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We consider the Riemann–Hilbert method for initial problem of the vector Gerdjikov–Ivanov equation, and

obtain the formula for its N-soliton solution, which is expressed as a ratio of (N+1)× (N+1) determinant and

N ×N determinant. Furthermore, by applying asymptotic analysis, the simple elastic interactions of N-soliton

are confirmed, and the shifts of phase and position are also explicitly displayed.
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1. Introduction

The nonlinear Schrödinger equation (NLS) is an important integrable equation, which governs

weakly nonlinear and dispersive wave packets in one-dimensional physical systems. It was first

derived by Zakharov [26] in his study of modulational stability of deep water waves. Then Hasegawa

and Tappert [15] display that the NLS equation governs light pulse propagation in optical fibers.

Besides, the same equation will be extended to a vector case [4, 19], if more than one packets of

different carrier frequencies appear simultaneously.

In order to study the effect of higher order perturbations, a derivative–type nonlinear equation

iqt +qxx − iq2q∗x +
1

2
q3q∗2 = 0, (1.1)

is derived by Gerdjikov-Ivanov [12], which is called the GI equation or DNLSIII equation. Since its

discovery, its Darboux transformation [6] , Hamiltonian structures [7], algebra–geometric solutions
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[5], Wronskian type solution [16], soliton [6, 25], breather and rogue wave solutions [14, 22] have

been obtained, even though some of them may be also obtained in theory by taking into account

some gauge transformations [18,21]. Actually, the above results give us the results directly and help

us to avoid calculating complicated integrals involved in gauge transformations, which may not be

evaluated at all.

The GI equation, similar to the NLS equation, also admits a vector case

qt = iqxx +q†
xq2 +

i

2
(q†q)2q, (1.2)

where q = (q1,q2, · · · ,qn)
T , and the superscript “†” denotes Hermitian conjugate of a matrix or

vector. When n = 2, it yields

q1t = iq1xx +q1(q1q∗1x +q2q∗2x)+
i

2
q1(|q1|4 + |q2|4)+ i|q1q2|2q1, (1.3a)

q2t = iq2xx +q2(q1q∗1x +q2q∗2x)+
i

2
q2(|q1|4 + |q2|4)+ i|q1q2|2q2. (1.3b)

In this paper, we will consider the Riemann–Hilbert method for the vector GI (vGI) equation (1.3),

and display the determinant expression of its N–soliton solution, which is easy to be used for con-

sidering asymptotic behavior.

The Riemann–Hilbert method, derived by Novikov et al. [20], streamlines and simplifies the

original inverse scattering transformation [1, 3, 9, 10] based on the Gel’fand–Levitan–Marchenko

integral equations. Recently, the Riemann–Hilbert method has been adopted to solve the vector

nonlinear equation, 3×3 spectral problems, squared eigenfunctions and so on [2,8,11,13,17,23,24].

In the next section, we will construct the Riemann–Hilbert problem based on the Jost solutions

to the Lax pair of vGI (1.3) equation and scattering data S(λ ) (2.6). In §3, we discuss solutions

to the regular and non–regular Riemann–Hilbert problems by applying Plemelj formula. In §4,

the determinant expressions of N–soliton solutions to the vGI equation are obtained, as well as

asymptotic behaviors. Also, the expression of one–soliton is displayed explicitly. The conclusions

are given in the final section.

2. The construction of Riemann–Hilbert problem

The vector GI equation (1.3) is the compatibility condition of the following two linear equations:

Φx = UΦ = (−iλ 2σ −λQσ +
i

2
Q2σ)Φ, (2.1a)

Φt = V Φ = (−2iλ 4σ −2λ 3Qσ + iλ 2σQ2 + iλQx − 1

2
[Qx,Q]+

i

4
Q4σ)Φ, (2.1b)

with

Q =

⎛
⎝ 0 q1 q2

q∗1 0 0

q∗2 0 0

⎞
⎠ , σ =

⎛
⎝1 0 0

0 −1 0

0 0 −1

⎞
⎠ .

Here λ is a spectral parameter, Φ(x, t,λ ) is a vector or matrix function, the superscript “*” represents

complex conjugation, and [A, B] denotes AB−BA. In our analysis, we assume that

q1(x,0)→ 0, q2(x,0)→ 0, as x → ∞, (2.2)
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which belong to Schwartz space. Obviously, Ê = e−i(λ 2σx+2λ 4σt) is a solution for the linear equations

(2.1) at this time. Let Φ = JÊ, then the spectral problems about J(x, t,λ ) are defined as

