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We summarize the most featured items characterizing the semi-discrete nonlinear Schrödinger system with

background-controlled inter-site resonant coupling. The system is shown to be integrable in the Lax sense that

make it possible to obtain its soliton solutions in the framework of properly parameterized dressing procedure

based on the Darboux transformation. On the other hand the system integrability inspires an infinite hierar-

chy of local conservation laws some of which were found explicitly in the framework of generalized recursive

approach. The system consists of two basic dynamic subsystems and one concomitant subsystem and it permits

the Hamiltonian formulation accompanied by the highly nonstandard Poisson structure. The nonzero back-

ground level of concomitant fields mediates the appearance of an additional type of inter-site resonant coupling

and as a consequence it establishes the triangular-lattice-ribbon spatial arrangement of location sites for the

basic field excitations. Adjusting the background parameter we are able to switch over the system dynamics

between two essentially different regimes separated by the critical point. The system criticality against the

background parameter is manifested both indirectly by the auxiliary linear spectral problem and directly by

the nonlinear dynamical equations themselves. The physical implications of system criticality become evident

after the rather sophisticated canonization procedure of basic field variables. There are two variants of system

standardization equal in their rights. Each variant is realizable in the form of two nonequivalent canonical sub-

systems. The broken symmetry between canonical subsystems gives rise to the crossover effect in the nature of

excited states. Thus in the under-critical region the system support the bright excitations in both subsystems,

while in the over-critical region one of subsystems converts into the subsystem of dark excitations.

Keywords: nonlinear lattice; integrable system; soliton; conservation laws; symmetry breaking; canonical field

variables

PACS: 11.10.Lm, 45.05.+x, 02.30.Ik, 05.45.Yv, 11.30.-j, 02.30.Oz, 45.20.Jj

1. Introduction and the system equations

The semi-discrete integrable nonlinear Schrödinger systems on one-dimensional or quasi-one-

dimensional lattices [1–5, 23, 52, 56, 57, 72] play a significant part in modeling a wide variety of

phenomena from various branches of physics inasmuch as they might give us a clue what type

of nonlinear excitations could be expected when considering real physical situations. It is suffi-

cient to mention that the concept of nonlinear excitations related to one or another model of non-

linear Schrödinger type is applicable to the investigation of nonlinear effects in discrete electric
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transmission lines [36], to the modeling of soliton-mediated energy and charge transport in macro-

molecules [9, 17, 18, 47] as well as to the theoretical treatment of experimentally observed light

patterns in the cross-sections of coupled optical fibers [14, 22].

In this respect the semi-discrete integrable nonlinear Schrödinger system with background-

controlled inter-site resonant coupling [62, 66, 67] is able to find considerable physical applica-

tions as a multi-component system with two types of free coupling parameters giving rise to rather

unusual properties [68,69] and as the system whose underlying lattice structure is closely related to

that of (1,1) boron nanotube [35] belonging to the new class of low-dimensional synthetic materi-

als known as nanoribbons [25, 30, 41]. In present paper we consider the most representative results

concerning this system.

Being written in terms of two pairs of basic field variables q+(n), r+(n) and q−(n), r−(n) accom-

panied by one pair of concomitant field variables μ(n), ν(n), the semi-discrete integrable nonlinear

Schrödinger system with background-controlled inter-site resonant coupling (that can be treated

also as the integrable nonlinear Schrödinger system given on a ribbon of triangular lattice) reads as

follows [62, 66, 67]

+ iq̇+(n)+βq−(n−1)[1+q+(n)r+(n)]+

+ αq+(n+1)[q+(n)r−(n)− ν(n)]+α [q−(n)+q+(n)μ(n)] = 0 (1.1)

− iṙ+(n)+αr−(n−1)[1+ r+(n)q+(n)]+

+ βr+(n+1)[r+(n)q−(n)−μ(n)]+β [r−(n)+ r+(n)ν(n)] = 0 (1.2)

+ iq̇−(n)+αq+(n+1)[1+q−(n)r−(n)]+

+ βq−(n−1)[q−(n)r+(n)−μ(n)]+β [q+(n)+q−(n)ν(n)] = 0 (1.3)

− iṙ−(n)+βr+(n+1)[1+ r−(n)q−(n)]+

+ αr−(n−1)[r−(n)q+(n)− ν(n)]+α [r+(n)+ r−(n)μ(n)] = 0 (1.4)

+ iμ̇(n)+αq+(n+1)[r+(n)+ r−(n)μ(n)]+

+ β [q+(n)r+(n)−q−(n)r−(n)]−αr−(n−1)[q−(n)+q+(n)μ(n)] = 0 (1.5)

