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The classical quantization of the motion of a free particle and that of an harmonic oscillator on a double cone
are achieved by a quantization scheme [M. C. Nucci, Theor. Math. Phys. 168 (2011) 994], that preserves the
Noether point symmetries of the underlying Lagrangian in order to construct the Schrödinger equation. The
result is different from that given in [K. Kowalski, J. Rembielński, Ann. Phys. 329 (2013) 146]. A comparison
of the different outcomes is provided.
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1. Introduction

It has been known for more than sixty-five years that quantization and nonlinear canonical transfor-
mations have no guarantee of consistency [30]. For a more recent perspective see [2] where an up
to date account of the various approaches to tackle canonical transformation is also provided.
In [17], [18], [19] a procedure which obviates the constraint imposed by the conflict between con-
sistent quantization and the invariance of the Hamiltonian description under nonlinear canonical
transformation was proposed. It is based on the preservation of Noether symmetries when going
from classical to quantum mechanics. The quantization of classical problems is achieved by con-
structing a suitable time-dependent Schrödinger equation.

This method was reformulated in [8] for problems that are linearizable by Lie point symme-
tries, and also successfully applied to various classical problems: alternative Hamiltonian of an
harmonic oscillator [17], second-order Riccati equation [18], dynamics of a charged particle in a
uniform magnetic field and a non-isochronous Calogero’s goldfish system [19], an equation related
to a Calogero’s goldfish equation [20], two nonlinear equations somewhat related to the Riemann
problem [21], a Liénard I nonlinear oscillator [8], a family of Liénard II nonlinear oscillators [9], N
planar rotors and an isochronous Calogero’s goldfish system [22].
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If a system of second-order equations is considered, i.e.

ẍ(t) = F(t,x, ẋ), x ∈ RN , (1.1)

that comes from a variational principle with a Lagrangian of first order, then the method that was
first proposed in [17] can be summarized as follows:

(1) Find the Lie symmetries of the Lagrange equations

ϒ =W (t,x)∂t +
N

∑
k=1

Wk(t,x)∂xk

(2) Among them find the Noether symmetries

Γ =V (t,x)∂t +
N

∑
k=1

Vk(t,x)∂xk

This may require searching for the Lagrangian yielding the maximum possible number of
Noether symmetries [23–26].

(3) Construct the Schrödinger equationa admitting these Noether symmetries as Lie symme-
tries, namely

2iΨt +
N

∑
k, j=1

fk j(x)Ψx jxk +
N

∑
k=1

hk(x)Ψxk + f0(x)Ψ = 0 (1.2)

with Lie symmetries

Ω =V (t,x)∂t +
N

∑
k=1

Vk(t,x)∂xk +G(t,x,Ψ)∂Ψ

without adding any other symmetries apart from the two symmetries that are present in any
linear homogeneous partial differential equationb, namely

Ψ∂Ψ, α(t,x)∂Ψ,

where α = α(t,x) is any solution of the Schrödinger equation (1.2).

If the system (1.1) is linearizable by a point transformation, and it possesses the maximal number of
admissible Lie point symmetries, namely N2+4N+3, then in [6,7] it was proven that the maximal-
dimension Lie symmetry algebra of a system of N equations of second order is isomorphic to sl(N+

2,R), and that the corresponding Noether symmetries generate a (N2 + 3N + 6)/2-dimensional
Lie algebra gV whose structure (Levi-Malćev decomposition and realization by means of a matrix

aWe assume h̄ = 1 without loss of generality.
bIn the following we will refer to those two symmetries as the homogeneity and linearity symmetries.
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algebra) was determined. It was also proven that the corresponding linear system is

y′′(s)+2A1(s) ·y′(s)+A0(s) ·y(s)+b(s) = 0, (1.3)

with the condition

A0(s) = A′1(s)+A1(s)2 +a(s)1, (1.4)

where A0,A1 are N×N matrices, and a is a scalar function.

Consequently if system (1.1) admits sl(N + 2,R) as Lie symmetry algebra then in [8] we refor-
mulated the algorithm that yields the Schrödinger equation as follows:

Step 1. Find the linearizing transformation which does not change the time, as prescribed in non-
relativistic quantum mechanics.

Step 2. Derive the Lagrangian by applying the linearizing transformation to the standard
Lagrangian of the corresponding linear system (1.3), namely the one that admits the maxi-
mum number of Noether symmetriesc.

Step 3. Apply the linearizing transformation to the Schrödinger equation of the corresponding clas-
sical linear problem. This yields the Schrödinger equation corresponding to system (1.1).