Jx + iλ 2[σ ,J] = ÛJ = (−λQσ +
i

2
Q2σ)J, (2.3a)

Jt +2iλ 4[σ ,J] = V̂ J = (−2λ 3Qσ + iλ 2σQ2 + iλQx − 1

2
[Qx,Q]+

i

4
Q4σ)J, (2.3b)

Under boundary conditions

J± → I, x →±∞, (2.4)

the Jost solutions for the spectral problem (2.3a) can be solved as

J±(x,λ ) = I +
∫ x

±∞
e−iλ 2σ(x−y)Û(y)J±(y)eiλ 2σ(x−y)dy. (2.5)

Let [J±]k denote the k-th column vector of J±, then it leads that, after simple analysis, [J−]1, [J+]2
and [J+]3 are analytic for λ ∈C+ and continuous for λ ∈C+∪R∪ iR, and [J+]1, [J−]2 and [J−]3 are

analytic for λ ∈C− and continuous for λ ∈C−∪R∪ iR, where

C+ =

{
λ |argλ ∈ (0,

π
2
)∪ (π,

3π
2
)

}
, C− =

{
λ |argλ ∈ (

π
2
,π)∪ (

3π
2
,2π)

}
,

which are displayed explicitly in Fig. 1.

Defining E = e−iλ 2σx, then J−E and J+E are different solutions for the linear equation (2.1a),

so they are not independent and are linearly related by a scattering matrix S(λ ):

J−E = J+ES(λ ), λ ∈ R∪ iR, (2.6)

or

J− = J+ES(λ )E−1, λ ∈ R∪ iR. (2.7)

Fig. 1. The jump contour in the complex λ -plane. The positive (negative) side lies on the left (right) as one traverses the

contour.
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Owing to the Abel’s identity and tr(Q) = 0, the determinants of J± are constants for all x. Then

using the boundary conditions (2.4), we have

detJ± = 1.

According to (2.7), detS(λ ) = 1 is obtained. Furthermore, let x go to +∞, S(λ ) is given as

S(λ ) = (si j)3×3 = lim
x→+∞

E−1J−E = I +
∫ +∞

−∞
eiλ 2σyÛJ−e−iλ 2σydy, λ ∈ R∪ iR.

Based on the analytic property of J−, s11 is analytic extension to C+, while s22,s23,s32 and s33 are

analytic extension to C−.

In order to obtain behavior of Jost solution for very large λ , we consider the following expansion

J = J0 +
J1

λ
+

J2

λ 2
+

J3

λ 3
+O(

1

λ 4
), (2.8)

and substitute it into the spectral problem (2.3a). By comparing the coefficients of λ , it leads to

[σ ,J0] = 0, i[σ ,J1]+QσJ0 = 0, J0x =
i

2
Q2σJ0 −QσJ1 − i[σ ,J2], (2.9)

which imply

i[σ ,J1] =−QσJ0, J0x = 0. (2.10)

If there exists a solution Q of the vector GI, and set J0 = I without loss of generality, then it is given

by

Q = iσ [σ ,J1] = i(J1 −σJ1σ). (2.11)

To construct the Riemann–Hilbert problem, we define a new Jost solution for (2.3a) as

P+ = ([J−]1, [J+]2, [J+]3) = J+ES+E−1 = J+E

⎛
⎝s11 0 0

s21 1 0

s31 0 1

⎞
⎠E−1, (2.12)

which is analytic for λ ∈C+ and possesses asymptotic behavior for very large λ as

P+ → I, λ ∈C+ →+∞. (2.13)

Indeed, the analytic counterpart of P+ in C−, denoted by P−, can be derived from the adjoint scat-

tering equation of (2.3a):

Kx + iλ 2[σ ,K] =−KÛ . (2.14)

It is easy to see that J−1
± solve the above adjoint equation (2.14) and satisfy the boundary condi-

tions J−1
± → I as x →±∞ respectively. Taking the similar procedure as above and denoting the k-th
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row vector of J−1
± as [J−1

± ]k for convenience, the desired P− is expressed as follows:

P− =

⎛
⎝[J−1

− ]1

[J−1
+ ]2

[J−1
+ ]3

⎞
⎠ . (2.15)

That is, P− is analytic in λ ∈C−, and goes to I as λ →−∞. Also, assuming R(λ ) = S−1(λ ), then

J−1
− = ERE−1J−1

+ , (2.16)

and

P− = ER+E−1J−1
+ = E

⎛
⎝r11 r12 r13

0 1 0

0 0 1

⎞
⎠E−1J−1

+ . (2.17)

Hence, we have constructed two matrix functions P±(x,λ ) which are analytic for λ ∈C± respec-

tively. Furthermore, these two functions can construct a Riemann–Hilbert problem as follows:

P−P+ = G(x,λ ) = ER+S+E−1 = E

⎛
⎝ 1 r12 r13

s21 1 0

s31 0 1

⎞
⎠E−1, λ ∈ R∪ iR. (2.18)

Here we have adopted the identity s11r11+ s12r21+ s13r31 = 1, and the jump contour is given in Fig.

