Journal of Nonlinear Mathematical Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251
Journal Home Page: https://www.atlantis-press.com/journals/jnmp

Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation

Yongshuai Zhang, Yi Cheng, Jingsong He

To cite this article: Yongshuai Zhang, Yi Cheng, Jingsong He (2017) Riemann-Hilbert method and N -soliton for two-component Gerdjikov-Ivanov equation, Journal of Nonlinear Mathematical Physics 24:2, 210-223, DOI:
https://doi.org/10.1080/14029251.2017.1313475
To link to this article: https://doi.org/10.1080/14029251.2017.1313475

Published online: 04 January 2021

Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation

Yongshuai Zhang
School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, The People's Republic of China
zhyshuai@mail.ustc.edu.cn,zhyshuai@yeah.net
Yi Cheng
School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, The People's Republic of China
chengy@ustc.edu.cn
Jingsong He*
Department of Mathematics, Ningbo University, Ningbo, Zhejiang 315211, The People's Republic of China hejingsong@nbu.edu.cn,jshe@ustc.edu.cn

Received 4 October 2016

Accepted 28 February 2017

Abstract

We consider the Riemann-Hilbert method for initial problem of the vector Gerdjikov-Ivanov equation, and obtain the formula for its N-soliton solution, which is expressed as a ratio of $(N+1) \times(N+1)$ determinant and $N \times N$ determinant. Furthermore, by applying asymptotic analysis, the simple elastic interactions of N-soliton are confirmed, and the shifts of phase and position are also explicitly displayed.

Keywords: Riemann-Hilbert problem; vector Gerdjikov-Ivanov equation; asymptotic analysis; soliton.

2000 Mathematics Subject Classification: 35Q55,35C08,35C11,37K40

1. Introduction

The nonlinear Schrödinger equation (NLS) is an important integrable equation, which governs weakly nonlinear and dispersive wave packets in one-dimensional physical systems. It was first derived by Zakharov [26] in his study of modulational stability of deep water waves. Then Hasegawa and Tappert [15] display that the NLS equation governs light pulse propagation in optical fibers. Besides, the same equation will be extended to a vector case [4, 19], if more than one packets of different carrier frequencies appear simultaneously.

In order to study the effect of higher order perturbations, a derivative-type nonlinear equation

$$
\begin{equation*}
\mathrm{i} q_{t}+q_{x x}-\mathrm{i} q^{2} q_{x}^{*}+\frac{1}{2} q^{3} q^{* 2}=0 \tag{1.1}
\end{equation*}
$$

is derived by Gerdjikov-Ivanov [12], which is called the GI equation or DNLSIII equation. Since its discovery, its Darboux transformation [6] , Hamiltonian structures [7], algebra-geometric solutions

[^0][5], Wronskian type solution [16], soliton [6,25], breather and rogue wave solutions [14, 22] have been obtained, even though some of them may be also obtained in theory by taking into account some gauge transformations [18,21]. Actually, the above results give us the results directly and help us to avoid calculating complicated integrals involved in gauge transformations, which may not be evaluated at all.

The GI equation, similar to the NLS equation, also admits a vector case

$$
\begin{equation*}
\mathbf{q}_{t}=\mathrm{i} \mathbf{q}_{x x}+\mathbf{q}_{x}^{\dagger} \mathbf{q}^{2}+\frac{\mathrm{i}}{2}\left(\mathbf{q}^{\dagger} \mathbf{q}\right)^{2} \mathbf{q} \tag{1.2}
\end{equation*}
$$

where $\mathbf{q}=\left(q_{1}, q_{2}, \cdots, q_{n}\right)^{T}$, and the superscript " \dagger " denotes Hermitian conjugate of a matrix or vector. When $n=2$, it yields

$$
\begin{align*}
& q_{1 t}=\mathrm{i} q_{1 x x}+q_{1}\left(q_{1} q_{1 x}^{*}+q_{2} q_{2 x}^{*}\right)+\frac{\mathrm{i}}{2} q_{1}\left(\left|q_{1}\right|^{4}+\left|q_{2}\right|^{4}\right)+\mathrm{i}\left|q_{1} q_{2}\right|^{2} q_{1} \tag{1.3a}\\
& q_{2 t}=\mathrm{i} q_{2 x x}+q_{2}\left(q_{1} q_{1 x}^{*}+q_{2} q_{2 x}^{*}\right)+\frac{\mathrm{i}}{2} q_{2}\left(\left|q_{1}\right|^{4}+\left|q_{2}\right|^{4}\right)+\mathrm{i}\left|q_{1} q_{2}\right|^{2} q_{2} \tag{1.3b}
\end{align*}
$$

In this paper, we will consider the Riemann-Hilbert method for the vector GI (vGI) equation (1.3), and display the determinant expression of its N-soliton solution, which is easy to be used for considering asymptotic behavior.

The Riemann-Hilbert method, derived by Novikov et al. [20], streamlines and simplifies the original inverse scattering transformation [1, 3, 9, 10] based on the Gel'fand-Levitan-Marchenko integral equations. Recently, the Riemann-Hilbert method has been adopted to solve the vector nonlinear equation, 3×3 spectral problems, squared eigenfunctions and so on [2,8,11,13,17,23,24]. In the next section, we will construct the Riemann-Hilbert problem based on the Jost solutions to the Lax pair of vGI (1.3) equation and scattering data $S(\lambda)$ (2.6). In $\S 3$, we discuss solutions to the regular and non-regular Riemann-Hilbert problems by applying Plemelj formula. In $\S 4$, the determinant expressions of N-soliton solutions to the vGI equation are obtained, as well as asymptotic behaviors. Also, the expression of one-soliton is displayed explicitly. The conclusions are given in the final section.

2. The construction of Riemann-Hilbert problem

The vector GI equation (1.3) is the compatibility condition of the following two linear equations:

$$
\begin{align*}
& \Phi_{x}=U \Phi=\left(-\mathrm{i} \lambda^{2} \sigma-\lambda Q \sigma+\frac{\mathrm{i}}{2} Q^{2} \sigma\right) \Phi \tag{2.1a}\\
& \Phi_{t}=V \Phi=\left(-2 \mathrm{i} \lambda^{4} \sigma-2 \lambda^{3} Q \sigma+\mathrm{i} \lambda^{2} \sigma Q^{2}+\mathrm{i} \lambda Q_{x}-\frac{1}{2}\left[Q_{x}, Q\right]+\frac{\mathrm{i}}{4} Q^{4} \sigma\right) \Phi \tag{2.1b}
\end{align*}
$$

with

$$
Q=\left(\begin{array}{ccc}
0 & q_{1} & q_{2} \\
q_{1}^{*} & 0 & 0 \\
q_{2}^{*} & 0 & 0
\end{array}\right), \quad \sigma=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Here λ is a spectral parameter, $\Phi(x, t, \lambda)$ is a vector or matrix function, the superscript "*" represents complex conjugation, and $[A, B]$ denotes $A B-B A$. In our analysis, we assume that

$$
\begin{equation*}
q_{1}(x, 0) \rightarrow 0, \quad q_{2}(x, 0) \rightarrow 0, \quad \text { as } \quad x \rightarrow \infty \tag{2.2}
\end{equation*}
$$

which belong to Schwartz space. Obviously, $\hat{E}=\mathrm{e}^{-\mathrm{i}\left(\lambda^{2} \sigma x+2 \lambda^{4} \sigma t\right)}$ is a solution for the linear equations (2.1) at this time. Let $\Phi=J \hat{E}$, then the spectral problems about $J(x, t, \lambda)$ are defined as

$$
\begin{align*}
J_{x}+\mathrm{i} \lambda^{2}[\sigma, J] & =\hat{U} J
\end{aligned}=\left(-\lambda Q \sigma+\frac{\mathrm{i}}{2} Q^{2} \sigma\right) J, ~ \begin{aligned}
& J_{t}+2 \mathrm{i} \lambda^{4}[\sigma, J] \tag{2.3a}
\end{align*}=\hat{V} J=\left(-2 \lambda^{3} Q \sigma+\mathrm{i} \lambda^{2} \sigma Q^{2}+\mathrm{i} \lambda Q_{x}-\frac{1}{2}\left[Q_{x}, Q\right]+\frac{\mathrm{i}}{4} Q^{4} \sigma\right) J, ~ l
$$

