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In this letter we report a new invariant for the Sawada-Kotera equation that is obtained by a systematic poten-

tialization of the Kupershmidt equation. We show that this result can be derived from nonlocal symmetries

and that, conversely, a previously known invariant of the Kaup-Kupershmidt equation can be recovered using

potentializations.

Dedicated in memory to Wilhelm I Fushchich (1936-1997)

1. Introduction

We report a new invariant for the Sawada-Kotera equation by a systematic potentialization of the

Kupershmidt equation. We deduce an invariant of the Kaup-Kupershmidt equation, obtained in [6]

with the help of nonlocal symmetries. We furthermore show that the same invariant of the Sawada-

Kotera equation can be derived by considering nonlocal symmetries.

For the benefit of clarity we first review some of the results that have been reported in [2] (see

also [1] for more details on recursion operators and multipotentialization of semilinear fifth-order

evolution equations).

The Kupershmidt equationa

Kt = Kxxxxx +λ
(
KxKxxx +K2

xx
)− λ 2

5

(
K2Kxxx +4KKxKxx +K3

x
)
+

λ 4

125
K4Kx (1.1)

(λ is an arbitrary non-zero constant) potentializes in the so-called first potential Kupershmidt equa-

tion,

Ut =Uxxxxx +λUxxUxxx − λ 2

5

(
U2

x Uxxx +UxU2
xx
)
+

(
λ
5

)4

U5
x , (1.2)

aA typing error appeared in this equation in [2] (see eq. (2.7) in [2]), which did however not affect the results reported

in [2]
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by the potentialization

Ux = K. (1.3)

Moreover, (1.1) is, by the second potentialization

ux =− 5

2λ
e−2λU/5, (1.4)

connected to the equation b

ut = uxxxxx − 5uxxuxxxx

ux
− 15u2

xxx

4ux
+

65u2
xxuxxx

4u2
x

− 135u4
xx

16u3
x
, (1.5)

called the second-potential Kupershmidt equation. Combining the potentializations (1.3) and (1.4),

we find that (1.5) and (1.1) are related by the differential substitution

K(x, t) =− 5

2λ
uxx

ux
. (1.6)

Diagram 1:

Eq.(1.5) in u1

vx=u−1/2
1,x

��

Eq.(1.5) in u2

vx=u2u−1/2
2x

��

vt = vxxxxx −5v−1
x vxxvxxxx +5v−2

x v2
xxvxxx

u4,x=v4v−2
x ��u3,x=v−2

x��
Eq.(1.5) in u3 Eq.(1.5) in u4

Equation (1.5) admits the following �-auto-Bäcklund transformations that are obtained by combin-

ing potentializations as shown in Diagram 1 (see [2] for details):

u j+1,xx = u j+1,x

[
u j,xx

u j,x
−2

u j,x

u j

]
+4u3/4

j+1,x

[
u1/2

j

u1/4
j,x

]
(1.7a)

u j+1,xx = u j+1,x

[
u j,xx

u j,x

]
+4u3/4

j+1,x

[
1

u1/4
j,x

]
, (1.7b)

where u j and u j+1 satisfy (1.5) for all natural numbers j. On the other hand, (1.5) is also related to

vt = vxxxxx −5
vxxvxxxx

vx
+5

v2
xxvxxx

v2
x

, (1.8)

as shown in Diagram 2.

bA typing error appeared in this equation in [2] (see eq. (2.11) in [2]), which did however not affect the rerults reported

in [2]
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Diagram 2:

Eq.(1.8) in v1

ux=v−2
1,x

��

Eq.(1.8) in v2

ux=v4
2v−2

2,x

��

ut = uxxxxx − 5uxxuxxxx

ux
− 15u2

xxx

4ux
+

65u2
xxuxxx

4u2
x

− 135u4
xx

16u3
x

v3,x=uu−1/2
x

��
v4,x=u−1/2

x��
Eq.(1.8) in v4 Eq.(1.8) in v3

This leads to the �-auto-Bäcklund transformations for (1.8) (see Diagram 2 and [2] for details)

v j+1,xx = v j+1,x

[
v j,xx

v j,x
−2

v j,x

v j

]
+

v2
j

v j,x
(1.9a)

v j+1,xx = v j+1,x

[
v j,xx

v j,x

]
+

1

v j,x
(1.9b)

v j+1,xx = v j+1,x

[
v j,xx

v j,x

]
− 1

v j,x
(1.9c)

where v j and v j+1 satisfy (1.8) for all natural numbers j.