1.

At the end of this section, we consider the time evolution of the scattering matrices S(λ ) and

R(λ ). Due to J− solving scattering problem (2.3b), inserting J− = J+ESE−1 into (2.3b), taking the

limit x →+∞, and taking into account the boundary condition of J+ as well as the fact that V → 0

as x →+∞, we obtain

St =−2iλ 4[σ ,S]. (2.19)

And then the time evolution of R(λ ) can be gotten immediately

Rt =−2iλ 4[σ ,R]. (2.20)

These two equations show that s11,r11 are time independent, and

r12(t,λ ) = r12(0,λ )e−4iλ 4t , s21(t,λ ) = s21(0,λ )e4iλ 4t , (2.21)

r13(t,λ ) = r13(0,λ )e−4iλ 4t , s31(t,λ ) = s31(0,λ )e4iλ 4t . (2.22)

We have obtained the time evolution of scattering matrices. Later on, the non–regular Riemann–

Hilbert problem will be solved by using these scattering data. Furthermore, the inverse problem

will be also considered, and the solution Q will be constructed from the solution of non–regular

Riemann–Hilbert problem.

3. Solution for Riemann–Hilbert problem

The Riemann–Hilbert problem (2.18) constructed in above section is regular when det(P+) = s11 �=
0 and det(P−) = r11 �= 0 for all λ , and is non–regular when det(P+) and det(P−) can be zero at

certain discrete locations of λ . In fact, a non–regular Riemann–Hilbert problem can be transformed

into a regular one, thus we consider the regular case at first.
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3.1. Solution for a regular Riemann–Hilbert problem

From (2.18), we have

P−1
+ −P− = ĜP−1

+ = (I −G)P−1
+ , λ ∈ R∪ iR, (3.1)

with the canonical normalization condition

P± → I, |λ | →+∞. (3.2)

Taking into account the Plemelj formula [2], the solution for above Riemann–Hilbert problem is

solved as

P−1
+ (λ ) = I +

1

2πi

∫
Γ

Ĝ(ξ )P−1
+ (ξ )

ξ −λ
dξ , (3.3)

with Γ = [0,+∞)∪ [0,−∞)∪ (+i∞,0]∪ (−i∞,0].

In what follows, we shall show that the solution to this regular Riemann–Hilbert problem is

unique. It can be proved as follows. Set P± and P̃± are two set solutions we desired. Then

P−(λ )P+(λ ) = P̃−(λ )P̃+(λ ), (3.4)

which yields

P̃−1
− (λ )P−(λ ) = P̃+(λ )P−1

+ (λ ), λ ∈ R∪ iR. (3.5)

Since P̃−1
− (λ )P−(λ ) and P̃+(λ )P−1

+ (λ ) are analytic in C− and C+ respectively, and they are equal

to each other on R∪ iR, they together define a matrix function which is analytic in the whole plane

of λ . Due to the boundary condition (3.2), we have

P̃−1
− (λ )P−(λ ) = P̃+(λ )P−1

+ (λ ) = I (3.6)

for all λ by applying the Liouville’s theorem. That is, P̃± = P±, which implies the uniqueness of

solution to the above Riemann–Hilbert problem (2.18).

3.2. Solution for a non–regular Riemann–Hilbert problem

In order to study a non–regular Riemann–Hilbert problem, we shall consider symmetric property of

these zero points, which are determined by s11(λ ) = 0.

Note that s11 and r11 are time independent, so the roots of s11 = 0 and r11 = 0 are also time

independent. Furthermore, owing to σQσ = Q and Q† = Q, it is easy to see that

J(x, t,−λ ) = σJ(x, t,λ )σ , J−1(x, t,λ ) = J†(x, t,λ ∗). (3.7)

Applying these two reduction conditions to (2.7), then

S(−λ ) = σS(λ )σ , S†(λ ∗) = R(λ ). (3.8)

It yields that s11(λ ) is an odd function, so each zero λk of s11(λ ) is accompanied by another zero at

−λk. Assuming s11(±λk) = 0(k = 1,2, · · · ,N), then r11(±λ ∗
k ) = 0(k = 1,2, · · · ,N). For simplicity,
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assuming that all zeroes are simple, the kernels of P+(λk) and P−(λk) contain only a single vector

|vk〉 and 〈vk|, respectively,

P+(λk)|vk〉= 0, 〈vk|P−(λ ∗
k ) = 0, k = 1,2, · · · ,N. (3.9)

Taking the x–derivative and t–derivative to the first equation of (3.9), and recalling the Lax pair

equation (2.3), it infers

P+(λk)
(|vk〉x + iλ 2

k σ |vk〉
)
= 0, P+(λk)

(|vk〉t +2iλ 4
k σ |vk〉

)
= 0. (3.10)

Thus,

|vk〉= e−i(λ 2
k x+2λ 4

k t)σ vk0e
∫ x

x0
αk(y)dy+

∫ t
t0

βk(τ)dτ
. (3.11)

where αk(x) and βk(t) are two scalar functions.