Under boundary conditions

$$
\begin{equation*}
J_{ \pm} \rightarrow I, \quad x \rightarrow \pm \infty \tag{2.4}
\end{equation*}
$$

the Jost solutions for the spectral problem (2.3a) can be solved as

$$
\begin{equation*}
J_{ \pm}(x, \lambda)=I+\int_{ \pm \infty}^{x} \mathrm{e}^{-\mathrm{i} \lambda^{2} \sigma(x-y)} \hat{U}(y) J_{ \pm}(y) \mathrm{e}^{\mathrm{i} \lambda^{2} \sigma(x-y)} \mathrm{d} y \tag{2.5}
\end{equation*}
$$

Let $\left[J_{ \pm}\right]_{k}$ denote the k-th column vector of $J_{ \pm}$, then it leads that, after simple analysis, $\left[J_{-}\right]_{1},\left[J_{+}\right]_{2}$ and $\left[J_{+}\right]_{3}$ are analytic for $\lambda \in C_{+}$and continuous for $\lambda \in C_{+} \cup \mathbb{R} \cup \mathbb{R}$, and $\left[J_{+}\right]_{1},\left[J_{-}\right]_{2}$ and $\left[J_{-}\right]_{3}$ are analytic for $\lambda \in C_{-}$and continuous for $\lambda \in C_{-} \cup \mathbb{R} \cup i \mathbb{R}$, where

$$
C_{+}=\left\{\lambda \left\lvert\, \arg \lambda \in\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right)\right.\right\}, \quad C_{-}=\left\{\lambda \left\lvert\, \arg \lambda \in\left(\frac{\pi}{2}, \pi\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right)\right.\right\}
$$

which are displayed explicitly in Fig. 1.
Defining $E=\mathrm{e}^{-\mathrm{i} \lambda^{2} \sigma x}$, then $J_{-} E$ and $J_{+} E$ are different solutions for the linear equation (2.1a), so they are not independent and are linearly related by a scattering matrix $S(\lambda)$:

$$
\begin{equation*}
J_{-} E=J_{+} E S(\lambda), \quad \lambda \in \mathbb{R} \cup i \mathbb{R} \tag{2.6}
\end{equation*}
$$

or

$$
\begin{equation*}
J_{-}=J_{+} E S(\lambda) E^{-1}, \quad \lambda \in \mathbb{R} \cup \mathrm{i} \mathbb{R} \tag{2.7}
\end{equation*}
$$

Fig. 1. The jump contour in the complex λ-plane. The positive (negative) side lies on the left (right) as one traverses the contour.

Owing to the Abel's identity and $\operatorname{tr}(Q)=0$, the determinants of $J_{ \pm}$are constants for all x. Then using the boundary conditions (2.4), we have

$$
\operatorname{det} J_{ \pm}=1
$$

According to (2.7), $\operatorname{det} S(\lambda)=1$ is obtained. Furthermore, let x go to $+\infty, S(\lambda)$ is given as

$$
S(\lambda)=\left(s_{i j}\right)_{3 \times 3}=\lim _{x \rightarrow+\infty} E^{-1} J_{-} E=I+\int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \lambda^{2} \sigma y} \hat{U} J_{-} \mathrm{e}^{-\mathrm{i} \lambda^{2} \sigma y} \mathrm{~d} y, \quad \lambda \in \mathbb{R} \cup \mathrm{i} \mathbb{R}
$$

Based on the analytic property of J_{-}, s_{11} is analytic extension to C_{+}, while s_{22}, s_{23}, s_{32} and s_{33} are analytic extension to C_{-}.

In order to obtain behavior of Jost solution for very large λ, we consider the following expansion

$$
\begin{equation*}
J=J_{0}+\frac{J_{1}}{\lambda}+\frac{J_{2}}{\lambda^{2}}+\frac{J_{3}}{\lambda^{3}}+O\left(\frac{1}{\lambda^{4}}\right) \tag{2.8}
\end{equation*}
$$

and substitute it into the spectral problem (2.3a). By comparing the coefficients of λ, it leads to

$$
\begin{equation*}
\left[\sigma, J_{0}\right]=0, \quad \mathrm{i}\left[\sigma, J_{1}\right]+Q \sigma J_{0}=0, \quad J_{0 x}=\frac{\mathrm{i}}{2} Q^{2} \sigma J_{0}-Q \sigma J_{1}-\mathrm{i}\left[\sigma, J_{2}\right] \tag{2.9}
\end{equation*}
$$

which imply

$$
\begin{equation*}
\mathrm{i}\left[\sigma, J_{1}\right]=-Q \sigma J_{0}, \quad J_{0 x}=0 \tag{2.10}
\end{equation*}
$$

If there exists a solution Q of the vector GI, and set $J_{0}=I$ without loss of generality, then it is given by

$$
\begin{equation*}
Q=\mathrm{i} \sigma\left[\sigma, J_{1}\right]=\mathrm{i}\left(J_{1}-\sigma J_{1} \sigma\right) \tag{2.11}
\end{equation*}
$$

To construct the Riemann-Hilbert problem, we define a new Jost solution for (2.3a) as

$$
P_{+}=\left(\left[J_{-}\right]_{1},\left[J_{+}\right]_{2},\left[J_{+}\right]_{3}\right)=J_{+} E S_{+} E^{-1}=J_{+} E\left(\begin{array}{lll}
s_{11} & 0 & 0 \tag{2.12}\\
s_{21} & 1 & 0 \\
s_{31} & 0 & 1
\end{array}\right) E^{-1}
$$

which is analytic for $\lambda \in C_{+}$and possesses asymptotic behavior for very large λ as

$$
\begin{equation*}
P_{+} \rightarrow I, \quad \lambda \in C_{+} \rightarrow+\infty . \tag{2.13}
\end{equation*}
$$

Indeed, the analytic counterpart of P_{+}in C_{-}, denoted by P_{-}, can be derived from the adjoint scattering equation of (2.3a):

$$
\begin{equation*}
K_{x}+\mathrm{i} \lambda^{2}[\sigma, K]=-K \hat{U} \tag{2.14}
\end{equation*}
$$

It is easy to see that $J_{ \pm}^{-1}$ solve the above adjoint equation (2.14) and satisfy the boundary conditions $J_{ \pm}^{-1} \rightarrow I$ as $x \rightarrow \pm \infty$ respectively. Taking the similar procedure as above and denoting the k-th
row vector of $J_{ \pm}^{-1}$ as $\left[J_{ \pm}^{-1}\right]^{k}$ for convenience, the desired P_{-}is expressed as follows:

$$
P_{-}=\left(\begin{array}{l}
{\left[J_{-}^{-1}\right]^{1}} \tag{2.15}\\
{\left[J_{+}^{-1}\right]^{2}} \\
{\left[J_{+}^{-1}\right]^{3}}
\end{array}\right) .
$$

That is, P_{-}is analytic in $\lambda \in C_{-}$, and goes to I as $\lambda \rightarrow-\infty$. Also, assuming $R(\lambda)=S^{-1}(\lambda)$, then

$$
\begin{equation*}
J_{-}^{-1}=E R E^{-1} J_{+}^{-1} \tag{2.16}
\end{equation*}
$$

and

$$
P_{-}=E R_{+} E^{-1} J_{+}^{-1}=E\left(\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \tag{2.17}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) E^{-1} J_{+}^{-1} .
$$

Hence, we have constructed two matrix functions $P_{ \pm}(x, \lambda)$ which are analytic for $\lambda \in C_{ \pm}$respectively. Furthermore, these two functions can construct a Riemann-Hilbert problem as follows:

$$
P_{-} P_{+}=G(x, \lambda)=E R_{+} S_{+} E^{-1}=E\left(\begin{array}{ccc}
1 & r_{12} & r_{13} \tag{2.18}\\
s_{21} & 1 & 0 \\
s_{31} & 0 & 1
\end{array}\right) E^{-1}, \quad \lambda \in \mathbb{R} \cup i \mathbb{R} .
$$

Here we have adopted the identity $s_{11} r_{11}+s_{12} r_{21}+s_{13} r_{31}=1$, and the jump contour is given in Fig. 1.