− iν̇(n)+βr+(n+1)[q+(n)+q−(n)ν(n)]+

+ α [r+(n)q+(n)− r−(n)q−(n)]−βq−(n−1)[r−(n)+ r+(n)ν(n)] = 0 . (1.6)

Here the overdot stands for the differentiation with respect to time τ while the time-dependent

parameters α and β describe the primary resonant coupling between the field variables on the neigh-

boring sites belonging to the opposite chains of a ladder lattice. The arbitrariness in time depen-

dencies of these parameters is restricted only by the general demand of their complex conjugation

β∗ = α. The field variables q+(n) and r+(n) (with r∗+(n) = q+(n)) are approximately related to the

probability amplitudes to find the n-th site on plus-labeled chain of a ladder lattice being excited.

Similarly the field variables q−(n) and r−(n) (with r∗−(n) = q−(n)) are approximately related to the

probability amplitudes to find the n-th site on minus-labeled chain being excited. These two pairs

of variables q+(n), r+(n) and q−(n), r−(n) constitute the basic set of dynamic fields given on an
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Fig. 1. The fragment of two-leg ladder lattice related to the semi-discrete integrable nonlinear Schrödinger system with

background-controlled inter-site resonant coupling (1.1)–(1.6). The circles mark the sites of a ladder lattice. The oblique

arrows indicate on the primary inter-site resonant coupling characterized by parameters α or β. The horizontal arrows

indicate on the composite inter-cite resonant coupling characterized by parameters −αν or −βμ, where ν = lim|n|→∞ ν(n)

and μ = lim|n|→∞ μ(n) .

infinite long (−∞ < n < +∞) ladder lattice with zigzag-like ordered rungs. In so doing the discrete

spatial variable n marks the ordinal number of lattice unit cell while the indices + and − serve to

distinguish two distinct sites within the same unit cell. By another words the indices + and − can

be attributed to two distinct chains (legs) of a ladder lattice. Conversely the variables μ(n) and ν(n)

(with ν∗(n) = μ(n)) appear as the concomitant set of fields inasmuch they could be excluded from

the consideration by means of so-called natural constraints

μ(n)−q−(n)r+(n)

1+μ(n)ν(n)+q+(n)r+(n)+q−(n)r−(n)
=

μ

1+μν
(1.7)

ν(n)−q+(n)r−(n)

1+μ(n)ν(n)+q+(n)r+(n)+q−(n)r−(n)
=

ν

1+μν
(1.8)

dictated by the very structure of the system equations (1.1)–(1.6) through the system lowest local

conservation laws (listed in Section 7). At any rate we must remember that the quantities μ(n) and

ν(n) should be considered as functions of basic field variables q+(n), r+(n) and q−(n), r−(n) and

do not play an independent part in the system dynamics. As for the resonant coupling between

the neighboring sites belonging to the same chain of a ladder lattice it turns out to be nonzero

provided the time-independent limiting values μ and ν of concomitant fields μ(n) and ν(n) at both

spatial infinities |n| → ∞ are nonvanishing. As a result the coupling parameters responsible for

the longitudinal coupling spring up as essentially composite ones equal to −αν and −βμ. The term

“inter-site resonant coupling” borrowed from the theory of molecular (small-radius) excitations [16]
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assumes a non-dissipative (coherent) coupling responsible for the linear parts of interaction between

the excitations of basic fields. The adopted symmetries between the field variables supplemented by

the adopted symmetries between the coupling parameters specify the system under consideration

(1.1)–(1.6) as the system with the attractive-type nonlinearities.

The spatial arrangement of lattice sites and inter-site resonant bonds related to the system of our

interest (1.1)–(1.6) is visualized on Figure 1 as the two-leg ladder lattice that according to modern

nanoribbon terminology [21] can be referred to as the simplest triangular-lattice ribbon with linear

edges. The quasi-one-dimensionality of such a lattice appears to be a favorable property required

in physical applications inasmuch as already the quasi-one-dimensionality (in contrast to the pure

one-dimensionality) of real macromolecular lattice structure (in general any lattice structure con-

sidered on a spatially microscopic scale) is known to be an indispensable factor for the structure

thermodynamic stability [77]. On the other hand namely due to the ladder-like geometry of its

underlying lattice structure the system (1.1)–(1.6) (when dealing with the electrically charged exci-

tations) acquires the property to experience an action of external uniform magnetic field in terms of

magnetic fluxes threading the elementary (triangular) plackets of lattice ribbon and modeled by the

phases of complex-valued coupling parameters treated as the Peierls phases [44, 57, 63].