Based on above results, we have the following theorem for the solution to the non–regular

Riemann–Hilbert problem with canonical normalization condition (3.2).

Theorem 1. The solution to a non–regular Riemann–Hilbert problem (2.18) with simple zeroes
under the canonical normalization condition (3.2) is

P+(λ ) = P+(λ )T (λ ), P−(λ ) = T−1(λ )P−(λ ), (3.12a)

where

T (λ ) =
k=N

∏
k=1

Tj(λ j) =
k=N

∏
k=1

(
I +

A j

λ −λ ∗
j
− σA jσ

λ +λ ∗
j

)
,

T−1(λ ) =
k=N

∏
k=1

T−1
j (λ j) =

k=N

∏
k=1

(
I +

A†
j

λ −λ j
− σA†

jσ
λ +λ j

)
,

A j =
λ ∗2

j −λ 2
j

2

⎛
⎝α j 0 0

0 α∗
j 0

0 0 α∗
j

⎞
⎠ |w j〉〈w j|, α−1

j = 〈w j|
⎛
⎝λ ∗

j 0 0

0 λ j 0

0 0 λ j

⎞
⎠ |w j〉,

|w j〉 is a column vector and defined by |w j〉= Tj−1(λ j) · · ·T1(λ j)|v j〉, and P± is the unique solution
to the following regular Riemann–Hilbert problem:

P−(λ )P+(λ ) = T (λ )G(λ )T−1(λ ), λ ∈ R∪ iR, (3.12b)

where P±(λ ) are analytic in C± respectively, and P± → I as λ → ∞.

Proof. We will use a constructional method to prove the theorem. First, construct a matrix function

T1(λ ) = I +
A1

λ −λ ∗
1

− σA1σ
λ +λ ∗

1

,

which is meromorphic with two simple pole singularities at λ =±λ ∗
1 ∈C−. After a simple calcula-

tion, it is obtained immediately that

T−1
1 (λ ) = I +

A†
1

λ −λ1
− σA†

1σ
λ +λ1

, detT1(λ ) =
λ 2 −λ 2

1

λ 2 −λ ∗2
1

.
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Moreover, we have det
(
P+(λ )T−1

1 (λ )
) �= 0 when λ = ±λ1, and det(T1(λ )P−(λ )) �= 0 when λ =

±λ ∗
1 . Hence, define

T (λ ) = TN(λ )TN−1(λ ) · · ·T1(λ ), T−1(λ ) = T−1
1 (λ )T−1

2 (λ ) · · ·T−1
N (λ ),

and

P+(λ ) = P+(λ )T−1(λ ), P−(λ ) = T (λ )P−(λ ), (3.13a)

with

Tk(λ ) = I +
Ak

λ −λ ∗
k
− σAkσ

λ +λ ∗
k
, T−1

k (λ ) = I +
A†

k
λ −λk

− σA†
kσ

λ +λk
, k = 2, · · · ,N,

a regular Riemann–Hilbert problem is obtained as follows:

P−(λ )P+(λ ) = T (λ )G(λ )T−1(λ ), λ ∈ R∪ iR. (3.13b)

Furthermore, P± have the canonical normalization condition P± → I as λ → ∞. It is just the

Riemann–Hilbert problem (3.12b) we need.

To finish the proof, we shall accomplish the mission of solving Tk(λ ). Due to T (λ )T−1(λ ) = I
for all λ , we have

Resλ=λk T (λ )T
−1(λ ) = Resλ=λk T

−1(λ )T (λ ) = T (λk)A
†
k = 0, (3.13c)

which yields that A†
k must be one dimensional. On the other hand, based on (3.9) and analytic

property of P±, we have T (λk)|vk〉 = 0 and 〈vk|T−1(λk) = 0. This implies that Ak is linear related

to 〈vk|. Actually, through direct calculation, Ak can be solved as

Ak =
λ ∗2

k −λ 2
k

2

⎛
⎝αk 0 0

0 α∗
k 0

0 0 α∗
k

⎞
⎠ |wk〉〈wk|, α−1

k = 〈wk|
⎛
⎝λ ∗

k 0 0

0 λk 0

0 0 λk

⎞
⎠ |wk〉,

with |wk〉= Tk−1(λk) · · ·T1(λk)|vk〉. Hence T (λ ) and T−1(λ ) are obtained. This completes the proof.

