such as gen-
eralized Gegenbauer and Sonin-Markov polynomials [24, 26]. In the latter setting, the orthogonal
polynomials {pν(x)}∞

ν=0 satisfy differential equations D pν(x) = qν(x)pν(x) for all ν , where D is
a linear differential operator and qν(x) are polynomials of degree at most n0 > 0, which does not
depend on ν .
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Appendix A. Pseudospectral Representations of Linear Differential Operators

In this section we provide several formulas useful for computation of pseudospectral matrix rep-
resentations of linear differential operators. Recall that the pseudospectral, or spectral collocation,
matrix representation Ac of a linear differential operator A is defined by (1.3).

A.1. Pseudospectral Matrix Representation of dk

dxk

Let the N×N matrix Z(k) denote the pseudospectral matrix representation of the differential operator
dk

dxk with respect to N distinct nodes x1, . . . ,xN . The components of Z(k) are defined by

Z(k)
mn =

[
dk

dxk `n(x)
]∣∣∣∣∣

x=xm

=
1

ψ ′N(xn)

dk

dxk

[
ψN(x)
(x− xn)

]∣∣∣∣∣
x=xm

, (A.1)

where ψN(x) = kN ∏
N
j=1(x− x j) is a node polynomial with an arbitrary chosen leading coefficient

kN .
We begin with explicit formulas for Z(1) and Z(2) =

[
Z(1)

]2
, given in terms of the nodes

x1, . . . ,xN . Let

πn =
N

∏
k=1,k 6=n

(xn− xk). (A.2)

Then

Z(1)
mn =

πm

πn

1
xm− xn

if m 6= n, (A.3a)

Z(1)
nn =

N

∑
k=1,k 6=n

1
xn− xk

(A.3b)

and

Z(2)
mn =

2πm

πn

1
(xm− xn)

N

∑
k=1,k 6=m,n

1
xm− xk

if m 6= n, (A.4a)

Z(2)
nn =

N

∑
k=1,k 6=n

N

∑
p=1,p6=n,k

1
(xn− xk)(xn− xp)

. (A.4b)
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Remark A.1. It is interesting to compare the matrix Z(1) given in (A.3) with a somewhat simpler
N×N matrix Ẑ defined componentwise by

Ẑmn = δmn

N

∑
k=1,k 6=n

(xn− xk)
−1 +(1−δnm)(xn− xm)

−1,

see Sect. 2.4 of [10] and references therein. Of course, the matrices Z(1) and Ẑ are similar: Z(1) =

PẐP−1, where P is the diagonal matrix with (π1, . . . ,πN) on its main diagonal. The matrix Ẑ is
just another matrix representation of the differential operator d

dx , albeit with respect to the basis
{πn`n(x)}N

n=1 as opposed to the basis {`n(x)}N
n=1 used in the paper. We note that the choice to use

this different basis {πn`n(x)}N
n=1 would not result in a simplification of the main identities (1.8) of

Theorem 1.1, since these identities are derived from the similarity relation (1.5) and a change of
basis in the pseudospectral matrix representation Ac in relation (1.5) would result in an appropriate
change in the transition matrix L, the entire relation (1.5) leading to the same identities (1.8).

The matrix Z(k), where k is a positive integer, can be expressed in terms of the node polynomial
ψN(x):

Z(k)
mn =


1

xm−xn

[
ψ

(k)
N (xm)

ψ ′N(xn)
− kZ(k−1)

mn

]
if m 6= n,

ψ
(k+1)
N (xn)

(k+1)ψ ′N(xn)
if m = n,

(A.5)

where Z(0) is a diagonal matrix, for example Z(0) = I. If the last recursive formula for Z(k)
mn with

m 6= n is inconvenient, the alternative formula

Z(k)
mn =

1
ψ ′N(xn)

k

∑
j=1

(−1)k− j(k!)
j!

ψ
( j)
N (xm)

(xm− xn)k− j+1 (A.6)

may be used.
The diagonal entries of Z(k) in formula (A.5) are computed using the Taylor expansion of the

node polynomial ψN about x = xn. The off-diagonal entries are computed by applying the Leibnitz
differentiation rule to the product ψN(x)(x− xn)

−1, where x 6= xn.
If the node polynomial ψN(x) satisfies a differential equation, formulas (A.5) for Z(k) can often

be simplified. For example, in the case where the node polynomial ψN(x) = pN(x) with pN(x)
belonging to a classical orthogonal polynomial family {pν(x)}∞

ν=0, differential equation (2.2) may
be used to simplify formulas (A.5), see [2]. Because the pseudospectral matrix representation Dc

of the differential operator (2.1) is given componentwise by Dc
mn = σ(xm)Z

(2)
mn + τ(xm)Z

(1)
mn , the new

simplified expressions for Z(k)
mn , k = 1,2, can be used to derive formula (2.4) for the components of

Dc.