2. System integrability in the Lax sense [62, 66, 67]

A nonlinear evolutionary system on one-dimensional or quasi-one-dimensional lattice is said to be

integrable in the Lax sense [43] provided it permits a semi-discrete zero-curvature representation

L̇(n|z) = A(n+1|z)L(n|z)−L(n|z)A(n|z) (2.1)

in terms of some auxiliary spectral and evolution operators L(n|z) and A(n|z) with z being the time-

independent complex-valued spectral parameter.

The integrability of semi-discrete integrable nonlinear Schrödinger system with background-

controlled inter-site resonant coupling (1.1)–(1.6) finds its natural confirmation in either of two

known choices of auxiliary operators. Originally it had been established by seeking the operators

L(n|z) and A(n|z) as following 4×4 square matrices [62]

L(n|z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z2 g11(n) f12(n)z g12(n)z−1

g11(n) z2 g12(n)z−1 f12(n)z
g21(n)z−1 f21(n)z z−2 f22(n)

f21(n)z g21(n)z−1 f22(n) z−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.2)

and

A(n|z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b11(n)z2 c11(n) b12(n)z c12(n)z−1

c11(n) b11(n)z2 c12(n)z−1 b12(n)z
c21(n)z−1 b21(n)z c22(n)z−2 b22(n)

b21(n)z c21(n)z−1 b22(n) c22(n)z−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.3)

However later the fact of system integrability has been rediscovered relying upon the more simple

2×2 square matrices [66, 67]

L(n|z) =

(
z2+g11(n) f12(n)z+g12(n)z−1

f21(n)z+g21(n)z−1 f22(n)+ z−2

)
(2.4)
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and

A(n|z) =

(
b11(n)z2+ c11(n) b12(n)z+ c12(n)z−1

b21(n)z+ c21(n)z−1 b22(n)+ c22(n)z−2

)
. (2.5)

There is one-to-one correspondence between the two above-mentioned approaches so that irrespec-

tive of the adopted choice of auxiliary matrices (2.2) and (2.3) or (2.4) and (2.5) the zero-curvature

relation (2.1) yields the general set of integrable nonlinear evolutionary equations [67]

ġ11(n) = c11(n+1)g11(n)+b12(n+1)g21(n)+ c12(n+1) f21(n)−
− g11(n)c11(n)− f12(n)c21(n)−g12(n)b21(n) (2.6)

ḟ12(n) = b11(n+1)g12(n)+ c11(n+1) f12(n)+b12(n+1) f22(n)−
− c12(n)−g11(n)b12(n)− f12(n)b22(n) (2.7)

ġ12(n) = c11(n+1)g12(n)+b12(n+1)+ c12(n+1) f22(n)−
− g11(n)c12(n)− f12(n)c22(n)−g12(n)b22(n) (2.8)

ḟ22(n) = b21(n+1)g12(n)+ c21(n+1) f12(n)+b22(n+1) f22(n)−
− f21(n)c12(n)−g21(n)b12(n)− f22(n)b22(n) (2.9)

ġ21(n) = c21(n+1)g11(n)+b22(n+1)g21(n)+ c22(n+1) f21(n)−
− g21(n)c11(n)− f22(n)c21(n)−b21(n) (2.10)

ḟ21(n) = b21(n+1)g11(n)+ c21(n+1)+b22(n+1) f21(n)−
− f21(n)c11(n)−g21(n)b11(n)− f22(n)b21(n) (2.11)

with the functions b11(n), c11(n), b12(n), c12(n) and c22(n), b22(n), c21(n), b21(n) being specified by

the formulas

b11(n) = b11 (2.12)

c11(n) = c11−b11 f12(n) f21(n−1) (2.13)

b12(n) = b11 f12(n) (2.14)

c12(n) = g12(n−1)c22 (2.15)

c22(n) = c22 (2.16)

b22(n) = b22− c22g21(n)g12(n−1) (2.17)

c21(n) = c22g21(n) (2.18)
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b21(n) = f21(n−1)b11 . (2.19)

Here the functions g11(n), f12(n), g12(n) and f22(n), g21(n), f21(n) are understood as the prototype

field variables and the parameters b11, c11 and c22, b22 are permitted to be arbitrary functions of

time τ.

The general integrable system (2.6)–(2.19) admits at least two types of complex-valued reduc-

tions [67] and two types of real-valued reductions [67]. In particular the reduction [66, 67]

g11(n) = μ(n) = ν∗(n) (2.20)

f12(n) = +q+(n) = +r∗+(n) (2.21)

g12(n) = −q−(n) = −r∗−(n) (2.22)

f22(n) = ν(n) = μ∗(n) (2.23)

g21(n) = −r+(n) = −q∗+(n) (2.24)

f21(n) = +r−(n) = +q∗−(n) (2.25)

b11 = −iα = −iβ∗ (2.26)

c11 = 0 (2.27)

c22 = +iβ = +iα∗ (2.28)

b22 = 0 (2.29)

recovers the multi-component semi-discrete integrable nonlinear Schrödinger system of our main

interest (1.1)–(1.6).