4. The inverse problem

Based on (2.11), the potential can be obtained from the asymptotic expansion of Jost solutions as

λ → ∞. To this end, it is necessary to simplify the expression of T (λ ) at first. Due to Tk(λ ) =
σTk(−λ )σ , T (λ ) and T−1(λ ) can be expressed by

T (λ ) = I +
N

∑
j=1

(
B j

λ −λ ∗
j
− σB jσ

λ +λ ∗
j

)
, T−1(λ ) = I +

N

∑
j=1

(
B†

j

λ −λ j
− σB†

jσ
λ +λ j

)
(4.1)

with B j = |z j〉〈y j|. Taking into account the same residue condition (3.13c), it yields that[
I +

N

∑
k=1

( |zk〉〈yk|
λ j −λ ∗

k
− σ |zk〉〈yk|σ

λ j +λ ∗
k

)]
|y j〉= 0, j = 1,2, · · · ,N, (4.2)
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or

|y j〉=
N

∑
k=1

(
σ |zk〉〈yk|σ |y j〉

λ j +λ ∗
k

− |zk〉〈yk|y j〉
λ j −λ ∗

k

)
, j = 1,2, · · · ,N. (4.3)

Solving the above linear equations, then⎛
⎜⎜⎜⎝
|z1〉1

|z2〉1

...

|zN〉1

⎞
⎟⎟⎟⎠= M−1

⎛
⎜⎜⎜⎝
|y1〉1

|y2〉1

...

|yN〉1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
|z1〉2

|z2〉2

...

|zN〉2

⎞
⎟⎟⎟⎠= M̂−1

⎛
⎜⎜⎜⎝
|y1〉2

|y2〉2

...

|yN〉2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
|z1〉3

|z2〉3

...

|zN〉3

⎞
⎟⎟⎟⎠= M̂−1

⎛
⎜⎜⎜⎝
|y1〉3

|y2〉3

...

|yN〉3

⎞
⎟⎟⎟⎠ ,

where |z j〉k denotes the k-th element of |z j〉, |y j〉 is equal to |v j〉, and entries of N ×N matrices M
and M̂ are defined as

Mjk =
〈yk|σ |y j〉
λ j +λ ∗

k
− 〈yk|y j〉

λ j −λ ∗
k
, M̂jk =−〈yk|σ |y j〉

λ j +λ ∗
k

− 〈yk|y j〉
λ j −λ ∗

k
, j, k = 1,2, · · · ,N. (4.4)

We are in a position to calculate the potential. According to the Plemelj formula [2], the solution

of (3.12b) can be expressed as

(
P+(λ )

)−1
= I +

1

2πi

∫
Γ

T (ξ )Ĝ(ξ )T−1(ξ )(P+(ξ ))−1

ξ −λ
dξ , λ ∈C+. (4.5)

As λ → ∞, (
P+(λ )

)−1 → I − 1

2πiλ

∫
Γ

T (ξ )Ĝ(ξ )T−1(ξ )
(
P+(ξ )

)−1
dξ ,

and thus

P+(λ )→ I +
1

2πiλ

∫
Γ

T (ξ )Ĝ(ξ )T−1(ξ )
(
P+(ξ )

)−1
dξ .

From (4.1), we see that as λ → ∞,

T (λ )→ I +
1

λ

N

∑
k=1

(|zk〉〈yk|−σ |zk〉〈yk|σ) .

So J1 displayed in (2.11) can be expressed as

J1 =
N

∑
k=1

(|zk〉〈yk|−σ |zk〉〈yk|σ)+
1

2πi

∫
Γ

T (ξ )Ĝ(ξ )T−1(ξ )
(
P+(ξ )

)−1
dξ . (4.6)

In order to obtain N-soliton solutions to the vector GI (1.3) equation, set G = I, i.e. r12 = r13 =

s21 = s31 = 0, which is called reflection–less. In this case Ĝ = 0, from (2.11) and (4.6), the formula

for N-soliton is

Q = iσ [σ ,
N

∑
k=1

(|zk〉〈yk|−σ |zk〉〈yk|σ)], (4.7)

which implies

q1 = 4i
N

∑
k=1

|zk〉1〈yk|2 =−4i
detM1

detM
, q2 = 4i

N

∑
k=1

|zk〉1〈yk|3 =−4i
detM2

detM
. (4.8)
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Here

M1 =

⎛
⎜⎜⎜⎝

M11 · · · M1N |y1〉1

... · · · ...
...

MN1 · · · MNN |yN〉1

〈y1|2 · · · 〈yN |2 0

⎞
⎟⎟⎟⎠ , M2 =

⎛
⎜⎜⎜⎝

M11 · · · M1N |y1〉1

... · · · ...
...