At the end of this section, we consider the time evolution of the scattering matrices $S(\lambda)$ and $R(\lambda)$. Due to J_{-}solving scattering problem (2.3b), inserting $J_{-}=J_{+} E S E^{-1}$ into (2.3b), taking the limit $x \rightarrow+\infty$, and taking into account the boundary condition of J_{+}as well as the fact that $V \rightarrow 0$ as $x \rightarrow+\infty$, we obtain

$$
\begin{equation*}
S_{t}=-2 \mathrm{i} \lambda^{4}[\sigma, S] . \tag{2.19}
\end{equation*}
$$

And then the time evolution of $R(\lambda)$ can be gotten immediately

$$
\begin{equation*}
R_{t}=-2 \mathrm{i} \lambda^{4}[\sigma, R] \tag{2.20}
\end{equation*}
$$

These two equations show that s_{11}, r_{11} are time independent, and

$$
\begin{array}{ll}
r_{12}(t, \lambda)=r_{12}(0, \lambda) \mathrm{e}^{-4 i \lambda^{4} t}, & s_{21}(t, \lambda)=s_{21}(0, \lambda) \mathrm{e}^{4 i \lambda^{4} t}, \\
r_{13}(t, \lambda)=r_{13}(0, \lambda) \mathrm{e}^{-4 i \lambda^{4} t}, & s_{31}(t, \lambda)=s_{31}(0, \lambda) \mathrm{e}^{4 i^{4} t} . \tag{2.22}
\end{array}
$$

We have obtained the time evolution of scattering matrices. Later on, the non-regular RiemannHilbert problem will be solved by using these scattering data. Furthermore, the inverse problem will be also considered, and the solution Q will be constructed from the solution of non-regular Riemann-Hilbert problem.

3. Solution for Riemann-Hilbert problem

The Riemann-Hilbert problem (2.18) constructed in above section is regular when $\operatorname{det}\left(P_{+}\right)=s_{11} \neq$ 0 and $\operatorname{det}\left(P_{-}\right)=r_{11} \neq 0$ for all λ, and is non-regular when $\operatorname{det}\left(P_{+}\right)$and $\operatorname{det}\left(P_{-}\right)$can be zero at certain discrete locations of λ. In fact, a non-regular Riemann-Hilbert problem can be transformed into a regular one, thus we consider the regular case at first.

3.1. Solution for a regular Riemann-Hilbert problem

From (2.18), we have

$$
\begin{equation*}
P_{+}^{-1}-P_{-}=\hat{G} P_{+}^{-1}=(I-G) P_{+}^{-1}, \quad \lambda \in \mathbb{R} \cup i \mathbb{R} \tag{3.1}
\end{equation*}
$$

with the canonical normalization condition

$$
\begin{equation*}
P_{ \pm} \rightarrow I, \quad|\lambda| \rightarrow+\infty . \tag{3.2}
\end{equation*}
$$

Taking into account the Plemelj formula [2], the solution for above Riemann-Hilbert problem is solved as

$$
\begin{equation*}
P_{+}^{-1}(\lambda)=I+\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\hat{G}(\xi) P_{+}^{-1}(\xi)}{\xi-\lambda} \mathrm{d} \xi \tag{3.3}
\end{equation*}
$$

with $\Gamma=[0,+\infty) \cup[0,-\infty) \cup(+\mathrm{i} \infty, 0] \cup(-\mathrm{i} \infty, 0]$.
In what follows, we shall show that the solution to this regular Riemann-Hilbert problem is unique. It can be proved as follows. Set $P_{ \pm}$and $\tilde{P}_{ \pm}$are two set solutions we desired. Then

$$
\begin{equation*}
P_{-}(\lambda) P_{+}(\lambda)=\tilde{P}_{-}(\lambda) \tilde{P}_{+}(\lambda), \tag{3.4}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\tilde{P}_{-}^{-1}(\lambda) P_{-}(\lambda)=\tilde{P}_{+}(\lambda) P_{+}^{-1}(\lambda), \quad \lambda \in \mathbb{R} \cup \mathbb{R} \mathbb{R} \tag{3.5}
\end{equation*}
$$

Since $\tilde{P}_{-}^{-1}(\lambda) P_{-}(\lambda)$ and $\tilde{P}_{+}(\lambda) P_{+}^{-1}(\lambda)$ are analytic in C_{-}and C_{+}respectively, and they are equal to each other on $\mathbb{R} \cup i \mathbb{R}$, they together define a matrix function which is analytic in the whole plane of λ. Due to the boundary condition (3.2), we have

$$
\begin{equation*}
\tilde{P}_{-}^{-1}(\lambda) P_{-}(\lambda)=\tilde{P}_{+}(\lambda) P_{+}^{-1}(\lambda)=I \tag{3.6}
\end{equation*}
$$

for all λ by applying the Liouville's theorem. That is, $\tilde{P}_{ \pm}=P_{ \pm}$, which implies the uniqueness of solution to the above Riemann-Hilbert problem (2.18).

3.2. Solution for a non-regular Riemann-Hilbert problem

In order to study a non-regular Riemann-Hilbert problem, we shall consider symmetric property of these zero points, which are determined by $s_{11}(\lambda)=0$.

Note that s_{11} and r_{11} are time independent, so the roots of $s_{11}=0$ and $r_{11}=0$ are also time independent. Furthermore, owing to $\sigma Q \sigma=Q$ and $Q^{\dagger}=Q$, it is easy to see that

$$
\begin{equation*}
J(x, t,-\lambda)=\sigma J(x, t, \lambda) \sigma, \quad J^{-1}(x, t, \lambda)=J^{\dagger}\left(x, t, \lambda^{*}\right) \tag{3.7}
\end{equation*}
$$

Applying these two reduction conditions to (2.7), then

$$
\begin{equation*}
S(-\lambda)=\sigma S(\lambda) \sigma, \quad S^{\dagger}\left(\lambda^{*}\right)=R(\lambda) . \tag{3.8}
\end{equation*}
$$

It yields that $s_{11}(\lambda)$ is an odd function, so each zero λ_{k} of $s_{11}(\lambda)$ is accompanied by another zero at $-\lambda_{k}$. Assuming $s_{11}\left(\pm \lambda_{k}\right)=0(k=1,2, \cdots, N)$, then $r_{11}\left(\pm \lambda_{k}^{*}\right)=0(k=1,2, \cdots, N)$. For simplicity,
assuming that all zeroes are simple, the kernels of $P_{+}\left(\lambda_{k}\right)$ and $P_{-}\left(\lambda_{k}\right)$ contain only a single vector $\left|v_{k}\right\rangle$ and $\left\langle v_{k}\right|$, respectively,

$$
\begin{equation*}
P_{+}\left(\lambda_{k}\right)\left|v_{k}\right\rangle=0, \quad\left\langle v_{k}\right| P_{-}\left(\lambda_{k}^{*}\right)=0, \quad k=1,2, \cdots, N . \tag{3.9}
\end{equation*}
$$

Taking the x-derivative and t-derivative to the first equation of (3.9), and recalling the Lax pair equation (2.3), it infers

$$
\begin{equation*}
P_{+}\left(\lambda_{k}\right)\left(\left|v_{k}\right\rangle_{x}+\mathrm{i} \lambda_{k}^{2} \sigma\left|v_{k}\right\rangle\right)=0, \quad P_{+}\left(\lambda_{k}\right)\left(\left|v_{k}\right\rangle_{t}+2 \mathrm{i} \lambda_{k}^{4} \sigma\left|v_{k}\right\rangle\right)=0 . \tag{3.10}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left|v_{k}\right\rangle=\mathrm{e}^{-\mathrm{i}\left(\lambda_{k}^{2} x+2 \lambda_{k}^{4} t\right) \sigma} v_{k 0} \mathrm{e}^{\int_{x_{0}}^{x} \alpha_{k}(y) \mathrm{d} y+\int_{t_{0}}^{t} \beta_{k}(\tau) \mathrm{d} \tau} \tag{3.11}
\end{equation*}
$$

where $\alpha_{k}(x)$ and $\beta_{k}(t)$ are two scalar functions.
Based on above results, we have the following theorem for the solution to the non-regular Riemann-Hilbert problem with canonical normalization condition (3.2).