It is well known that peculiarities of actual integration of a particular integrable nonlinear system

in the framework of inverse scattering transform are dictated by the order of its auxiliary spectral

problem. According to Caudrey [11, 12] the order of auxiliary spectral problem is determined by

the number of distinct eigenvalues η j(z) of limiting spectral matrix L(z) (defined either as L(z) =

limn→−∞ L(n|z) or as L(z) = limn→+∞ L(n|z)), i.e. by the number of distinct solutions of algebraic

equation

det[L(z)−ηI ] = 0 , (2.30)

where I is the unity matrix of the same rank as the rank of limiting spectral matrix L(z). Thus

the order of auxiliary spectral problem can not exceed the rank of limiting spectral matrix and

depends on the very structure of this matrix which is essentially sensitive to the choice of boundary

conditions for the field variables. For example, any auxiliary spectral problem linked with one or

another of the most demanded multi-component semi-discrete integrable nonlinear Schrödinger
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systems taken at vanishing boundary conditions [3, 23, 52, 56, 57] must be treated as the second-

order one despite of being some extended matrix generalization of the basic Ablowitz-Ladik spectral

problem [1, 2]. In contrast the order of auxiliary spectral problem associated with any of multi-

component integrable nonlinear Schrödinger systems taken at non-vanishing boundary conditions

[7, 8] is usually more higher as compared with its counterpart calculated at vanishing boundary

conditions.

In general, when the order of the algebraic equation (2.30) increases the relevant analytical solu-

tions ηi(z) become cumbersome (for the the cubic equation), impalpable (for the quartic equation) or

even impossible (for high order equations). Hence except for some special cases, the soliton theory

in practice is forced to deal with low-order auxiliary spectral problems. In this respect it is important

to stress that the semi-discrete integrable nonlinear Schrödinger system with background-controlled

inter-site resonant coupling (1.1)–(1.6) can be associated not only with the fourth-order auxiliary

spectral problem [62] characterized by the four distinct (though explicitly given) eigenvalues

η1(z) = z2+μ (2.31)

η2(z) = z−2+ ν (2.32)

η3(z) = z2−μ (2.33)

η4(z) = z−2− ν (2.34)

but also with the second-order auxiliary spectral problem [66, 67] characterized only by the two

distinct eigenvalues

η1(z) = z2+μ (2.35)

η2(z) = z−2+ ν . (2.36)

3. Darboux and Bäcklund transformations as the basis for the dressing method of
system integration [66, 67]

Among the general methods allowing to search for the soliton solutions of an integrable nonlinear

system the approach based on the Darboux transformation looks as the most preferable due to its

universality and comparative simplicity. The Darboux transformation as applied to the semi-discrete

integrable systems has been introduced into soliton theory by Matveev and Salle [38, 39]. Their

version of Darboux transformation technique has been successfully applied to the solution of dis-

cretized Silin-Tikhonchuk equations [33, 34] describing the interaction of Langmuir plasma waves

in the case of strong ion-acoustic wave attenuation [48]. Another version of Darboux transformation

approach has been suggested by Neugebauer and Meinel [42] and was subsequently applied to the

solution of discretized Maxwell-Bloch system [10, 45].

The critical analysis of available literature on Darboux transformation method [6, 10, 13, 19,

24, 33, 34, 38–40, 42, 45, 74, 75] has allowed us to accumulate the basic ideas sufficient to generate

explicit solutions related to any reduced integrable nonlinear system encoded in suggested general

one (2.6)–(2.19). For the sake of generality we present the main steps of relevant Darboux dressing

scheme in terms of prototype field variables g11(n), f12(n), g12(n) and f22(n), g21(n), f21(n) [66,67].
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We begin by reminding that the zero-curvature equation (2.1) is obtainable as the compatibility

condition between two auxiliary matrix equations

X(n+1|z) = L(n|z)X(n|z) (3.1)

and

Ẋ(n|z) = A(n|z)X(n|z) (3.2)

referred to as the auxiliary linear problem. Here X(n|z) denotes the matrix function whose deter-

minant det X(n|z) can be equal to zero only in a limited number of points on the plane of complex

spectral parameter z. In what follows we can safely understand the matrices L(n|z) and A(n|z) as the

2×2 square matrices invoking (where necessary) their explicit representations (2.4) and (2.5). Thus

the matrix X(n|z) must be assumed as 2×2 square matrix too.