A.2. Pseudospectral Matrix Representation of the Fourth Order Differential
Operator (2.5)

Let D be the fourth order linear differential operator (2.5). Let {pν(x)}∞
ν=0 be an orthogonal poly-

nomial family satisfying differential equations (2.6) and let x1, . . . ,xN be the zeros of the polyno-
mial pN(x). Let us find the pseudospectral matrix representation of the differential operator D with
respect to the nodes x1, . . . ,xN .
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The matrix Dc is given componentwise by

Dc
mn = a4(xm)Z

(4)
mn +a3(xm)Z

(3)
mn +a2(xm)Z

(2)
mn

+a1(xm)Z
(1)
mn , (A.7)

where Z(k)
mn can be computed using (A.5) with the node polynomial ψN(x) replaced by pN(x). Let us

use the properties of the polynomial pN(x) to simplify formula (A.7).
Because pN(x) satisfies the differential equation D pN(x) = µN pN(x) as well as d

dx [D pN(x)] =
µN p′N(x), for every integer n such that 1≤ n≤ N we have

a4(xn)p(4)N (xn)+a3(xn)p(3)N (xn)+a2(xn)p′′N(xn)+a1(xn)p′N(xn) = 0 (A.8)

and

a4(xn)p(5)N (xn)+
[
a′4(xn)+a3(xn)

]
p(4)N (xn)+

[
a′3(xn)+a2(xn)

]
p(3)N (xn)

+
[
a′2(xn)+a1(xn)

]
p′′N(xn)+

[
a′1(xn)−µN

]
p′N(xn) = 0. (A.9)

Using formulas (A.5) for the pseudospectral representations of the operators dk/dxk, where k =

1,2,3,4, from the last two identities we derive

4a4(xn)Z
(3)
nn +3a3(xn)Z

(2)
nn +2a2(xn)Z

(1)
nn +a1(xn) = 0 (A.10)

and

5a4(xn)Z
(4)
nn +4

[
a′4(xn)+a3(xn)

]
Z(3)

nn +3
[
a′3(xn)+a2(xn)

]
Z(2)

nn

+2
[
a′2(xn)+a1(xn)

]
Z(1)

nn +
[
a′1(xn)−µN

]
= 0. (A.11)

We use the last two identities (A.10) and (A.11) to eliminate Z(4)
nn and Z(3)

nn in the diagonal elements
Dc

nn of Dc, see (A.7), and then express Z(2)
nn and Z(1)

nn in terms of the values of pN(x) and its derivatives
at x = xn, see (A.5), to obtain

Dc
nn = − 1

4a4(xn)p′N(xn)

{
a3(xn)−

4
5
[
a′4(xn)+a3(xn)

]}
·
[
a3(xn)p′′′N (xn)+a2(xn)p′′N(xn)+a1(xn)p′N(xn)

]
+

p′′′N (xn)

3p′N(xn)

{
a2(xn)−

3
5
[
a′3(xn)+a2(xn)

]}
+

p′′N(xn)

2p′N(xn)

{
a1(xn)−

2
5
[
a′2(xn)+a1(xn)

]}
−1

5
[
a′1(xn)−µN

]
. (A.12)

Remark A.2. Note that formula (A.12) must be understood in terms of an appropriate limiting
procedure as x→ xn in case a4(xn) = 0.

Let us now find a simplified expression for the off-diagonal elements Dc
mn, m 6= n, of Dc. Let

us multiply identity (A.8) with n replaced by m by the quantity Bmn/p′N(xn), see (2.8), and use the
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equality Bmn
p(k)N (xm)
p′N(xn)

= Z(k)
mn + kBmnZ(k−1)

mn valid for all integer k ≥ 1, see (A.5), to obtain

a4(xm)Z
(4)
mn +[4a4(xm)Bmn +a3(xm)]Z

(3)
mn

+[3a3(xm)Bmn +a2(xm)]Z
(2)
mn +[2a2(xm)Bmn +a1(xm)]Z

(1)
mn = 0. (A.13)

We then use identity (A.13) to eliminate Z(4)
mn in Dc

mn with m 6= n, see (A.7), and then express Z(3)
mn ,

Z(2)
mn and Z(1)

mn in terms of the values of pN(x) and its derivatives at x = xn or x = xm, see (A.5), to
obtain

Dc
mn =−

(Bmn)
2

p′N(xn)

{
4a4(xm)p′′′N (xm)+3

[
a3(xm)−4a4(xm)Bmn

]
p′′N(xm)

−2
[
3Bmn

(
a3(xm)−4a4(xm)Bmn

)
−a2(xm)

]
p′N(xm)

}
, (A.14)

where Bmn is given by (2.8).
In summary, the pseudospectral N×N matrix representation Dc of the differential operator (2.5),

with respect to the nodes x1, . . . ,xN that are the zeros of the polynomial pN(x) from the orthogo-
nal family {pν(x)}∞

ν=0 satisfying differential equations (2.6), is given componentwise by formu-
las (A.12) and (A.14).