MN1 · · · MNN |yN〉1

〈y1|3 · · · 〈yN |3 0

⎞
⎟⎟⎟⎠ . (4.9)

Based on the dressing method [20], it is straightforward to verify that (4.8) satisfies the vGI equation.

Let N = 1, θk =−iλ 2
k x−2iλ 4

k t and vk0 = (1,ak,bk)
T , according to (4.8), then it yields(

q1

q2

)
=− 2i(λ 2

1 −λ ∗2
1 )exp(θ1 −θ ∗

1 )

λ1(|a1|2 + |b1|2)exp(−θ1 −θ ∗
1 )+λ ∗

1 exp(θ1 +θ ∗
1 )

(
a∗1
b∗1

)
(4.10)

which is the first order soliton solution of the vGI (1.3). Let ak = bk = 1, then

q1 = q2 =
−2i(λ 2

1 −λ ∗2
1 )

2λ1 exp(−2θ1,R)+λ ∗
1 exp(2θ1,R)

exp(2iθ1,I), (4.11)

where the subscript “R” and “I” denote the real part and the imaginary part, respectively. For θ1, its

real and imaginary parts are displayed as

θ1,R = 2λ1,Rλ1,I
[
x+4(λ 2

1,R −λ 2
1,I)t

]
,

θ1,I =−(λ 2
1,R −λ 2

1,I)x− (2λ 4
1,R −12λ 2

1,Rλ 2
1,I +2λ 4

1,I)t.

When x+ 4(λ 2
1,R −λ 2

1,I)t = 0, one–soliton reaches to its amplitude | 8λ1,Rλ1,I
3λ1,R+iλ1,I

|. Besides, it is found

that α(x) and β (t) are eliminated automatically interior the calculation, so set α(x) = β (t) = 0

below without loss of generality. Inspired by the elastic collisions of multi–soliton, we have the

following theorem for the interactions of N solitons.

Theorem 2. Set Imλ 2
k > 0(k = 1,2, · · · ,N), and Reλ 2

N < · · ·< Reλ 2
2 < Reλ 2

1 , then N-soliton (4.8)

has a following simple asymptotic behavior as

q1 ∼
N

∑
k=1

−2i(λ 2
k −λ ∗2

k )exp(2iθk,I ± iϕk,I ± iψk,I)

2λk exp(−2θk,R ∓ϕk,R ±ψk,R)+λ ∗
k exp(2θk,R ±ϕk,R ∓ψk,R)

(4.12)

as t →±∞, where

ϕk =
k−1

∑
l=1

ln

∣∣∣∣ λ 2
k −λ 2

l

λ 2
k −λ ∗2

l

∣∣∣∣+ i
k−1

∑
l=1

arg
λ 2

k −λ 2
l

λ 2
k −λ ∗2

l
, ψk =

N

∑
j=k+1

ln

∣∣∣∣∣λ
∗2
j −λ ∗2

k

λ 2
j −λ ∗2

k

∣∣∣∣∣+ i
N

∑
j=k+1

arg
λ ∗2

j −λ ∗2
k

λ 2
j −λ ∗2

k
.

Proof. Since Imλ 2
k > 0(k = 1,2, · · · ,N), the asymptotic behavior of exp(−θk) is decided by x+

4(Reλ 2
k ) t. Denoting the vicinity of x =−4(Reλ 2

k ) t as Ωk, in the limit of t →+∞, these vicinities

are separated from each other. In the vicinity of Ωk,

x+4(Reλ 2
j ) t =−4(Reλ 2

k −Reλ 2
j )t →+∞ j < k,

x+4(Reλ 2
j ) t =−4(Reλ 2

k −Reλ 2
j )t →−∞ j > k.

That is,

exp(−θ j)→ 0 j < k; exp(θ j)→ 0 j > k.
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Thus, in the vicinity of Ωk,

detM =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2λ ∗
1

λ 2
1 −λ ∗2

1

· · · −2λ ∗
k−1

λ 2
1 −λ ∗2

k−1

−2λ ∗
k

λ 2
1 −λ ∗2

k
0 · · · 0

...
...

...
...

...
−2λ ∗

1

λ 2
k−1−λ ∗2

1

· · · −2λ ∗
k−1

λ 2
k−1−λ ∗2

k−1

−2λ ∗
k

λ 2
k−1−λ ∗2

k
0 · · · 0

−2λ ∗
1

λ 2
k −λ ∗2

1

· · · −2λ ∗
k−1

λ 2
k −λ ∗2

k−1

−2λ ∗
k −4λke

−2θk−2θ∗k
λ 2

k −λ ∗2
k

−4λke−2θk

λ 2
k −λ ∗2

k+1

· · · −4λke−2θk

λ 2
k −λ ∗2

N

0 · · · 0
−4λk+1e

−2θ∗k
λ 2

k+1−λ ∗2
k

−4λk+1

λ 2
k+1−λ ∗2

k+1

· · · −4λk+1

λ 2
k+1−λ ∗2

N
...