We remark that relation (1.9c) follows by applying the discrete symmetry v �→ −v that is admitted

by (1.8) to v j in (1.9b).

2. Connections to the Sawada-Kotera equation

We find that the Sawada-Kotera equation [9]

St = Sxxxxx +νSSxxx +νSxSxx +
1

5
ν2S2Sx (2.1)

(ν is an arbitrary non-zero constant) is related to the first potential Kupershmidt equation (1.2) by

the differential substitution

S =−λ
ν

Uxx − 1

5

λ 2

ν
U2

x . (2.2)

(Note that a similar differential substitution to (2.2) was given in [4]). On the other hand, (1.2)

potentializes in (1.5) by

ux =−5

2

1

λ
exp

(
−2

5
λU
)
. (2.3)

Combining these transformations, we obtain the following
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Proposition 1: The Sawada-Kotera equation (2.1) admits the solutions

S(x, t) =
5

2ν
{u, x}, (2.4)

where u(x, t) is any non-constant solution of the second potential Kupershmidt equation (1.5) and
{u, x} is the Schwarzian derivative

{u, x} :=

(
uxx

ux

)
x
− 1

2

(
uxx

ux

)2

. (2.5)

Moreover, relation (1.6) implies that solutions of the Sawada-Kotera equation (2.1) are

S(x, t) =−λ
ν

(
Kx +

λ
5

K2

)
, (2.6)

where K(x, t) is any solution of the Kupershmidt equation (1.1).

The �-auto-Bäcklund transformations (1.7a)–(1.7b) can now be applied to generate solutions for

(1.5), and hence for (2.1).

We remark that relation (2.6) was previously obtained by Fordy and Gibbons [3] by factorizing a

third-order linear operator.

As an example, we apply the �-auto-Bäcklund transformation (1.7a), viz.

u j+1,xx = u j+1,x

[
u j,xx

u j,x
−2

u j,x

u j

]
+4u3/4

j+1,x

[
u1/2

j

u1/4
j,x

]
.

Since (1.7a) is in the form of a Bernoulli equation in the variable u j+1,x, we can easily integrate this

equation to obtain

u j+1,x =
u j,x

u2
j

[∫ ( u j

u1/2
j,x

)
dx+ c j(t)

]4

, (2.7)

where c j(t) is an arbitrary function of t that appears as a constant of integration. Inserting (2.7) with

u = u j+1,x into (2.4), we find that c j(t) is an arbitrary constant.

As an explicit example, we use the following seed solution for (1.5):

u1(x, t) = x5 −180t.

Applying now relation (2.7), with j = 1, we obtain

u2,x(x, t) = (x5 −180t)−2

[
53/4

(
1

20
x5 +36t

)
+ c1x

]4

. (2.8)

Using u = u2,x given by (2.8) in relation (2.4), an explicit solution for (2.1) takes the form

S(x, t) =−30(5x8 −14400tx3 −40x4 +16)

ν(x5 +720t +4x)2
,

where we have chosen c1 = 5−1/4 for simplicity.
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Now we obtain an invariant for the Sawada-Kotera equation (2.1). Applying the two potential-

izations

ux = v−2
x (2.9a)

ux = v4v−2
x (2.9b)

of (1.8), with the connection to the Sawada-Kotera equation given by (2.4), we obtain the following

(see Diagram 3)

Corollary: The Sawada-Kotera equation (2.1) is invariant under the transformation S(x, t) �→
S̄(x, t), in which

S̄(x, t) = S(x, t)+
30

ν
(lnv)xx , (2.10)

where the variables S(x, t) and v(x, t) are related by

S(x, t) =− 5

ν
vxxx

vx
(2.11)

and v(x, t) is a solution to (1.8), viz.

vt = vxxxxx −5
vxxvxxxx

vx
+5

v2
xxvxxx

v2
x

.