Taking into account that the prototype field variables g11(n), f12(n), g12(n), f22(n), g21(n), f21(n)

completely determine the spectral L(n|z) and evolution A(n|z) operators it is possible to distinguish

two distinct solutions g−
11

(n), f −
12

(n), g−
12

(n), f −
22

(n), g−
21

(n), f −
21

(n) and g+
11

(n), f +
12

(n), g+
12

(n), f +
22

(n),

g+
21

(n), f +
21

(n) of general integrable nonlinear system (2.6)–(2.19) by two sets of matrices L−(n|z),

A−(n|z) and L+(n|z), A+(n|z) respectively. Then we can formally deal with the minus labeled

L̇−(n|z) = A−(n+1|z)L−(n|z)−L−(n|z)A−(n|z) (3.3)

and plus labeled

L̇+(n|z) = A+(n+1|z)L+(n|z)−L+(n|z)A+(n|z) (3.4)

zero-curvature equations. In view of this agreement there are no principal restrictions to incorporate

the minus labeled auxiliary linear problem

X−(n+1|z) = L−(n|z)X−(n|z) (3.5)

Ẋ−(n|z) = A−(n|z)X−(n|z) (3.6)

associated with the matrices L−(n|z), A−(n|z), X−(n|z) and plus-labeled auxiliary linear problem

X+(n+1|z) = L+(n|z)X+(n|z) (3.7)

Ẋ+(n|z) = A+(n|z)X+(n|z) (3.8)

associated with the matrices L+(n|z), A+(n|z), X+(n|z) into a consolidated Darboux transformation

scheme.

By definition [13] the Darboux transformation

X+(n|z) = S (n|z)X−(n|z) (3.9)

connects the solutions X−(n|z) and X+(n|z) of minus labeled (3.5), (3.6) and plus labeled (3.7), (3.8)

auxiliary linear problems through the Darboux matrix S (n|z). The Darboux matrix S (n|z) must obey
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to the set of matrix equations

S (n+1|z)L−(n|z) = L+(n|z)S (n|z) (3.10)

Ṡ (n|z) = A+(n|z)S (n|z)−S (n|z)A−(n|z) (3.11)

serving as the spatial (3.10) and temporal (3.11) compatibility conditions between the minus labeled

(3.5), (3.6) and plus labeled (3.7), (3.8) auxiliary linear problems. It is necessary to stress that these

conditions (3.10), (3.11) in combination with minus labeled zero-curvature equation (3.3) lead to the

plus labeled one (3.4). Conversely, the temporal compatibility condition (3.11) can be safely treated

as the direct consequence of the spatial one (3.10) if both the minus and plus labeled zero-curvature

equations (3.3) and (3.4) are regarded as being satisfied.

According to the mnemonic rule quoted by Kuznetsov and Sklyanin [32] the ansatz for the

Darboux matrix S (n|z) should be chosen in the form similar to that of the spectral matrix L(n|z). By

another words we have to suppose that the Darboux matrix is given by the expression

S (n|z) =

(
z2+u11(n) t12(n)z+u12(n)z−1

t21(n)z+u21(n)z−1 t22(n)+ z−2

)
. (3.12)

This ansatz (3.12) prescribes presumably the simplest variant of Darboux matrix relevant to our

task and its mission is expected to create one more soliton in a new (plus labeled) solution of

nonlinear system as compared with the old (minus labeled) one. When we intend to create two or

more solitons the ansatz for the Darboux matrix should be generalized to the form containing the

spectral parameter in the same powers as the product of two or more spectral matrices respectively.

Using the adopted ansatz (3.12) for the Darboux matrix the spatial compatibility condition (3.10)

can be rewritten as twelve relationships between the functions specifying the Darboux matrix S (n|z)

and functions involved into the matrices L−(n|z) and L+(n|z). The respective expressions read as

follows

t12(n) = f −12(n) (3.13)

u21(n) = g−21(n) (3.14)

t21(n+1) = f +21(n) (3.15)

u12(n+1) = g+12(n) (3.16)

and

g−11(n)+ t12(n+1) f −21(n)+u11(n+1) = g+11(n)+ f +12(n)t21(n)+u11(n) (3.17)

u11(n+1)g−11(n) + u12(n+1) f −21(n)+ t12(n+1)g−21(n) =

= g+11(n)u11(n)+ f +12(n)u21(n)+g+12(n)t21(n) (3.18)

u11(n+1) f −12(n) + t12(n+1) f −22(n)+g−12(n) =

= g+11(n)t12(n)+ f +12(n)t22(n)+u12(n) (3.19)
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u11(n+1)g−12(n) + t12(n+1)+u12(n+1) f −22(n) =