...
...

...
...

0 · · · 0 −4λNe
−2θ∗k

λ 2
N−λ ∗2

k

−4λN
λ 2

N−λ ∗2
k+1

· · · −4λN
λ 2

N−λ ∗2
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
× exp

[
k

∑
l=1

(θl +θ ∗
l )−

N

∑
j=k+1

(θ j +θ ∗
j )

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣∣∣∣∣∣

−2λ ∗
1

λ 2
1 −λ ∗2

1

· · · −2λ ∗
k−1

λ 2
1 −λ ∗2

k−1

...
...

−2λ ∗
1

λ 2
k−1−λ ∗2

1

· · · −2λ 2
k−1

λ 2
k−1−λ ∗2

k−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

−4λke
−2θk−2θ∗k

λ 2
k −λ ∗2

k

−4λke−2θk

λ 2
k −λ ∗2

k+1

· · · −4λke−2θk

λ 2
k −λ ∗2

N

−4λk+1e
−2θ∗k

λ 2
k+1−λ ∗2

k

−4λk+1

λ 2
k+1−λ ∗2

k+1

· · · −4λk+1

λ 2
k+1−λ ∗2

N
...

...
...

−4λNe
−2θ∗k

λ 2
N−λ ∗2

k

−4λN
λ 2

N−λ ∗2
k+1

· · · −4λN
λ 2

N−λ ∗2
N

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣

−2λ ∗
1

λ 2
1 −λ ∗2

1

· · · −2λ ∗
k

λ 2
1 −λ ∗2

k
...

...
−2λ ∗

1

λ 2
k −λ ∗2

1

· · · −2λ ∗
k

λ 2
k −λ ∗2

k

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

−4λk+1

λ 2
k+1−λ ∗2

k+1

· · · −4λk+1

λ 2
k+1−λ ∗2

N
...

...
−4λN

λ 2
N−λ ∗2

k+1

· · · −4λN
λ 2

N−λ ∗2
N

∣∣∣∣∣∣∣∣

⎤
⎥⎥⎥⎦× exp

[
k

∑
l=1

(θl +θ ∗
l )−

N

∑
j=k+1

(θ j +θ ∗
j )

]

=

[
k

∏
j=1

(−2λ ∗
j )

N

∏
l=k+1

(−4λl)C(λ 2
1 , · · · ,λ 2

k )C(λ 2
k+1, · · · ,λ 2

N)+
k−1

∏
j=1

(−2λ ∗
j )

N

∏
l=k

(−4λl)

C(λ 2
1 , · · · ,λ 2

k−1)C(λ 2
k , · · · ,λ 2

N)e
−2θk−2θ ∗

k

]
× exp

[
k

∑
l=1

(θl +θ ∗
l )−

N

∑
j=k+1

(θ j +θ ∗
j )

]
,

and

detM1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2λ ∗
1

λ 2
1 −λ ∗2

1

· · · −2λ ∗
k−1

λ 2
1 −λ ∗2

k−1

−2λ ∗
k

λ 2
1 −λ ∗2

k
0 · · · 0 1

...
...

...
...

...
...

−2λ ∗
1

λ 2
k−1−λ ∗2

1

· · · −2λ ∗
k−1

λ 2
k−1−λ ∗2

k−1

−2λ ∗
k

λ 2
k−1−λ ∗2

k
0 · · · 0 1

−2λ ∗
1

λ 2
k −λ ∗2

1

· · · −2λ ∗
k−1

λ 2
k −λ ∗2

k−1

−2λ ∗
k −4λke

−2θk−2θ∗k
λ 2

k −λ ∗2
k

−4λke−2θk

λ 2
k −λ ∗2

k+1

· · · −4λke−2θk

λ 2
k −λ ∗2

N
1

0 · · · 0
−4λk+1e

−2θ∗k
λ 2

k+1−λ ∗2
k

−4λk+1

λ 2
k+1−λ ∗2

k+1

· · · −4λk+1

λ 2
k+1−λ ∗2

N
0

...
...

...
...

...
...

0 · · · 0 −4λNe
−2θ∗k

λ 2
N−λ ∗2

k

−4λN
λ 2

N−λ ∗2
k+1

· · · −4λN
λ 2

N−λ ∗2
N

0

0 · · · 0 e−2θ ∗
k 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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× exp

[
k

∑
l=1

(θl +θ ∗
l )−

N

∑
j=k+1

(θ j +θ ∗
j )

]

=(−1)N−k+1

∣∣∣∣∣∣∣∣∣

−2λ ∗
1

λ 2
1 −λ ∗2

1

· · · −2λ ∗
k−1

λ 2
1 −λ ∗2

k−1

1

...
...