Theorem 1. The solution to a non-regular Riemann-Hilbert problem (2.18) with simple zeroes under the canonical normalization condition (3.2) is

$$
\begin{equation*}
P_{+}(\lambda)=P^{+}(\lambda) T(\lambda), \quad P_{-}(\lambda)=T^{-1}(\lambda) P^{-}(\lambda) \tag{3.12a}
\end{equation*}
$$

where

$$
\begin{gathered}
T(\lambda)=\prod_{k=1}^{k=N} T_{j}\left(\lambda_{j}\right)=\prod_{k=1}^{k=N}\left(I+\frac{A_{j}}{\lambda-\lambda_{j}^{*}}-\frac{\sigma A_{j} \sigma}{\lambda+\lambda_{j}^{*}}\right) \\
T^{-1}(\lambda)=\prod_{k=1}^{k=N} T_{j}^{-1}\left(\lambda_{j}\right)=\prod_{k=1}^{k=N}\left(I+\frac{A_{j}^{\dagger}}{\lambda-\lambda_{j}}-\frac{\sigma A_{j}^{\dagger} \sigma}{\lambda+\lambda_{j}}\right) \\
A_{j}=\frac{\lambda_{j}^{* 2}-\lambda_{j}^{2}}{2}\left(\begin{array}{ccc}
\alpha_{j} & 0 & 0 \\
0 & \alpha_{j}^{*} & 0 \\
0 & 0 & \alpha_{j}^{*}
\end{array}\right)\left|w_{j}\right\rangle\left\langle w_{j}\right|, \quad \alpha_{j}^{-1}=\left\langle w_{j}\right|\left(\begin{array}{ccc}
\lambda_{j}^{*} & 0 & 0 \\
0 & \lambda_{j} & 0 \\
0 & 0 & \lambda_{j}
\end{array}\right)\left|w_{j}\right\rangle
\end{gathered}
$$

$\left|w_{j}\right\rangle$ is a column vector and defined by $\left|w_{j}\right\rangle=T_{j-1}\left(\lambda_{j}\right) \cdots T_{1}\left(\lambda_{j}\right)\left|v_{j}\right\rangle$, and $P^{ \pm}$is the unique solution to the following regular Riemann-Hilbert problem:

$$
\begin{equation*}
P^{-}(\lambda) P^{+}(\lambda)=T(\lambda) G(\lambda) T^{-1}(\lambda), \quad \lambda \in \mathbb{R} \cup i \mathbb{R} \tag{3.12b}
\end{equation*}
$$

where $P^{ \pm}(\lambda)$ are analytic in $C_{ \pm}$respectively, and $P^{ \pm} \rightarrow I$ as $\lambda \rightarrow \infty$.
Proof. We will use a constructional method to prove the theorem. First, construct a matrix function

$$
T_{1}(\lambda)=I+\frac{A_{1}}{\lambda-\lambda_{1}^{*}}-\frac{\sigma A_{1} \sigma}{\lambda+\lambda_{1}^{*}}
$$

which is meromorphic with two simple pole singularities at $\lambda= \pm \lambda_{1}^{*} \in C_{-}$. After a simple calculation, it is obtained immediately that

$$
T_{1}^{-1}(\lambda)=I+\frac{A_{1}^{\dagger}}{\lambda-\lambda_{1}}-\frac{\sigma A_{1}^{\dagger} \sigma}{\lambda+\lambda_{1}}, \quad \operatorname{det} T_{1}(\lambda)=\frac{\lambda^{2}-\lambda_{1}^{2}}{\lambda^{2}-\lambda_{1}^{* 2}}
$$

Moreover, we have $\operatorname{det}\left(P_{+}(\lambda) T_{1}^{-1}(\lambda)\right) \neq 0$ when $\lambda= \pm \lambda_{1}$, and $\operatorname{det}\left(T_{1}(\lambda) P_{-}(\lambda)\right) \neq 0$ when $\lambda=$ $\pm \lambda_{1}^{*}$. Hence, define

$$
T(\lambda)=T_{N}(\lambda) T_{N-1}(\lambda) \cdots T_{1}(\lambda), \quad T^{-1}(\lambda)=T_{1}^{-1}(\lambda) T_{2}^{-1}(\lambda) \cdots T_{N}^{-1}(\lambda)
$$

and

$$
\begin{equation*}
P^{+}(\lambda)=P_{+}(\lambda) T^{-1}(\lambda), \quad P^{-}(\lambda)=T(\lambda) P_{-}(\lambda) \tag{3.13a}
\end{equation*}
$$

with

$$
T_{k}(\lambda)=I+\frac{A_{k}}{\lambda-\lambda_{k}^{*}}-\frac{\sigma A_{k} \sigma}{\lambda+\lambda_{k}^{*}}, \quad T_{k}^{-1}(\lambda)=I+\frac{A_{k}^{\dagger}}{\lambda-\lambda_{k}}-\frac{\sigma A_{k}^{\dagger} \sigma}{\lambda+\lambda_{k}}, \quad k=2, \cdots, N
$$

a regular Riemann-Hilbert problem is obtained as follows:

$$
\begin{equation*}
P^{-}(\lambda) P^{+}(\lambda)=T(\lambda) G(\lambda) T^{-1}(\lambda), \quad \lambda \in \mathbb{R} \cup i \mathbb{R} \tag{3.13b}
\end{equation*}
$$

Furthermore, $P^{ \pm}$have the canonical normalization condition $P^{ \pm} \rightarrow I$ as $\lambda \rightarrow \infty$. It is just the Riemann-Hilbert problem (3.12b) we need.

To finish the proof, we shall accomplish the mission of solving $T_{k}(\lambda)$. Due to $T(\lambda) T^{-1}(\lambda)=I$ for all λ, we have

$$
\begin{equation*}
\operatorname{Res}_{\lambda=\lambda_{k}} T(\lambda) T^{-1}(\lambda)=\operatorname{Res}_{\lambda=\lambda_{k}} T^{-1}(\lambda) T(\lambda)=T\left(\lambda_{k}\right) A_{k}^{\dagger}=0 \tag{3.13c}
\end{equation*}
$$

which yields that A_{k}^{\dagger} must be one dimensional. On the other hand, based on (3.9) and analytic property of $P^{ \pm}$, we have $T\left(\lambda_{k}\right)\left|v_{k}\right\rangle=0$ and $\left\langle v_{k}\right| T^{-1}\left(\lambda_{k}\right)=0$. This implies that A_{k} is linear related to $\left\langle v_{k}\right|$. Actually, through direct calculation, A_{k} can be solved as

$$
A_{k}=\frac{\lambda_{k}^{* 2}-\lambda_{k}^{2}}{2}\left(\begin{array}{ccc}
\alpha_{k} & 0 & 0 \\
0 & \alpha_{k}^{*} & 0 \\
0 & 0 & \alpha_{k}^{*}
\end{array}\right)\left|w_{k}\right\rangle\left\langle w_{k}\right|, \quad \alpha_{k}^{-1}=\left\langle w_{k}\right|\left(\begin{array}{ccc}
\lambda_{k}^{*} & 0 & 0 \\
0 & \lambda_{k} & 0 \\
0 & 0 & \lambda_{k}
\end{array}\right)\left|w_{k}\right\rangle,
$$

with $\left|w_{k}\right\rangle=T_{k-1}\left(\lambda_{k}\right) \cdots T_{1}\left(\lambda_{k}\right)\left|v_{k}\right\rangle$. Hence $T(\lambda)$ and $T^{-1}(\lambda)$ are obtained. This completes the proof.

4. The inverse problem

Based on (2.11), the potential can be obtained from the asymptotic expansion of Jost solutions as $\lambda \rightarrow \infty$. To this end, it is necessary to simplify the expression of $T(\lambda)$ at first. Due to $T_{k}(\lambda)=$ $\sigma T_{k}(-\lambda) \sigma, T(\lambda)$ and $T^{-1}(\lambda)$ can be expressed by

$$
\begin{equation*}
T(\lambda)=I+\sum_{j=1}^{N}\left(\frac{B_{j}}{\lambda-\lambda_{j}^{*}}-\frac{\sigma B_{j} \sigma}{\lambda+\lambda_{j}^{*}}\right), \quad T^{-1}(\lambda)=I+\sum_{j=1}^{N}\left(\frac{B_{j}^{\dagger}}{\lambda-\lambda_{j}}-\frac{\sigma B_{j}^{\dagger} \sigma}{\lambda+\lambda_{j}}\right) \tag{4.1}
\end{equation*}
$$

with $B_{j}=\left|z_{j}\right\rangle\left\langle y_{j}\right|$. Taking into account the same residue condition (3.13c), it yields that

$$
\begin{equation*}
\left[I+\sum_{k=1}^{N}\left(\frac{\left|z_{k}\right\rangle\left\langle y_{k}\right|}{\lambda_{j}-\lambda_{k}^{*}}-\frac{\sigma\left|z_{k}\right\rangle\left\langle y_{k}\right| \sigma}{\lambda_{j}+\lambda_{k}^{*}}\right)\right]\left|y_{j}\right\rangle=0, \quad j=1,2, \cdots, N \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|y_{j}\right\rangle=\sum_{k=1}^{N}\left(\frac{\sigma\left|z_{k}\right\rangle\left\langle y_{k}\right| \sigma\left|y_{j}\right\rangle}{\lambda_{j}+\lambda_{k}^{*}}-\frac{\left|z_{k}\right\rangle\left\langle y_{k} \mid y_{j}\right\rangle}{\lambda_{j}-\lambda_{k}^{*}}\right), \quad j=1,2, \cdots, N . \tag{4.3}
\end{equation*}
$$