This quantization is consistent with the classical properties of the system, namely the Lie symme-
tries of the obtained Schrödinger equation correspond to the Noether symmetries admitted by the
Lagrangian of system (1.1).

In [10] the problem of the quantization of the dynamics of a particle constrained on a double cone
was considered.
A double cone of opening angle 2α with α ∈ (0,π/2) is given by the cartesian equation:

x2 + y2− cot2(α)z2 = 0. (1.5)

A regular parametrization (except at the vertex (0,0,0)) for this surface is given by:

x = r sin(α)cos(φ), (1.6a)

y = r sin(α)sin(φ), (1.6b)

z = r cos(α) (1.6c)

with r ∈ R and φ ∈ [0,2π).
Consequently a particle of mass m constrained on a cone has the natural Lagrangian:

L =
1
2

m
(
ṙ2 + sin2(α)r2

φ̇
2)−V (r,φ), (1.7)

where V (r,φ) is the potential energy.
Without loss of generality we assume m = 1. Also, since sin(α) is a constant, we introduce

another constant k ∈ (0,1) such that sin(α) = k in order to have neater expressions.

cIn [7] it was shown that any diffeomorphism between two systems of second-order differential equations takes Noether
symmetries into Noether symmetries, and therefore the Lagrangian is unique up to a diffeomorphism.
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In [10] the authors addressed the quantization of two particular cases of the Lagrangian (1.7),
namely the free particle, with Lagrangiand:

Lf =
1
2
(
ṙ2 + k2r2

φ̇
2) , (1.8)

and the radial harmonic oscillator, with Lagrangiane:

Lho =
1
2
(
ṙ2 + k2r2

φ̇
2)− 1

2
ω

2r2. (1.9)

The radial harmonic oscillator was also considered in [3] as the classical motion of a particle on a
cone under the influence of a central potential.

In this paper we apply the quantization algorithm that preserves the Noether symmetries to those
two cases, and also determine the eigenvalues and the eigenfunctions of the obtained Schrödinger
equations. We compare the results of our quantization method with those obtained in [10], and
explain the differences that are due to symmetry breaking. This is the first instance of disagreement
between the quantization method that preserves Noether symmetries and a quantization method,
that looks for ad hoc self-adjoint operators, regardless of symmetry consideration.

2. Quantization of a free particle on the cone

The Lagrangian equations corresponding to the Lagrangian (1.8) are:
r̈ = k2rφ̇ 2,

φ̈ = −2
ṙφ̇

r
.

(2.1)

Using the REDUCE programs [16] we find that this system admits a fifteen-dimensional Lie point
symmetry algebra, isomorphic to sl(4,R), generated by the following operators:

Γ1 = cos(kφ)r(t∂t + r∂r),

Γ2 = cos(kφ)r∂t ,

Γ3 = sin(kφ)r(t∂t + r∂r),

Γ4 = sin(kφ)r∂t ,

Γ5 = t(t∂t + r∂r),

Γ6 =
1
2

r∂r + t∂t ,

Γ7 = ∂t ,

Γ8 = t
(

cos(kφ)∂r−
1
kr

sin(kφ)∂φ

)
, (2.2)

Γ9 = cos(kφ)∂r−
1
kr

sin(kφ)∂φ ,

Γ10 = t
(

sin(kφ)∂r +
1
kr

cos(kφ)∂φ

)
,

dV (r,φ) = 0.
eV (r,φ) = 1

2 ω2r2.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

359



G. Gubbiotti and M.C. Nucci / Quantization of the dynamics of a particle on a double cone

Γ11 = sin(kφ)∂r +
1
kr

cos(kφ)∂φ ,

Γ12 = r∂r,

Γ13 = kr cos(2kφ)∂r− sin(2kφ)∂φ ,

Γ14 = kr sin(2kφ)∂r + cos(2kφ)∂φ ,

Γ15 = ∂φ .

Consequently system (2.1) is linearizable [6,7], and in order to quantize it we follow the three Steps
1,2,3 [8] as recalled in the Introduction.

Step 1. We have to find a linearizing transformation which does not alter the time t. In [29] it was
determined that the linearizing transformation can be found by means of a four-dimensional subal-
gebra of type A1,1

4,5 = 〈X1,X2,X3,X4〉 in the Mubarakzyanov classification [14,15] with commutation
relations:

[Xi,X j] = 0, [Xi,X4] = Xi, (i, j = 1,2,3) (2.3)

such that 1≤ rank[X1,X2,X3,X4]≤ 3, and whose canonical form is:

X1 = ∂τ , X2 = ∂u, X3 = ∂v,

X4 = τ∂τ +u∂u + v∂v.
(2.4)

We found that the operators Γ7, Γ9, Γ11,Γ16, with Γ16 = Γ6 +
1
2 Γ12, generate such a subalgebra.