...
−2λ ∗

1

λ 2
k −λ ∗2

1

· · · −2λ ∗
k−1

λ 2
k −λ ∗2

k−1

1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

−4λk+1e
−2θ∗k

λ 2
k+1−λ ∗2

k

−4λk+1

λ 2
k+1−λ ∗2

k+1

· · · −4λk+1

λ 2
k+1−λ ∗2

N
...

...
...

−4λNe
−2θ∗k

λ 2
N−λ ∗2

k

−4λN
λ 2

N−λ ∗2
k+1

· · · −4λN
λ 2

N−λ ∗2
N

e−2θ ∗
k 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
× exp

[
k

∑
l=1

(θl +θ ∗
l )−

N

∑
j=k+1

(θ j +θ ∗
j )

]

=−
k−1

∏
j=1

−2λ ∗
j (λ 2

k −λ 2
l )

λ 2
k −λ ∗2

l

N

∏
l=k+1

−4λl(λ ∗2
j −λ ∗2

k )

λ 2
j −λ ∗2

k
C(λ 2

1 , · · · ,λ 2
k−1)C(λ 2

k+1, · · ·λ 2
N)e

−2θ ∗
k

× exp

[
k

∑
l=1

(θl +θ ∗
l )−

N

∑
j=k+1

(θ j +θ ∗
j )

]
,

where C(λ1, · · · ,λk) denotes the determinant of Cauchy matrix ( 1
λ 2

j −λ ∗2
l
)k×k, j, l = 1,2, · · · ,k. Let

ϕk =
k−1

∑
l=1

ln

∣∣∣∣ λ 2
k −λ 2

l

λ 2
k −λ ∗2

l

∣∣∣∣+ i
k−1

∑
l=1

arg
λ 2

k −λ 2
l

λ 2
k −λ ∗2

l
, ψk =

N

∑
j=k+1

ln

∣∣∣∣∣λ
∗2
j −λ ∗2

k

λ 2
j −λ ∗2

k

∣∣∣∣∣+ i
N

∑
j=k+1

arg
λ ∗2

j −λ ∗2
k

λ 2
j −λ ∗2

k
.

By a simple analysis,

q1 =−4i
detM1

detM
∼ −2i(λ 2

k −λ ∗2
k )exp(2iθk,I + iϕk,I + iψk,I)

2λk exp(−2θk,R −ϕk,R +ψk,R)+λ ∗
k exp(2θk,R +ϕk,R −ψk,R)

.

When t →−∞, taking the similar procedure as above, we have

q1 =−4i
detM1

detM
∼ −2i(λ 2

k −λ ∗2
k )exp(2iθk,I − iϕk,I − iψk,I)

2λk exp(−2θk,R +ϕk,R −ψk,R)+λ ∗
k exp(2θk,R −ϕk,R +ψk,R)

.

Thus, on the whole plane, q1 has the asymptotic behavior as (4.12).

The asymptotic behavior (4.12) displays the elastic collisions of multi–soliton. Comparing with

the single soliton, the additional phase shifts and displacements, Θk and Δk, are easily obtained

Θk =
k−1

∑
l=1

arg
λ 2

k −λ 2
l

λ 2
k −λ ∗2

l
−

N

∑
l=k+1

arg
λ 2

k −λ 2
l

λ 2
k −λ ∗2

l
, (4.13)

Δk =
1

2λkRλkI

[
k−1

∑
l=1

ln

∣∣∣∣ λ 2
k −λ 2

l

λ 2
k −λ ∗2

l

∣∣∣∣− N

∑
l=k+1

ln

∣∣∣∣ λ 2
k −λ 2

l

λ 2
k −λ ∗2

l

∣∣∣∣
]
. (4.14)

5. Conclusion

Basing on the Jost solutions to the Lax pair of the vGI equation and the scattering matrix S(λ ),
we formulated the corresponding Riemann–Hilbert problem, which admitted simple zero points

generated by the roots of dets11(λ ). By taking spectral analysis, we found that the zero points were

paired, since dets11(λ ) was an odd function. In view of the symmetry relations of zero points,
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we constructed a transformation, which eliminated the zero points and made the Riemann–Hilbert

problem be regular. Applying the Plemelj formulae, N–soliton solutions to the vGI equation were

obtained from the solutions of Riemann–Hilbert problem with vanishing scattering coefficients,

which was just the reflection-less case. Moreover,the asymptotic behavior of N-soliton was also

provided, and the simple elastic interactions of multi–soliton were observed directly from it.
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