Solving the above linear equations, then

$$
\left(\begin{array}{c}
\left|z_{1}\right\rangle_{1} \\
\left|z_{2}\right\rangle_{1} \\
\vdots \\
\left|z_{N}\right\rangle_{1}
\end{array}\right)=M^{-1}\left(\begin{array}{c}
\left|y_{1}\right\rangle_{1} \\
\left|y_{2}\right\rangle_{1} \\
\vdots \\
\left|y_{N}\right\rangle_{1}
\end{array}\right), \quad\left(\begin{array}{c}
\left|z_{1}\right\rangle_{2} \\
\left|z_{2}\right\rangle_{2} \\
\vdots \\
\left|z_{N}\right\rangle_{2}
\end{array}\right)=\hat{M}^{-1}\left(\begin{array}{c}
\left|y_{1}\right\rangle_{2} \\
\left|y_{2}\right\rangle_{2} \\
\vdots \\
\left|y_{N}\right\rangle_{2}
\end{array}\right), \quad\left(\begin{array}{c}
\left|z_{1}\right\rangle_{3} \\
\left|z_{2}\right\rangle_{3} \\
\vdots \\
\left|z_{N}\right\rangle_{3}
\end{array}\right)=\hat{M}^{-1}\left(\begin{array}{c}
\left|y_{1}\right\rangle_{3} \\
\left|y_{2}\right\rangle_{3} \\
\vdots \\
\left|y_{N}\right\rangle_{3}
\end{array}\right)
$$

where $\left|z_{j}\right\rangle_{k}$ denotes the k-th element of $\left|z_{j}\right\rangle,\left|y_{j}\right\rangle$ is equal to $\left|v_{j}\right\rangle$, and entries of $N \times N$ matrices M and \hat{M} are defined as

$$
\begin{equation*}
M_{j k}=\frac{\left\langle y_{k}\right| \sigma\left|y_{j}\right\rangle}{\lambda_{j}+\lambda_{k}^{*}}-\frac{\left\langle y_{k} \mid y_{j}\right\rangle}{\lambda_{j}-\lambda_{k}^{*}}, \quad \hat{M}_{j k}=-\frac{\left\langle y_{k}\right| \sigma\left|y_{j}\right\rangle}{\lambda_{j}+\lambda_{k}^{*}}-\frac{\left\langle y_{k} \mid y_{j}\right\rangle}{\lambda_{j}-\lambda_{k}^{*}}, \quad j, k=1,2, \cdots, N . \tag{4.4}
\end{equation*}
$$

We are in a position to calculate the potential. According to the Plemelj formula [2], the solution of (3.12b) can be expressed as

$$
\begin{equation*}
\left(P^{+}(\lambda)\right)^{-1}=I+\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{T(\xi) \hat{G}(\xi) T^{-1}(\xi)\left(P^{+}(\xi)\right)^{-1}}{\xi-\lambda} \mathrm{d} \xi, \quad \lambda \in C_{+} \tag{4.5}
\end{equation*}
$$

As $\lambda \rightarrow \infty$,

$$
\left(P^{+}(\lambda)\right)^{-1} \rightarrow I-\frac{1}{2 \pi \mathrm{i} \lambda} \int_{\Gamma} T(\xi) \hat{G}(\xi) T^{-1}(\xi)\left(P^{+}(\xi)\right)^{-1} \mathrm{~d} \xi
$$

and thus

$$
P^{+}(\lambda) \rightarrow I+\frac{1}{2 \pi \mathrm{i} \lambda} \int_{\Gamma} T(\xi) \hat{G}(\xi) T^{-1}(\xi)\left(P^{+}(\xi)\right)^{-1} \mathrm{~d} \xi
$$

From (4.1), we see that as $\lambda \rightarrow \infty$,

$$
T(\lambda) \rightarrow I+\frac{1}{\lambda} \sum_{k=1}^{N}\left(\left|z_{k}\right\rangle\left\langle y_{k}\right|-\sigma\left|z_{k}\right\rangle\left\langle y_{k}\right| \sigma\right)
$$

So J_{1} displayed in (2.11) can be expressed as

$$
\begin{equation*}
J_{1}=\sum_{k=1}^{N}\left(\left|z_{k}\right\rangle\left\langle y_{k}\right|-\sigma\left|z_{k}\right\rangle\left\langle y_{k}\right| \sigma\right)+\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} T(\xi) \hat{G}(\xi) T^{-1}(\xi)\left(P^{+}(\xi)\right)^{-1} \mathrm{~d} \xi . \tag{4.6}
\end{equation*}
$$

In order to obtain N-soliton solutions to the vector GI (1.3) equation, set $G=I$, i.e. $r_{12}=r_{13}=$ $s_{21}=s_{31}=0$, which is called reflection-less. In this case $\hat{G}=0$, from (2.11) and (4.6), the formula for N-soliton is

$$
\begin{equation*}
Q=\mathrm{i} \sigma\left[\sigma, \sum_{k=1}^{N}\left(\left|z_{k}\right\rangle\left\langle y_{k}\right|-\sigma\left|z_{k}\right\rangle\left\langle y_{k}\right| \sigma\right)\right] \tag{4.7}
\end{equation*}
$$

which implies

$$
\begin{equation*}
q_{1}=4 \mathrm{i} \sum_{k=1}^{N}\left|z_{k}\right\rangle_{1}\left\langle\left. y_{k}\right|_{2}=-4 \mathrm{i} \frac{\operatorname{det} M_{1}}{\operatorname{det} M}, \quad q_{2}=4 \mathrm{i} \sum_{k=1}^{N} \mid z_{k}\right\rangle_{1}\left\langle\left. y_{k}\right|_{3}=-4 \mathrm{i} \frac{\operatorname{det} M_{2}}{\operatorname{det} M} .\right. \tag{4.8}
\end{equation*}
$$

Here

$$
M_{1}=\left(\begin{array}{cccc}
M_{11} & \cdots & M_{1 N} & \left|y_{1}\right\rangle_{1} \tag{4.9}\\
\vdots & \cdots & \vdots & \vdots \\
M_{N 1} & \cdots & M_{N N} & \left|y_{N}\right\rangle_{1} \\
\left\langle\left. y_{1}\right|_{2}\right. & \cdots & \left\langle\left. y_{N}\right|_{2}\right. & 0
\end{array}\right), \quad M_{2}=\left(\begin{array}{cccc}
M_{11} & \cdots & M_{1 N} & \left|y_{1}\right\rangle_{1} \\
\vdots & \cdots & \vdots & \vdots \\
M_{N 1} & \cdots & M_{N N} & \left|y_{N}\right\rangle_{1} \\
\left\langle\left. y_{1}\right|_{3}\right. & \cdots & \left\langle\left. y_{N}\right|_{3}\right. & 0
\end{array}\right) .
$$

Based on the dressing method [20], it is straightforward to verify that (4.8) satisfies the vGI equation.
Let $N=1, \theta_{k}=-\mathrm{i} \lambda_{k}^{2} x-2 \mathrm{i} \lambda_{k}^{4} t$ and $v_{k 0}=\left(1, a_{k}, b_{k}\right)^{T}$, according to (4.8), then it yields

$$
\begin{equation*}
\binom{q_{1}}{q_{2}}=-\frac{2 \mathrm{i}\left(\lambda_{1}^{2}-\lambda_{1}^{* 2}\right) \exp \left(\theta_{1}-\theta_{1}^{*}\right)}{\lambda_{1}\left(\left|a_{1}\right|^{2}+\left|b_{1}\right|^{2}\right) \exp \left(-\theta_{1}-\theta_{1}^{*}\right)+\lambda_{1}^{*} \exp \left(\theta_{1}+\theta_{1}^{*}\right)}\binom{a_{1}^{*}}{b_{1}^{*}} \tag{4.10}
\end{equation*}
$$

which is the first order soliton solution of the $\mathrm{vGI}(1.3)$. Let $a_{k}=b_{k}=1$, then

$$
\begin{equation*}
q_{1}=q_{2}=\frac{-2 \mathrm{i}\left(\lambda_{1}^{2}-\lambda_{1}^{* 2}\right)}{2 \lambda_{1} \exp \left(-2 \theta_{1, R}\right)+\lambda_{1}^{*} \exp \left(2 \theta_{1, R}\right)} \exp \left(2 \mathrm{i} \theta_{1, I}\right) \tag{4.11}
\end{equation*}
$$

where the subscript " R " and " I " denote the real part and the imaginary part, respectively. For θ_{1}, its real and imaginary parts are displayed as

$$
\begin{aligned}
\theta_{1, R} & =2 \lambda_{1, R} \lambda_{1, I}\left[x+4\left(\lambda_{1, R}^{2}-\lambda_{1, I}^{2}\right) t\right], \\
\theta_{1, I} & =-\left(\lambda_{1, R}^{2}-\lambda_{1, I}^{2}\right) x-\left(2 \lambda_{1, R}^{4}-12 \lambda_{1, R}^{2} \lambda_{1, I}^{2}+2 \lambda_{1, I}^{4}\right) t .
\end{aligned}
$$

When $x+4\left(\lambda_{1, R}^{2}-\lambda_{1, I}^{2}\right) t=0$, one-soliton reaches to its amplitude $\left|\frac{8 \lambda_{1, R} \lambda_{1, I}}{3 \lambda_{1, R}+\lambda_{1, I}}\right|$. Besides, it is found that $\alpha(x)$ and $\beta(t)$ are eliminated automatically interior the calculation, so set $\alpha(x)=\beta(t)=0$ below without loss of generality. Inspired by the elastic collisions of multi-soliton, we have the following theorem for the interactions of N solitons.