Consequently the following transformation:

τ = t, u = r cos(kφ), v = r sin(kφ). (2.5)

takes system (2.1) into the following linear systemf:

ü = 0, v̈ = 0. (2.6)

Then the general solution of system (2.1) is:

r = ±
√

(c1t + c2)2 +(c3t + c4)2,

tan(kφ) =
c1t + c2

c3t + c4
, (2.7)

with ci (i = 1,4) arbitrary constants.

Step 2. The Lagrangian (1.8) admits eight Noether symmetries, i.e.: Γ5, Γ6, Γ7, Γ8, Γ9, Γ10, Γ11,
Γ15.

fNamely the Lagrangian equations of a two-dimensional free particle.
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Step 3. The Schrödinger equation of the two-dimensional free particle in the variables (u,v) is

2iψt +ψuu +ψvv = 0, (2.8)

with ψ = ψ(t,u,v). If we apply the transformation (2.5), then we obtain that the Schrödinger equa-
tion corresponding to system (2.1) isg

2iψt +ψrr +
1
r

ψr +
1

k2r2 ψφφ = 0. (2.9)

Using the REDUCE programs [16] we find that its Lie point symmetries are generated by the follow-
ing operators:

Λ1 = Γ15,

Λ2 = Γ8 + ik2r cos(kφ)ψ∂ψ ,

Λ3 = Γ9,

Λ4 = Γ10 + ik2r sin(kφ)ψ∂ψ , (2.10)

Λ5 = Γ11,

Λ6 = Γ5 +
1
2
(
ir2−2t

)
ψ∂ψ ,

Λ7 = Γ6,

Λ8 = Γ7,

Λ9 = ψ∂ψ , ΛΨ = Ψ∂ψ ,

where Ψ(t,r,φ) is any solution of equation (2.9).

In order to determine the radial Schrödinger equation, we consider the two-dimensional abelian
Lie subalgebra generated by the operators

Λε = Λ8− iεΛ9 = ∂t − iεψ∂ψ ,

Λβ = Λ1− ipΛ9 = ∂φ − ipψ∂ψ , (2.11)

with ε and p are arbitrary constants. Then solving the corresponding invariant surface condition [27]
yields the following invariant solution

ψ(t,r,φ) = R(r)e−i(εt+pφ), (2.12)

that replaced into (2.9) gives rise to the following radial Schrödinger equation:

R′′+
1
r

R′+
(

2ε− p2

k2r2

)
R = 0, (2.13)

where prime denotes derivative by r.
After imposing p to be an integer since the invariant solution (2.12) must be periodic of period 2π ,

gIntroducing h̄ into (2.9), i.e.

2ih̄ψt + h̄2
(

ψrr +
1
r

ψr +
1

k2r2 ψφφ

)
= 0,

and performing the classical limit [11] yields the Hamilton-Jacobi equation for system (2.1).
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we obtain that the only bounded solution of equation (2.9) is given in terms of the Bessel function
of the first kind Jµ , i.e.:

ψp,ε = J |p|
k

(√
2ε |r|

)
e−i(εt+pφ), (2.14)

with the additional condition ε > 0.

3. Radial harmonic oscillator on the cone

The Lagrangian equations corresponding to the Lagrangian (1.9) are: r̈ = k2rφ̇ 2−ω2r,

φ̈ = −2
ṙφ̇

r
.

(3.1)

Using the REDUCE programs [16] we find that this system admits a fifteen-dimensional Lie point
symmetry algebra, isomorphic to sl(4,R), generated by the following operators:

Ξ1 = cos(kφ)r (cos(ωt)∂t −ωr sin(ωt)∂r) ,

Ξ2 = cos(kφ)r (sin(ωt)∂t +ωr cos(ωt)∂r) ,

Ξ3 = sin(kφ)r (cos(ωt)∂t −ωr sin(ωt)∂r) ,

Ξ4 = sin(kφ)r (sin(ωt)∂t +ωr cos(ωt)∂r) ,

Ξ5 = cos(2kφ)r∂r−
1
k

sin(2kφ)∂φ ,

Ξ6 = sin(2kφ)r∂r +
1
k

cos(2kφ)∂φ ,

Ξ7 = r∂r,

Ξ8 = ∂φ , (3.2)

Ξ9 = ∂t ,

Ξ10 = cos(2ωt)∂t −ω sin(2ωt)r∂r,

Ξ11 = sin(2ωt)∂t +ω cos(2ωt)r∂r,

Ξ12 = cos(ωt)
(

cos(kφ)∂r−
1
kr

sin(kφ)∂φ

)
,

Ξ13 = sin(ωt)
(

cos(kφ)∂r−
1
kr

sin(kφ)∂φ

)
,

Ξ14 = cos(ωt)
(

sin(kφ)∂r +
1
kr

cos(kφ)∂φ

)
,

Ξ15 = sin(ωt)
(

sin(kφ)∂r +
1
kr

cos(kφ)∂φ

)
.