This gives a linearization of (1.8) in terms of the Sawada-Kotera equation, namely

vt = vxxxxx +ν vxxSx.

Using any of the �-auto-Bäcklund transformations (1.9a), (1.9b) or (1.9c), we can construct solu-

tions of the Sawada-Kotera equation (2.1) with the above Corollary.

3. Regarding the Kaup-Kupershmidt equation

In this and the following section we connect the above results with nonlocal symmetries. In the

paper [6], Reyes obtained an invariance transformation for the Kaup-Kupershmidt equation

Vt =Vxxxxx +5VVxxx +
25

2
VxVxx +5V 2Vx. (3.1)

In particular he reported the following
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Diagram 3: An invariance transformation for the Sawada-Kotera equation (2.1)

Proposition 2: [6] The Kaup-Kupershmidt equation (3.1) is invariant under the transformation
V �→ V̄ , in which

V̄ =V +3(lnu)xx , (3.2)

where the variables V and u are related by

V (x, t) =−uxxx

ux
+

3

4

(
uxx

ux

)2

(3.3)

and u(x, t) is a solution to (1.5) viz.

ut = uxxxxx − 5uxxuxxxx

ux
− 15u2

xxx

4ux
+

65u2
xxuxxx

4u2
x

− 135u4
xx

16u3
x
.

This invariance was obtained with the help of nonlocal symmetries: Equation (3.1) admits a non-

local symmetry whose flow can be explicitly computed; consideration of this flow yields (3.2) and

(3.3). We present a related computation in the next section. Now, the result given in Proposition 2

can be obtained by our multipotentialization method, namely in a similar way as was done in the
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Diagram 4: An invariance transformation for the Kaup-Kupershmidt equation (3.1)

previous section for the Sawada-Kotera equation. Diagram 4 shows the connections between the

equations. Besides the second potentialization of the Kupershmidt equation (1.5) (in the variables

u1(x, t) and u2(x, t)) and third potentialization of the Kupershmidt equation (1.8) (in the variable

v(x, t)), Diagram 4 also includes a fourth potentialization of the Kupershmidt equation, namely

wt = wxxxxx −5w−1
x wxxwxxxx − 15

4
w−1

x w2
xxx +

65

4
w−2

x w2
xxwxxx − 135

16
w−3

x w4
xx

+
5β
6

(
w−1

x wxxx − 7

4
w−2

x w2
xx

)
− 5

36
β 2w−1

x . (3.4)

Furthermore we have the equation

Wt =Wxxxxx +5
(

Wxx −W 2
x + λ̃e2W

)
Wxxx −5WxW 2

xx +15λ̃e2WWxWxx

+W 5
x +5λ̃ 2e4WWx (3.5)

which is related to the fourth potential Kupershmidt equation (3.4) by a potentialization of (3.5),

namely

wx =
β
6λ̃

exp(−2W ), (3.6)

and to the Kaup-Kupershmidt equation (3.1) by the differential substitution (given in [4])

V = 2Wxx −W 2
x + λ̃ exp(−2W ). (3.7)
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Combining these change of variables (see Diagram 4), we obtain the differential substitution

between the third potential Kupershmidt equation (1.8) and the Kaup-Kupershmidt equation (3.1),

namely

V (x, t) =−3v−2
x v2

xx +2v−1
x vxxx. (3.8)

The invariance transformation given in Proposition 2 then follows (see Diagram 4).

4. The Sawada-Kotera invariance via nonlocal symmetries

We show that the invariance transformation (2.10) for Sawada-Kotera can be recovered with the

help of nonlocal symmetries.