Theorem 2. Set $\operatorname{Im} \lambda_{k}^{2}>0(k=1,2, \cdots, N)$, and $\operatorname{Re} \lambda_{N}^{2}<\cdots<\operatorname{Re} \lambda_{2}^{2}<\operatorname{Re} \lambda_{1}^{2}$, then N-soliton (4.8) has a following simple asymptotic behavior as

$$
\begin{equation*}
q_{1} \sim \sum_{k=1}^{N} \frac{-2 \mathrm{i}\left(\lambda_{k}^{2}-\lambda_{k}^{* 2}\right) \exp \left(2 \mathrm{i} \theta_{k, I} \pm \mathrm{i} \varphi_{k, I} \pm \mathrm{i} \psi_{k, I}\right)}{2 \lambda_{k} \exp \left(-2 \theta_{k, R} \mp \varphi_{k, R} \pm \psi_{k, R}\right)+\lambda_{k}^{*} \exp \left(2 \theta_{k, R} \pm \varphi_{k, R} \mp \psi_{k, R}\right)} \tag{4.1}
\end{equation*}
$$

as $t \rightarrow \pm \infty$, where

$$
\varphi_{k}=\sum_{l=1}^{k-1} \ln \left|\frac{\lambda_{k}^{2}-\lambda_{l}^{2}}{\lambda_{k}^{2}-\lambda_{l}^{* 2}}\right|+\mathrm{i} \sum_{l=1}^{k-1} \arg \frac{\lambda_{k}^{2}-\lambda_{l}^{2}}{\lambda_{k}^{2}-\lambda_{l}^{* 2}}, \quad \psi_{k}=\sum_{j=k+1}^{N} \ln \left|\frac{\lambda_{j}^{* 2}-\lambda_{k}^{* 2}}{\lambda_{j}^{2}-\lambda_{k}^{* 2}}\right|+\mathrm{i} \sum_{j=k+1}^{N} \arg \frac{\lambda_{j}^{* 2}-\lambda_{k}^{* 2}}{\lambda_{j}^{2}-\lambda_{k}^{* 2}} .
$$

Proof. Since $\operatorname{Im} \lambda_{k}^{2}>0(k=1,2, \cdots, N)$, the asymptotic behavior of $\exp \left(-\theta_{k}\right)$ is decided by $x+$ $4\left(\operatorname{Re} \lambda_{k}^{2}\right) t$. Denoting the vicinity of $x=-4\left(\operatorname{Re} \lambda_{k}^{2}\right) t$ as Ω_{k}, in the limit of $t \rightarrow+\infty$, these vicinities are separated from each other. In the vicinity of Ω_{k},

$$
\begin{array}{ll}
x+4\left(\operatorname{Re} \lambda_{j}^{2}\right) t=-4\left(\operatorname{Re} \lambda_{k}^{2}-\operatorname{Re} \lambda_{j}^{2}\right) t \rightarrow+\infty & j<k, \\
x+4\left(\operatorname{Re} \lambda_{j}^{2}\right) t=-4\left(\operatorname{Re} \lambda_{k}^{2}-\operatorname{Re} \lambda_{j}^{2}\right) t \rightarrow-\infty & j>k .
\end{array}
$$

That is,

$$
\exp \left(-\theta_{j}\right) \rightarrow 0 \quad j<k ; \quad \exp \left(\theta_{j}\right) \rightarrow 0 \quad j>k
$$

Thus, in the vicinity of Ω_{k},

$$
\begin{aligned}
& \operatorname{det} M=\left|\begin{array}{ccccccc}
\frac{-2 \lambda_{1}^{*}}{\lambda_{1}^{2}-\lambda_{1}^{* 2}} & \cdots & \frac{-2 \lambda_{k-1}^{*}}{\lambda_{1}^{2}-\lambda_{k-1}^{* 2}} & \frac{-2 \lambda_{k}^{*}}{\lambda_{1}^{2}-\lambda_{k}^{* 2}} & 0 & \cdots & 0 \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
\frac{-2 \lambda_{1}^{*}}{\lambda_{k-1}^{2}-\lambda_{1}^{* 2}} & \cdots & \frac{-2 \lambda_{k-1}^{*}}{\lambda_{k-1}^{2}-\lambda_{k-1}^{* 2}} & \frac{-2 \lambda_{k}^{*}}{\lambda_{k-1}^{2}-\lambda_{k}^{* 2}} & 0 & \cdots & 0 \\
\frac{-2 \lambda_{1}^{*}}{\lambda_{k}^{2}-\lambda_{1}^{* 2}} & \cdots & \frac{-2 \lambda_{k-1}^{*}}{\lambda_{k}^{2}-\lambda_{k-1}^{* 2}} & \frac{-2 \lambda_{k}^{*}-4 \lambda_{k} \mathrm{e}^{-2 \theta_{k}-2 \theta_{k}^{*}}}{\lambda_{k}^{2}-\lambda_{k}^{* 2}} & \frac{-4 \lambda_{k} \mathrm{e}^{-2 \theta_{k}}}{\lambda_{k}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{k} \mathrm{e}^{-2 \theta_{k}}}{\lambda_{k}^{2}-\lambda_{N}^{* 2}} \\
0 & \cdots & 0 & \frac{-4 \lambda_{k+1} \mathrm{e}^{-2 \theta_{k}^{*}}}{\lambda_{k+1}^{2}-\lambda_{k}^{* 2}} & \frac{-4 \lambda_{k+1}}{\lambda_{k+1}^{2}-\lambda_{k+1}^{* 2}} \cdots & \frac{-4 \lambda_{k+1}}{\lambda_{k+1}^{2}-\lambda_{N}^{* 2}} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
0 & \cdots & 0 & \frac{-4 \lambda_{N} \mathrm{e}^{-2 \theta_{k}^{*}}}{\lambda_{N}^{2}-\lambda_{k}^{* 2}} & \frac{-4 \lambda_{N}}{\lambda_{N}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{N}}{\lambda_{N}^{2}-\lambda_{N}^{* 2}}
\end{array}\right| \\
& \times \exp \left[\sum_{l=1}^{k}\left(\theta_{l}+\theta_{l}^{*}\right)-\sum_{j=k+1}^{N}\left(\theta_{j}+\theta_{j}^{*}\right)\right] \\
& =\left[\left.\begin{array}{ccc}
\frac{-2 \lambda_{1}^{*}}{\lambda_{1}^{2}-\lambda_{1}^{* 2}} & \cdots & \frac{-2 \lambda_{k-1}^{*}}{\lambda_{1}^{2}-\lambda_{k-1}^{* 2}} \\
\vdots & & \vdots \\
\frac{-2 \lambda_{1}^{*}}{\lambda_{k-1}^{2}-\lambda_{1}^{* 2}} & \cdots & \frac{-2 \lambda_{k-1}^{2}}{\lambda_{k-1}^{2}-\lambda_{k-1}^{* 2}}
\end{array}| | \begin{array}{cccc}
\frac{-4 \lambda_{k} \mathrm{e}^{-2 \theta_{k}-2 \theta_{k}^{*}}}{\lambda_{k}^{2}-\lambda_{k}^{* 2}} & \frac{-4 \lambda_{k} \mathrm{e}^{-2 \theta_{k}}}{\lambda_{k}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{k} \mathrm{e}^{-2 \theta_{k}}}{\lambda_{k}^{2}-\lambda_{N}^{* 2}} \\
\frac{-4 \lambda_{k+1} \mathrm{e}^{-2 \theta_{k}^{*}}}{\lambda_{k+1}^{2}-\lambda_{k}^{* 2}} & \frac{-4 \lambda_{k+1}}{\lambda_{k+1}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{k+1}}{\lambda_{k+1}^{2}-\lambda_{N}^{* 2}} \\
\vdots & \vdots & & \vdots \\
\frac{-4 \lambda_{N} \mathrm{e}^{-2 \theta_{k}^{*}}}{\lambda_{N}^{2}-\lambda_{k}^{* 2}} & \frac{-4 \lambda_{N}}{\lambda_{N}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{N}}{\lambda_{N}^{2}-\lambda_{N}^{* 2}}
\end{array} \right\rvert\,\right. \\
& \left.+\left|\begin{array}{ccc}
\frac{-2 \lambda_{1}^{*}}{\lambda_{1}^{2}-\lambda_{1}^{* 2}} & \cdots & \frac{-2 \lambda_{k}^{*}}{\lambda_{1}^{2}-\lambda_{k}^{* 2}} \\
\vdots & & \vdots \\
\frac{-2 \lambda_{1}^{*}}{\lambda_{k}^{2}-\lambda_{1}^{* 2}} & \cdots & \frac{-2 \lambda_{k}^{*}}{\lambda_{k}^{2}-\lambda_{k}^{* 2}}
\end{array}\right|\left|\begin{array}{ccc}
\frac{-4 \lambda_{k+1}}{\lambda_{k+1}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{k+1}}{\lambda_{k+1}^{2}-\lambda_{N}^{* 2}} \\
\vdots & & \vdots \\
\frac{-4 \lambda_{N}}{\lambda_{N}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{N}}{\lambda_{N}^{2}-\lambda_{N}^{* 2}}
\end{array}\right|\right] \times \exp \left[\sum_{l=1}^{k}\left(\theta_{l}+\theta_{l}^{*}\right)-\sum_{j=k+1}^{N}\left(\theta_{j}+\theta_{j}^{*}\right)\right] \\
& =\left[\prod_{j=1}^{k}\left(-2 \lambda_{j}^{*}\right) \prod_{l=k+1}^{N}\left(-4 \lambda_{l}\right) C\left(\lambda_{1}^{2}, \cdots, \lambda_{k}^{2}\right) C\left(\lambda_{k+1}^{2}, \cdots, \lambda_{N}^{2}\right)+\prod_{j=1}^{k-1}\left(-2 \lambda_{j}^{*}\right) \prod_{l=k}^{N}\left(-4 \lambda_{l}\right)\right. \\
& \left.C\left(\lambda_{1}^{2}, \cdots, \lambda_{k-1}^{2}\right) C\left(\lambda_{k}^{2}, \cdots, \lambda_{N}^{2}\right) \mathrm{e}^{-2 \theta_{k}-2 \theta_{k}^{*}}\right] \times \exp \left[\sum_{l=1}^{k}\left(\theta_{l}+\theta_{l}^{*}\right)-\sum_{j=k+1}^{N}\left(\theta_{j}+\theta_{j}^{*}\right)\right]
\end{aligned}
$$