= g+11(n)u12(n)+ f +12(n)+g+12(n)t22(n) (3.20)

f −22(n)+u21(n+1)g−12(n)+ t22(n+1) = f +22(n)+g+21(n)u12(n)+ t22(n) (3.21)

t22(n+1) f −22(n) + t21(n+1)g−12(n)+u21(n+1) f −12(n) =

= f +22(n)t22(n)+g+21(n)t12(n)+ f +21(n)u12(n) (3.22)

t22(n+1)g−21(n) + u21(n+1)g−11(n)+ f −21(n) =

= f +22(n)u21(n)+g+21(n)u11(n)+ t21(n) (3.23)

t22(n+1) f −21(n) + u21(n+1)+ t21(n+1)g−11(n) =

= f +22(n)t21(n)+g+21(n)+ f +21(n)u11(n) . (3.24)

The question arises how to employ these equations (3.13)–(3.24) to generate the new solution of

general nonlinear system from the old one.

The most evident but simultaneously unpractical way is to eliminate all mediating Darboux

functions u11(n), t12(n), u12(n), t22(n), u21(n), t21(n) and to obtain six equations relating the six

functions g+
11

(n), f +
12

(n), g+
12

(n), f +
22

(n), g+
21

(n), f +
21

(n) of new solution with the six functions g−
11

(n),

f −
12

(n), g−
12

(n), f −
22

(n), g−
21

(n), f −
21

(n) of old supposedly known one. By definition these six equations

establish the Bäcklund transformation between the old and new solutions. Insofar as the resulting

formulas for the Bäcklund transformation turn out to be impalpably big we do not present them

here. However, the mere fact of their existence instills a firm confidence that the original equations

(3.13)–(3.24) must be considered as the innerly noncontradictory tool in developing the Darboux

dressing technique.

The standpoint of Darboux dressing method consists in recovering the Darboux functions rely-

ing upon certain general spectral properties of adopted Darboux ansatz under the premise that the

seed solution (given by the minus labeled field functions) of nonlinear system was preassigned.

Should this programm has been accomplished the generation of new solution (given by the plus

labeled field functions) is reduced to the solution of purely linear algebraic equations properly

chosen among the expanded form (3.13)–(3.24) of spatial compatibility condition (3.10). In the

simplest choice (3.12) of Darboux matrix the first two equations (3.13) and (3.14) of the expanded

set (3.13)–(3.24) clearly indicates that only four (namely u11(n), u12(n), t22(n), t21(n)) among six

Darboux functions may claim to be initially truly unknown.

To succeed with the Darboux dressing method as applied to our general nonlinear system (2.6)–

(2.19) it is necessary to analyze the contracted evolution equation

d
dτ

ln[detS (n|z)] = Sp A+(n|z)−Sp A−(n|z) (3.25)

deducible from the properly prepared temporal compatibility condition (3.11) by virtue of trace

operation. In particular, observing that the combination Sp A+(n|z)−Sp A−(n|z) does not depend on
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the spectral parameter z we can readily conclude that the quantities

W+(n) = t22(n)− t21(n)t12(n) (3.26)

W0(n) = 1+ t22(n)u11(n)− t21(n)u12(n)− t12(n)u21(n) (3.27)

W−(n) = u11(n)−u12(n)u21(n) (3.28)

entering the expression

detS (n|z) =W+(n)z2+W0(n)+W−(n)z−2 (3.29)

must evolve in a manner leading to the chain of equalities

d
dτ

lnW+(n) =
d
dτ

lnW0(n) =
d
dτ

lnW−(n) . (3.30)

As a consequence the functions W+(n), W0(n), W−(n) must differ only by the factors independent

of time. In addition the requirement of space uniformity restricts these time independent factors to

be independent of space coordinate. Thereafter the formula (3.29) for the determinant of Darboux

matrix acquires the form

detS (n|z) =
(
z2+u11

) (
z−2+ t22

) W0(n)

1+u11t22
, (3.31)

where the parameters u11 and t22 are set to be time independent, while the functions t12(n), u12(n)

and u21(n), t21(n) are assumed to be rapidly vanishing at both spatial infinities. The obtained expres-

sion (3.31) shows that all four roots zr of equation detS (n|z) = 0 are fixed to be independent both of

time and coordinate variables.

By virtue of evident identity detS (n|zr)= 0 the definition of Darboux transformation (3.9) imme-

diately yields det X+(n|zr) = 0. The last equality implies that

2∑
k=1

X+jk(n|zr)εk(zr) = 0 (3.32)

or the same in more detail

2∑
i=1

2∑
k=1

S ji(n|zr)X−ik(n|zr)εk(zr) = 0 , (3.33)

where X+jk(n|z) and S jk(n|z) are the matrix elements of matrices X+(n|z) and S (n|z) respectively.