We replace S for (5/ν)S in (2.1) and we obtain the Sawada-Kotera equation in the standard form

St = Sxxxxx +5SSxxx +5SxSxx +5S2Sx . (4.1)

This equation is a member of a one-parameter family of equations admitting zero curvature

representations. Indeed, we recall from [7, Section 6]:

Proposition 3: [7] The family of equations

St = Sxxxxx −
(

4y+
1

y

)
SSxxx +5S2Sx −

(
2y+

3

y

)
SxSxx , (4.2)

in which y is a non-zero real parameter, is the integrability condition of the sl(2,R)-valued linear
problem Xψ = ψx, T ψ = ψt where

X =

[
0 −y/η2

−η2S 0

]
(4.3)

and

T =

⎡
⎣ ySxxx −SSx 2y2Sxx/η2 − yS2/η2

η2(−Sxxxx +(2y+1/y)SSxx +S2
x/y−S3) −ySxxx +SSx

⎤
⎦ . (4.4)

The real number η appearing in (4.3) and (4.4) is not essential, since this “spectral parameter”

can be eliminated via a simple gauge transformation. However, this linear problem does encode

non-trivial information on Equation (4.2), as we will see below.

The Kaup-Kupershmidt equation corresponds to (4.2) with y =−1/4, while the Sawada-Kotera

equation (4.1) is (4.2) with y =−1. This family contains the fifth order Korteweg-de Vries equation

as well (it is enough to take y = −1/
√

6) but we will not use this observation here. Proposition 3

allows us to find a quadratic pseudo-potential for Equation (4.2):
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Lemma: Equation (4.2) admits the quadratic pseudo-potential

αx = −η2S+
y

η2
α2 (4.5a)

αt = −η2Sxxxx +

(
2η2y+

η2

y

)
SSxx +

η2

y
S2

x −η2S3 +(2SSx −2ySxxx) α

+

(
y

η2
S2 − 2y2

η2
Sxx

)
α2 , (4.5b)

that is, the system (4.5a) and (4.5b) is completely integrable for α(x, t) whenever S(x, t) is a solution
to Equation (4.2).

This result generalizes some interesting computations carried out by Nucci in [5]. We write

Equation (4.5b) as a conservation law, and define a corresponding potential δ . We find that δ is

determined by the following two compatible equations:

δx =
2y
η2

α (4.6a)

δt = −2ySxxx +2SSx +

(
−4y2

η2
Sxx +

2y
η2

S2

)
α . (4.6b)

We would like to find a shadow of a nonlocal symmetry for (4.2), that is, a solution to the formal

linearization of (4.2) depending on α and δ . For that, the following theorem, given in [7], where the

reader can also find further references on nonlocal symmetries, is essential:

Theorem 1: [7] Consider the function

G = α exp(−L(y) δ ), (4.7)

in which α and δ satisfy Equations (4.5a)-(4.6b). G is the shadow of a nonlocal symmetry for
Equation (4.2) if and only if

L(y) =
4y2 +1

10y2
, (4.8)

and the parameter y satisfies the equation

−125y2(96y6 −118y4 −1+23y2) = 0 . (4.9)

Since y cannot be equal to zero, Equation (4.9) gives exactly six values for which (4.7) is the

shadow of a nonlocal symmetry, namely

y = 1,−1;
1

4
,−1

4
;

1√
6
,− 1√

6
.

The corresponding values of L are L(1) = L(−1) = 1/2, L(1/4) = L(−1/4) = 2, and L(1/
√

6) =

L(−1/
√

6) = 1. The equations obtained by replacing these values of y into (4.2) are, respectively,

the Sawada-Kotera, Kaup-Kupershmidt, and fifth-order KdV equations! Thus, the shadow (4.7) rec-

ognizes precisely the only 2-homogeneous polynomial evolution equations which possess an infi-

nite number of symmetries, from a whole family of equations which are the integrability condition

of overdetermined sl(2,R)-valued linear problems, and which admit quadratic pseudo-potentials
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and conservation laws (the notion of λ -homogeneous equations, λ ∈ R, and the classification cited

above, appears in the paper [8] by Sanders and Wang).