and

$$
\operatorname{det} M_{1}=\left|\begin{array}{cccccccc}
\frac{-2 \lambda_{1}^{*}}{\lambda_{1}^{2}-\lambda_{1}^{* 2}} & \cdots & \frac{-2 \lambda_{k-1}^{*}}{\lambda_{1}^{2}-\lambda_{k-1}^{* 2}} & \frac{-2 \lambda_{k}^{*}}{\lambda_{1}^{2}-\lambda_{k}^{* 2}} & 0 & \cdots & 0 & 1 \\
\vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots \\
\frac{-2 \lambda_{1}^{*}}{\lambda_{k-1}^{2}-\lambda_{1}^{* 2}} & \cdots & \frac{-2 \lambda_{k-1}^{*}}{\lambda_{k-1}^{2}-\lambda_{k-1}^{* 2}} & \frac{-2 \lambda_{k}^{*}}{\lambda_{k-1}^{2}-\lambda_{k}^{* 2}} & 0 & \cdots & 0 & 1 \\
\frac{-2 \lambda_{1}^{*}}{\lambda_{k}^{2}-\lambda_{1}^{* 2}} & \cdots & \frac{-2 \lambda_{k-1}^{*}}{\lambda_{k}^{2}-\lambda_{k-1}^{* 2}} & \frac{-2 \lambda_{k}^{*}-4 \lambda_{k} \mathrm{e}^{-2 \theta_{k}-2 \theta_{k}^{*}}}{\lambda_{k}^{2}-\lambda_{k}^{* 2}} & \frac{-4 \lambda_{k} \mathrm{e}^{2}-2 \theta_{k}}{\lambda_{k}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{k} \mathrm{e}^{-2 \theta_{k}}}{\lambda_{k}^{2}-\lambda_{N}^{* 2}} & 1 \\
0 & \cdots & 0 & \frac{-4 \lambda_{k+1} \mathrm{e}^{-2 \theta_{k}^{*}}}{\lambda_{k+1}^{2}-\lambda_{k}^{* 2}} & \frac{-4 \lambda_{k+1}}{\lambda_{k+1}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{k+1}}{\lambda_{k+1}^{2}-\lambda_{N}^{* 2}} & 0 \\
\vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & \cdots & 0 & \frac{-4 \lambda_{N} \mathrm{e}^{-2 \theta_{k}^{*}}}{\lambda_{N}^{2}-\lambda_{A_{2}^{* 2}}^{*}} & \frac{-4 \lambda_{N}}{\lambda_{N}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{N}}{\lambda_{N}^{2}-\lambda_{N}^{* 2}} & 0 \\
0 & \cdots & 0 & \mathrm{e}^{-2 \theta_{k}^{*}} & 1 & \cdots & 1 & 0
\end{array}\right|
$$

$$
\begin{aligned}
& \times \exp \left[\sum_{l=1}^{k}\left(\theta_{l}+\theta_{l}^{*}\right)-\sum_{j=k+1}^{N}\left(\theta_{j}+\theta_{j}^{*}\right)\right] \\
& =(-1)^{N-k+1}\left|\begin{array}{cccc}
\frac{-2 \lambda_{1}^{*}}{\lambda_{1}^{2}-\lambda_{1}^{* 2}} \cdots & \frac{-2 \lambda_{k-1}^{*}}{\lambda_{1}^{2}-\lambda_{k-1}^{* 2}} & 1 \\
\vdots & & \vdots & \vdots \\
\frac{-2 \lambda_{1}^{*}}{\lambda_{k}^{2}-\lambda_{1}^{* 2}} \cdots & \frac{-2 \lambda_{k-1}^{*}}{\lambda_{k}^{2}-\lambda_{k-1}^{* 2}} & 1
\end{array}\right|\left|\begin{array}{cccc}
\frac{-4 \lambda_{k+1} \mathrm{e}^{-2 \theta_{k}^{*}}}{\lambda_{k+1}^{2}-\lambda_{k}^{* 2}} & \frac{-4 \lambda_{k+1}}{\lambda_{k+1}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{k+1}}{\lambda_{k+1}^{2}-\lambda_{N}^{* 2}} \\
\vdots & \vdots & & \vdots \\
\frac{-4 \lambda_{N} \mathrm{e}^{-2 \theta_{k}^{*}}}{\lambda_{N}^{2}-\lambda_{k}^{* 2}} & \frac{-4 \lambda_{N}}{\lambda_{N}^{2}-\lambda_{k+1}^{* 2}} & \cdots & \frac{-4 \lambda_{N}}{\lambda_{N}^{2}-\lambda_{N}^{* 2}} \\
\mathrm{e}^{-2 \theta_{k}^{*}} & 1 & \cdots & 1
\end{array}\right| \\
& \times \exp \left[\sum_{l=1}^{k}\left(\theta_{l}+\theta_{l}^{*}\right)-\sum_{j=k+1}^{N}\left(\theta_{j}+\theta_{j}^{*}\right)\right] \\
& =-\prod_{j=1}^{k-1} \frac{-2 \lambda_{j}^{*}\left(\lambda_{k}^{2}-\lambda_{l}^{2}\right)}{\lambda_{k}^{2}-\lambda_{l}^{* 2}} \prod_{l=k+1}^{N} \frac{-4 \lambda_{l}\left(\lambda_{j}^{* 2}-\lambda_{k}^{* 2}\right)}{\lambda_{j}^{2}-\lambda_{k}^{* 2}} C\left(\lambda_{1}^{2}, \cdots, \lambda_{k-1}^{2}\right) C\left(\lambda_{k+1}^{2}, \cdots \lambda_{N}^{2}\right) \mathrm{e}^{-2 \theta_{k}^{*}} \\
& \times \exp \left[\sum_{l=1}^{k}\left(\theta_{l}+\theta_{l}^{*}\right)-\sum_{j=k+1}^{N}\left(\theta_{j}+\theta_{j}^{*}\right)\right],
\end{aligned}
$$