Consequently system (3.1) is linearizable [6,7], and in order to quantize it we follow the three Steps
1,2,3 [8] as recalled in the Introduction.
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Step 1. The transformation (2.5) applied to (3.1) yields:

ü+ω
2u = 0, v̈+ω

2v = 0, (3.3)

namely the equations of a two-dimensional linear harmonic oscillator. Therefore, the general solu-
tion of (3.1) is:

r=±
√(

c1 cos(ωt)+ c2 sin(ωt)
)2

+
(

c3 cos(ωt)+ c4 sin(ωt)
)2

,

tan(kφ)=
c1 cos(ωt)+ c2 sin(ωt)
c3 cos(ωt)+ c4 sin(ωt)

. (3.4)

Step 2. The Lagrangian (1.9) admits eight Noether symmetries, namely Ξi with i = 8, . . . ,15 in
(3.2).

Step 3. The Schrödinger equation for a two-dimensional linear harmonic oscillator in the variables
(u,v) and wave function ψ is:

2iψt +ψuu +ψvv−ω
2(u2 + v2)ψ = 0. (3.5)

If we apply the transformation (2.5), then the Schrödinger equation corresponding to system (3.1)
ish:

2iψt +ψrr +
1
r

ψr +
1

k2r2 ψφφ −ω
2r2

ψ = 0. (3.6)

Using the REDUCE programs [16] we find that its Lie point symmetries are generated by the follow-
ing operators:

Ω1 = Ξ8,

Ω2 = Ξ10 +ω
(
sin(2ωt)−2icos(2ωt)ωr2)

ψ∂ψ ,

Ω3 = Ξ11−ω
(
cos(2ωt)+2isin(2ωt)ωr2)

ψ∂ψ ,

Ω4 = Ξ9,

Ω5 = Ξ14− iωr sin(ωt)sin(kφ)ψ∂ψ , (3.7)

Ω6 = Ξ15 + iωr cos(ωt)cos(kφ)ψ∂ψ ,

Ω7 = Ξ12− iωr sin(ωt)cos(kφ)ψ∂ψ ,

Ω8 = Ξ13 + iωr cos(ωt)cos(kφ)ψ∂ψ ,

Ω9 = ψ∂ψ , ΩΨ = Ψ∂ψ ,

where Ψ = Ψ(t,r,φ) is any solution of (3.6).

Equation (3.6) is the same Schrödinger equation that was obtained in [1,5,13] in the case that r ∈
(0,∞). Therefore the eigenfunctions of equation (3.6) are given in terms of the associated Laguerre

hIntroducing h̄ into (3.6), i.e.

2ih̄ψt + h̄2
(

ψrr +
1
r

ψr +
1

k2r2 ψφφ

)
−ω

2r2
ψ = 0,

and performing the classical limit [11] yields the Hamilton-Jacobi equation for system (3.1).
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polynomials Lµ
n , i.e.:

ψn,p = e−iEnt+ipφ |r||p|/ke−(1/2)ωr2
L|p|/k

n (ωr2), (n ∈ N, p ∈ Z) (3.8)

with eigenvalues

En = ω

(
2n+

|p|
k

+1
)
. (3.9)

4. Comparison of the different outcomes

The quantization of the harmonic oscillator on a cone with one nappe has been studied in several
papers, e.g. [1, 5, 13].

Our Schrödinger equation (3.6) is exactly the same that all the above authors derived by means
of the DeWitt’s approach [4], namely Noether symmetries of the classical Lagrangian systems are
preserved as we shown.