Here all eight spectral parameters εk(zr) (k = 1,2; r = 1,2,3,4) are obliged being independent both

of time τ and coordinate n. This statement has a status of rigorously proved theorem.

The obtained formula (3.33) contains the nonuniform set of eight linear algebraic equations

( j = 1,2; r = 1,2,3,4) allowing to express the unknown Darboux functions u11(n), u12(n), t22(n),

t21(n) via the a priori known constituent parts of Darboux matrix and through the solution X−(n|z)

of minus labeled auxiliary linear problem (3.5) and (3.6) with the spectral parameters εk(zr) and

roots zr taken into account. The solution X−(n|z) in turn is completely determined by the minus

labeled (seed) solution g−
11

(n), f −
12

(n), g−
12

(n), f −
22

(n), g−
21

(n), f −
21

(n) to the general nonlinear integrable
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system of our interest (2.6)–(2.19). Thus in combination with early obtained expanded formulas

(3.13)–(3.24) for the spatial compatibility condition (3.10) we come to the closed Darboux dressing

procedure permitting to generate the new solution g+
11

(n), f +
12

(n), g+
12

(n), f +
22

(n), g+
21

(n), f +
21

(n) of

general nonlinear system (2.6)–(2.19) from the already known one g−
11

(n), f −
12

(n), g−
12

(n), f −
22

(n),

g−
21

(n), f −
21

(n).

In passing it should be mentioned that the spectral coefficients εk(zr) and roots zr arising in

Darboux dressing approach play the same part as the discrete spectral data in the method of inverse

scattering transform [2, 12, 49, 51, 52, 60, 61, 64].

4. Symmetries of the discrete spectral data εk(zr) and zr related to the nonlinear
Schrödinger system with attractive type nonlinearities [66, 67]

Considering the multi-component nonlinear Schrödinger system with attractive type nonlinearities

(1.1)–(1.6) and taking into account the pairwise complex conjugation of its field variables (2.20)–

(2.25) as well as its coupling parameters (2.26)–(2.29), it is easy to reveal that the spectral L(n|z)

and evolution A(n|z) matrices (2.4) and (2.5) (with matrix A(n|z) (2.5) specified by formulas (2.12)–

(2.19)) exhibit the following symmetry relations

σy[L(n|1/z∗)]∗σy = L(n|z) (4.1)

σz[L(n| − z)]σz = L(n|z) (4.2)

and

σy[A(n|1/z∗)]∗σy = A(n|z) (4.3)

σz[A(n| − z)]σz = A(n|z) , (4.4)

where the symbols σy and σz denote the second

σy =

(
0 −i

+i 0

)
(4.5)

and third

σz =

(
+1 0

0 −1

)
(4.6)

Pauli matrices. As a consequence the analogous symmetries

σy[X(n|1/z∗)]∗σy = X(n|z) (4.7)

σz[X(n| − z)]σz = X(n|z) (4.8)

are valid also for the matrix function X(n|z). The similar properties must be true for the plus and

minus labeled variants of all three above matrices as well as for the Darboux matrix S (n|z):

σy[S (n|1/z∗)]∗σy = S (n|z) (4.9)

σz[S (n| − z)]σz = S (n|z) . (4.10)

Below we list several the most representative implications of just established symmetries.
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For instance we have

t∗21(n) = −u12(n) (4.11)

t∗22(n) = +u11(n) (4.12)

t∗12(n) = −u21(n) . (4.13)

These formulas can be shown to support the equality t∗
22
= u11 that prompts the following parame-

terizations

u11 = −exp(+2γ+2iκ) (4.14)

t22 = −exp(+2γ−2iκ) , (4.15)

where γ and κ are real parameters independent of time and coordinate. Then for the roots zr of

equation detS (n|z) = 0 (with detS (n|z) given by the formula (3.31)) we obtain

z1 = exp(+γ+ iκ) = −z3 (4.16)

z2 = exp(−γ+ iκ) = −z4 . (4.17)

Another important properties

ε1(−zr)/ε2(−zr) = −ε1(+zr)/ε2(+zr) (4.18)

ε∗2(z2)/ε∗1(z2) = −ε1(z1)/ε2(z1) (4.19)

ε∗2(z4)/ε∗1(z4) = −ε1(z3)/ε2(z3) (4.20)

ensure the parameterizations

ε2(z2)/ε1(z2) = +exp(+d+ ie) = −ε2(z4)/ε1(z4) (4.21)

ε2(z1)/ε1(z1) = −exp(−d+ ie) = −ε2(z3)/ε1(z3) (4.22)

with d and e being real parameters independent of time and coordinate.