We complete the shadow G to a bona-fide nonlocal symmetry of the Sawada-Kotera equation

following [7]:

Theorem 2: The system of equations formed by the Sawada-Kotera equation (4.1), (4.5a)–(4.6b)
with y =−1, and the equations

βx =
2η2

3
exp(−1

2
δ ) (4.10)

and

βt =

2 exp

(
−δ

2

)
3η6

[
3η6Sx α +η8(S2 −Sxx)

]
, (4.11)

admits the classical symmetry

W = α exp(−1

2
δ )

∂
∂S

− η4

3
exp(−1

2
δ )

∂
∂α

+β
∂

∂δ
− 1

4
β 2 ∂

∂β
, (4.12)

and therefore this vector field is a nonlocal symmetry of the Sawada-Kotera equation (4.1).

The flow of the vector field (4.12) is found by solving the system of equations

∂S
∂τ

= α exp(−1

2
δ ) ;

∂α
∂τ

=
−η4

3
exp(−1

2
δ ) ; (4.13a)

∂δ
∂τ

= β ;
∂β
∂τ

= −1

4
β 2 (4.13b)

with initial conditions

S(x, t,0) = S0 ; α(x, t,0) = α0 ; δ (x, t,0) = δ0 ; β (x, t,0) = β0 , (4.14)

in which S0, α0, δ0 and β0 are arbitrary particular solutions to the compatible system of equations

given in Theorem 2. The solution to this initial value problem is

α(τ) = − 4η4τ
3β0τ +12

exp

(
−1

2
δ
)
+α0 (4.15a)

δ (τ) = 4ln

∣∣∣∣β0τ +4

4

∣∣∣∣+δ0 (4.15b)

β (τ) =
4β0

β0τ +4
. (4.15c)

The corresponding formula for S(x, t,τ) is obtained from the first equation in (4.13a) by using

(4.15a), (4.15b) and the initial conditions above. We find the family of solutions

S(x, t,τ) = − 8η4e−δ0τ2

3(β0 τ +4)2
+

4τ
(β0 τ +4)

α0 e−(1/2)δ0 +S0 . (4.16)
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Now we remark that the foregoing analysis allows us to recover transformation (2.10). Indeed,

we start from (4.16) and eliminate δ0 using (4.10). We obtain

S =
−6β 2

0,xτ2

(β0τ +4)2
+

6τβ0,xα0

η2(β0τ +4)
+S0 .

Now we eliminate α0 using (4.6a) [with y =−1]. We find

S =
−6β 2

0,xτ2

(β0τ +4)2
− 3τβ0,xδ0,x

β0τ +4
+S0 .

We re-write the second summand of this expression by using the equation

β0,xx = (−1/2)β0,xδ0,x , (4.17)

which is obtained by differentiating (4.10) with respect to x and simplifying the result using again

(4.10). We obtain

S =
−6β 2

0,xτ2

(β0τ +4)2
+

6τβ0,xx

β0τ +4
+S0 ,

or, equivalently,

S = 6
∂ 2

∂x2
ln(B)+S0 , (4.18)

in which B = β0τ +4. This is exactly transformation (2.10).

We also recover Equation (2.11). Replacing (4.6a) [with y =−1] into Equation (4.17) we obtain

β0,xx =
1

η2
α0 β0,x . (4.19)

Differentiating (4.19) with respect to x and using (4.5a) [with y =−1] we find

β0,xxx =
β0,xx

η2
α0 −β0,xS0 − β0,x

η4
α2

0 . (4.20)

Now we eliminate α0 from (4.20) by means of (4.19) and then we simplify the resulting expression.

We obtain S0 =−β0,xxx/β0,x , which is equivalent to Equation (2.11) for B.

Finally, we consider Equation (4.11) for β0. Using (4.10) we can write (4.11) as

β0,t =
3β0,xS0,xα0

η2
+β0,xS2

0 −β0,xS0,xx .

We eliminate α0 using (4.19), and we eliminate S0 and its derivatives using the relation S0 =

−β0,xxx/β0,x and its differential consequences. A straightforward calculation then yields

β0,t =
−5β0,xxxxβ0,xx

β0,x
+

5β0,xxxβ 2
0,xx

β 2
0,x

+β0,xxxxx .

This equation is equivalent to Equation (1.8) for B.
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