where $C\left(\lambda_{1}, \cdots, \lambda_{k}\right)$ denotes the determinant of Cauchy matrix $\left(\frac{1}{\lambda_{j}^{2}-\lambda_{l}^{* 2}}\right)_{k \times k}, j, l=1,2, \cdots, k$. Let

$$
\varphi_{k}=\sum_{l=1}^{k-1} \ln \left|\frac{\lambda_{k}^{2}-\lambda_{l}^{2}}{\lambda_{k}^{2}-\lambda_{l}^{* 2}}\right|+\mathrm{i} \sum_{l=1}^{k-1} \arg \frac{\lambda_{k}^{2}-\lambda_{l}^{2}}{\lambda_{k}^{2}-\lambda_{l}^{* 2}}, \quad \psi_{k}=\sum_{j=k+1}^{N} \ln \left|\frac{\lambda_{j}^{* 2}-\lambda_{k}^{* 2}}{\lambda_{j}^{2}-\lambda_{k}^{* 2}}\right|+\mathrm{i} \sum_{j=k+1}^{N} \arg \frac{\lambda_{j}^{* 2}-\lambda_{k}^{* 2}}{\lambda_{j}^{2}-\lambda_{k}^{* 2}}
$$

By a simple analysis,

$$
q_{1}=-4 \mathrm{i} \frac{\operatorname{det} M_{1}}{\operatorname{det} M} \sim \frac{-2 \mathrm{i}\left(\lambda_{k}^{2}-\lambda_{k}^{* 2}\right) \exp \left(2 \mathrm{i} \theta_{k, I}+\mathrm{i} \varphi_{k, I}+\mathrm{i} \psi_{k, I}\right)}{2 \lambda_{k} \exp \left(-2 \theta_{k, R}-\varphi_{k, R}+\psi_{k, R}\right)+\lambda_{k}^{*} \exp \left(2 \theta_{k, R}+\varphi_{k, R}-\psi_{k, R}\right)}
$$

When $t \rightarrow-\infty$, taking the similar procedure as above, we have

$$
q_{1}=-4 \mathrm{i} \frac{\operatorname{det} M_{1}}{\operatorname{det} M} \sim \frac{-2 \mathrm{i}\left(\lambda_{k}^{2}-\lambda_{k}^{* 2}\right) \exp \left(2 \mathrm{i} \theta_{k, I}-\mathrm{i} \varphi_{k, I}-\mathrm{i} \psi_{k, I}\right)}{2 \lambda_{k} \exp \left(-2 \theta_{k, R}+\varphi_{k, R}-\psi_{k, R}\right)+\lambda_{k}^{*} \exp \left(2 \theta_{k, R}-\varphi_{k, R}+\psi_{k, R}\right)} .
$$

Thus, on the whole plane, q_{1} has the asymptotic behavior as (4.12).
The asymptotic behavior (4.12) displays the elastic collisions of multi-soliton. Comparing with the single soliton, the additional phase shifts and displacements, Θ_{k} and Δ_{k}, are easily obtained

$$
\begin{align*}
\Theta_{k} & =\sum_{l=1}^{k-1} \arg \frac{\lambda_{k}^{2}-\lambda_{l}^{2}}{\lambda_{k}^{2}-\lambda_{l}^{* 2}}-\sum_{l=k+1}^{N} \arg \frac{\lambda_{k}^{2}-\lambda_{l}^{2}}{\lambda_{k}^{2}-\lambda_{l}^{* 2}} \tag{4.13}\\
\Delta_{k} & =\frac{1}{2 \lambda_{k R} \lambda_{k I}}\left[\sum_{l=1}^{k-1} \ln \left|\frac{\lambda_{k}^{2}-\lambda_{l}^{2}}{\lambda_{k}^{2}-\lambda_{l}^{* 2}}\right|-\sum_{l=k+1}^{N} \ln \left|\frac{\lambda_{k}^{2}-\lambda_{l}^{2}}{\lambda_{k}^{2}-\lambda_{l}^{* 2}}\right|\right] . \tag{4.14}
\end{align*}
$$

5. Conclusion

Basing on the Jost solutions to the Lax pair of the vGI equation and the scattering matrix $S(\lambda)$, we formulated the corresponding Riemann-Hilbert problem, which admitted simple zero points generated by the roots of $\operatorname{det} s_{11}(\lambda)$. By taking spectral analysis, we found that the zero points were paired, since $\operatorname{det} s_{11}(\lambda)$ was an odd function. In view of the symmetry relations of zero points,
we constructed a transformation, which eliminated the zero points and made the Riemann-Hilbert problem be regular. Applying the Plemelj formulae, N-soliton solutions to the vGI equation were obtained from the solutions of Riemann-Hilbert problem with vanishing scattering coefficients, which was just the reflection-less case. Moreover,the asymptotic behavior of N-soliton was also provided, and the simple elastic interactions of multi-soliton were observed directly from it.

Acknowledgments

This work is supported by the NSF of China under Grant No. 11271210 and No.11671219, and the K. C. Wong Magna Fund in Ningbo University.

References

[1] M. Ablowitz and P. Clarkson, Soliton, nonlinear evolution equations and inverse scattering (Cambridge University Press, Cambridge, UK, 1991).
[2] M. J. Ablowitz and A. S. Fokas, Complex variables: introduction and applications (Cambridge University Press, 2003).
[3] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974) 249-315.
[4] G. P. Agrawal, Nonlinear fiber optics (Academic Press, 2007).
[5] H. Dai and E. Fan, Variable separation and algebro-geometric solutions of the Gerdjikov-Ivanov equation, Chaos, Solitons Fractals 22 (2004) 93-101.
[6] E. Fan, Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation, J.Phys.A:Math. Gen. 33 (2000) 6925-6933.
[7] E. Fan, Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation, J. Math. Phys. 41 (2000) 7769-7782.
[8] A. S. Fokas, A unified approach to boundary value problems (SIAM, 2008).
[9] C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett. 19 (1967) 1095-1097.
[10] C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Korteweg-deVries equation and generalizations. VI. methods for exact solution, Comm. Pure Appl. Math. 27 (1974) 97-133.
[11] X. Geng and J. Wu, Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation, Wave Motion 60 (2016) 62-72.
[12] V. Gerdjikov and I. Ivanov, A quadratic pencil of general type and nonlinear evolution equations. II. hierarchies of Hamiltonian structures, Bulg.J.Phys. 10 (1983) 130-143.
[13] B. Guo and L. Ling, Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation, J. Math. Phys. 53 (2012) p. 073506.
[14] L. Guo, Y. Zhang, S. Xu, Z. Wu and J. He, The higher order rogue wave solutions of the GerdjikovIvanov equation, Phys. Scripta 89 (2014) p. 035501.
[15] A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett. 23 (1973) 142-144.
[16] S. Kakei and T. Kikuchi, Solutions of a derivative nonlinear Schrödinger hierarchy and its similarity reduction, Glasgow Math. J. 47 (2005) 99-107.
[17] D. Kaup and J. Yang, The inverse scattering transform and squared eigenfunctions for a degenerate $3 \times$ 3 operator, Inverse Probl. 25 (2009) p. 105010.
[18] A. Kundu, Exact solutions to higher-order nonlinear equations through gauge transformation, Physica D: Nonlinear Phenomena 25 (1987) 399-406.
[19] S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov.Phys.JETP 38 (1974) 248-253.
[20] S. Novikov, S. Manakov, L. Pitaevskii and V. Zakharov, Theory of solitons: the inverse scattering method (New York and London, Consultants Bureau, 1984).
[21] M. Wadati and K. Sogo, Gauge transformations in soliton theory, J. Phys. Soc. Japan 52 (1983) 394398.
[22] S. Xu and J. He, The rogue wave and breather solution of the Gerdjikov-Ivanov equation, J. Math. Phys. 53 (2012) p. 063507.
[23] J. Yang, Nonlinear waves in integrable and nonintegrable systems (SIAM, 2010).
[24] J. Yang and D. Kaup, Squared eigenfunctions for the Sasa-Satsuma equation, J. Math. Phys. 50 (2009) p. 023504.
[25] J. Yang, J. Zhu and L. Wang, Dressing by regularization to the Gerdjikov-Ivanov equation and the higher-order soliton, arXiv:1504.03407 (2015).
[26] V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9 (1968) 190-194.

[^0]: *Corresponding author.