A.2.1. Pseudospectral Matrix Representation of the Krall-Legendre Differential
Operator (2.11)

Let D be the Krall-Legendre differential operator (2.11) and let x1, . . . ,xN be the N distinct real zeros
of a Krall-Legendre polynomial PN(x) characterized by the parameter α > 0, see definition (2.9).
By applying formulas (A.12) and (A.14) for the pseudospectral N×N matrix representation of the
differential operator (2.5) to this special case where

a1(x) = 8αx,a2(x) = 4(α +3)(x2−1),

a3(x) = 8x(x2−1),a4(x) = (1− x2)2,

µN = N(N +1)(N2 +N +4α−2), (A.15)

we obtain the matrix representation Dc of the Krall-Legendre differential operator (2.11) with
respect to the nodes x1, . . . ,xN :

Dc
nn =

8α(x2
n−1)

15

[
P′′′N (xn)

P′N(xn)

]
+

12αxn

5

[
P′′N(xn)

P′N(xn)

]

+

[
8α(x2

n +1)+N(N +1)(N2 +N +4α−2)(x2
n−1)

5(x2
n−1)

]
(A.16)
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and

Dc
mn =−

(Bmn)
2

P′N(xn)

{
4(1− x2

m)
2P′′′N (xm)

−12(x2
m−1)

[
Bmn(x2

m−1)−2xm

]
P′′N(xm)

+8(x2
m−1)

[
3B2

mn(x
2
m−1)−6Bmnxm +α +3

]
P′N(xm)

}
, m 6= n, (A.17)

where Bmn is defined by (2.8).

A.2.2. Pseudospectral Matrix Representation of the Krall-Laguerre Differential
Operator (2.17)

Let D be the Krall-Laguerre differential operator (2.17) and let x1, . . . ,xN be the N distinct real zeros
of a Krall-Laguerre polynomial RN(x) characterized by the parameter α > 0, see definition (2.15).
By applying formulas (A.12) and (A.14) for the pseudospectral N×N matrix represnetation of the
differential operator (2.5) to this special case where

a1(x) = 2 [(α +1)x−α] ,a2(x) = x [x−2(α +3)]

a3(x) =−2x(x−2),a4(x) = x2,

µN = N(N +2α +1), (A.18)

we obtain the matrix representation Dc of the Krall-Laguerre differential operator (2.17) with
respect to the nodes x1, . . . ,xN :

Dc
nn =−

xn(xn +4α)

15

[
R′′′N (xn)

R′N(xn)

]
+

x2
n +2(2α−1)xn−6α

10

[
R′′N(xn)

R′N(xn)

]

+

[
(α +1)x2

n +(N(N +2α +1)−α)xn−2α

5xn

]
(A.19)

and

Dc
mn =−

B2
mn

R′N(xn)

{
4x2

mR′′′N (xm)−6xm [2Bmnxm + xm−2]R′′N(xm)

+2xm

[
12B2

mnxm +6Bmn(xm−2)+ xm−2(α +3)
]
R′N(xm)

}
, m 6= n, (A.20)

where Bmn is defined by (2.8).
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A.2.3. Pseudospectral Matrix Representation of the Krall-Jacobi Differential
Operator (2.23)

Let D be the Krall-Jacobi differential operator (2.23) and let x1, . . . ,xN be the N distinct real zeros
of a Krall-Jacobi polynomial SN(x) characterized by the parameters α >−1 and M > 0, see defini-
tion (2.21). By applying formulas (A.12) and (A.14) for the pseudospectral N×N matrix represen-
tation of the differential operator (2.5) to this special case where

a1(x) = 2(α +2)(α +M+1)x−2M,

a2(x) = x
[
(α2 +9α +2M+14)x−2(3α +M+6)

]
,

a3(x) = 2x(x−1) [(α +4)x−2] ,

a4(x) = x2(x−1)2,

µN = N(N +α +1) [2M+(N +1)(N +α)] , (A.21)

we obtain the matrix representation Dc of the Krall-Jacobi differential operator (2.23) with respect
to the nodes x1, . . . ,xN :

Dc
nn =

{
xn
[
(4M−α2 +4)xn−4M

]
15

}[
S′′′N (xn)

S′N(xn)

]

+

{
2M(xn−1)

[
2(α +3)xn−3

]
− (α2−4)xn

[
(α +3)xn−2

]
10(xn−1)

}[
S′′N(xn)

S′N(xn)

]

+

{[
−α3− (M+1)α2 +4α +4M+4+µN

]
x2

n +
[
M(α−4)−µN

]
xn +2M

5xn(xn−1)

}
(A.22)

and

Dc
mn =−

B2
mn

S′N(xn)

(
4x2

m(xm−1)2S′′′N (xm)

+6xm(xm−1)
[
−2Bmnxm(xm−1)+(4+α)xm−2

]
S′′N(xm)

−2xm

{
−12B2

mnxm(xm−1)2 +6Bmn(xm−1) [(4+α)xm−2]

−(α2 +9α +2M+14)xm +2(3α +M+6)
}

S′N(xm)

)
, m 6= n, (A.23)

where Bmn is defined by (2.8).
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