In [10], the authors derived a different Schrödinger equation for both the free particle and the
harmonic oscillator on the double cone. They took the usual angular momentum operator, i.e., p̂φ =

−i∂φ , and looked for a self-adjoint operator for the radial momentum of the type

p̂r =−i(∂r +F(r)) , (4.1)

with respect to the scalar product

〈 f ,g〉=
∫ 2π

0

∫
∞

−∞

f ∗(r,φ)g(r,φ) |r|drdφ , (4.2)

on the space of square integrable functions f (r,φ),g(r,φ) on the cone. This yields that the self-
adjoint operator is:

p̂r =−i
(

∂r +
1
2r

)
, (4.3)

and consequently, without any further assumption, the Schrödinger equation for the free particle
was derived to be:

2iψt +ψrr +
1
r

ψr +
1

k2r2 ψφφ −
1

4r2 ψ = 0, (4.4)

while the Schrödinger equation for the harmonic oscillator became:

2iψt +ψrr +
1
r

ψr +
1

k2r2 ψφφ −
(

1
4r2 +ω

2r2
)

ψ = 0. (4.5)

Both equations (4.4) and (4.5) do not preserve the Noether symmetries of the free particle and the
harmonic oscillator on the cone, respectively. Indeed the Lie symmetries of equation (4.4) are:

ϒ1 = Γ15, (4.6)

ϒ2 = Γ5 +
1
2
(
ir2−2t

)
ψ∂ψ , (4.7)

ϒ3 = Γ6, (4.8)

ϒ4 = Γ7, (4.9)
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ϒ5 = ψ∂ψ , ϒΨ = Ψ∂ψ , (4.10)

with Ψ = Ψ(t,r,φ) any solution of (4.4), while those of equation (4.5) are:

Π1 = Ξ8, (4.11)

Π2 = Ξ11−ω(cos(2ωt)+2isin(2ωt)ωr2)ψ∂ψ , (4.12)

Π3 = Ξ10 +ω(sin(2ωt)−2icos(2ωt)ωr2)ψ∂ψ , (4.13)

Π4 = Ξ9, (4.14)

Π5 = ψ∂ψ , ΠΨ = Ψ∂ψ , (4.15)

with Ψ=Ψ(t,r,φ) any solution of (4.5). Indeed, the additional term−ψ/4r2 in both equations (4.4)
and (4.5) breaks the symmetries, i.e. four out of eight symmetries are not preserved. Therefore, our
eigenfunctions are different from those obtained in [10] although the boundary conditions are the
same. Moreover, in the case of the harmonic oscillator the eigenvalues that were derived in [10] are:

En = ω

(
2n+

1
2

√
1+

4p2

k2 +1

)
, (4.16)

instead of those that we derived, i.e. (3.9):

En = ω

(
2n+

|p|
k

+1
)
.

We would like to underline that the eigenvalues (3.9) that we have obtained coincide with those
derived by other authors, e.g. [1, 5, 13], if one nappe only is considered. As observed by an anony-
mous referee, one cannot distinguish locally between a double cone and that with a single nappe.
Consequently, the quantization method that preserves the Noether symmetries of the classical prob-
lem is consistent with this observation.

Moreover, if we introduce the self-adjoint momentum operators as defined by DeWitt in [4],
i.e.:

p̂k =−i
(

∂

∂qk

+Γ
j
k j

)
(4.17)

with Γ
j
jk the contracted Christoffel symbols, then we obtain the same angular and radial momenta

in [10]. The different outcome is in the Hamiltonian operator that shall include an extra “quantum
mechanical potential” Q which must be added to the covariant classical Hamiltonian in order to
produce the covariant quantum Hamiltonian [4]. Adding this potential Q means to eliminate the
symmetry-breaking term −ψ/4r2 in (4.4) and (4.5), and consequently the Schrödinger equations
(2.9) and (3.6) are obtained. This shows that the quantization method that preserves the Noether
symmetries of the classical problem corresponds to DeWitt’s approach.

5. Conclusions

In this paper we have derived the Schrödinger equation for both the free particle and the harmonic
oscillator on a double cone by requiring the preservation of the Noether symmetries of the classical
problem. Indeed the Noether symmetries admitted by the Lagrangian (1.8) are the Lie symmetries
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of the Schrödinger equation (2.9), and the Noether symmetries admitted by the Lagrangian (1.9)
are the Lie symmetries of the Schrödinger equation (3.6). In particular the latter coincides with
the Schrödinger equation derived by other authors, e.g. [1, 5, 13], in the case of a single cone. On
the other hand, the Schrödinger equations for the same problems that were obtained in [10] do not
preserve the Noether symmetries of the classical problem and therefore yield results quite different
from the ones we have derived here.

Further insight is needed especially from the experimentalists as recently stated in [12]. How-
ever, in 1955 Schrödinger wrote [28]:
The accepted foundation of q.m. claims to be intimately linked with experimental science. But actu-
ally it is based on a scheme of measurement which, because it is entirely antiquated, is hardly fit
to describe any relevant experiment that is actually carried out, but a host of such as are for ever
confined to the imagination of their inventors.
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