The analysis of all available symmetry properties provides a number of simplifications. The

most significant among them is the possibility to reduce by half the number of linear algebraic

equations encoded in formula (3.33) that contains both known t12(n), u21(n) and unknown u11(n),

u12(n), t22(n), t21(n) Darboux functions. Thereafter the number of linear algebraic equations coin-

cides with the number of unknown Darboux functions and the reduced set of equations become

readily solvable.
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5. Multi-component soliton solution for the nonlinear Schrödinger system with
attractive type nonlinearities [66, 67]

Relying upon the results of previous two sections let us construct the one-soliton solution to the non-

linear Schrödinger system on a triangular-lattice ribbon (1.1)–(1.6) characterized by the attractive

type nonlinearities.

For this purpose we adopt the seed (minus labeled) solution as the vacuum one

f −12(n) = +q−+(n) = 0 (5.1)

g−12(n) = −q−−(n) = 0 (5.2)

g−11(n) = μ−(n) = μ (5.3)

g−21(n) = −r−+(n) = 0 (5.4)

f −21(n) = +r−−(n) = 0 (5.5)

f −22(n) = ν−(n) = ν . (5.6)

Then the minus labeled spectral and evolution matrices become independent of coordinate variable

L−(n|z) = L−(z) (5.7)

A−(n|z) = A−(z) (5.8)

while the spectral matrix L−(z) is seen to be independent of time variable in addition.

As a consequence the minus labeled zero-curvature equation (3.3) is reduced to the strict com-

mutativity relation

A−(z)L−(z) = L−(z)A−(z) (5.9)

implying that matrices

L−(z) =

(
z2+μ 0

0 ν+ z−2

)
(5.10)

and

A−(z) =

(−iαz2 0

0 +iβz−2

)
(5.11)

share the same set of eigenfunctions

|x−k (z)〉 =
( 〈1|x−k (z)〉
〈2|x−k (z)〉

)
=

(
δ1k

δ2k

)
(5.12)

with index k running through the integers 1 and 2 and quantity δ jk standing for the Kronecker

symbol. The eigenvalues ηk(z) and ϕ̇k(z) of matrices L−(z) and A−(z) are respectively as follows

η1(z) = z2+μ (5.13)
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η2(z) = ν+ z−2 (5.14)

and

ϕ̇1(z) = −iαz2 (5.15)

ϕ̇2(z) = +iβz−2. (5.16)

The former ones η1(z) and η2(z) are seen to coincide with the eigenvalues (2.35) and (2.36) of

limiting spectral operator L(z) defined in Section 2. This fact underlines the generic property of

eigenvalues η j(z) to be insensitive to the choice of a preferred integration scheme.

Now it can be readily verified that the components X−jk(n|z) of solution X−(n|z) to the minus

labeled auxiliary problem (3.5) and (3.6) should be taken in the form

X−jk(n|z) = 〈 j|xk(z)〉[ηk(z)]n exp[ϕk(z)] ≡ δ jk[ηk(z)]n exp[ϕk(z)] (5.17)

with the functions ϕk(z) determined by expressions

ϕ1(z) = −iAz2+ iψ (5.18)

ϕ2(z) = +iBz−2− iψ . (5.19)

Here ψ is real constant parameter, while functions A and B are the solutions of first order ordinary

differential equations

Ȧ = α (5.20)

and

Ḃ = β (5.21)

restricted by the condition of complex conjugation B∗ = A.

Once the components X−jk(n|z) of matrix function X−(n|z) are known we have to find the four

required Darboux functions u11(n), u12(n) and t22(n), t21(n). This task is realizable by solving two

nonuniform sets of reduced equations involved into conditions (3.33) that support the identities

det X+(n|zr) = 0 (r = 1,2,3,4). The results of calculations are as follows

u11(n) = U11(n)/U00(n) (5.22)

u12(n) = U12(n)/U00(n) (5.23)

and

t22(n) = T22(n)/T00(n) (5.24)

t21(n) = T21(n)/T00(n) , (5.25)

where

U11(n) = X−11(n|z2)X−22(n|z1)ε2(z1)ε1(z2)z2
2/z1−X−11(n|z1)X−22(n|z2)ε2(z2)ε1(z1)z2

1/z2 (5.26)
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U12(n) = X−11(n|z1)X−11(n|z2)ε1(z2)ε1(z1)[z2
1− z2

2] (5.27)

U00(n) = X−11(n|z1)X−22(n|z2)ε2(z2)ε1(z1)/z2−X−11(n|z2)X−22(n|z1)ε2(z1)ε1(z2)/z1 (5.28)

and

T22(n) = X−22(n|z1)X−11(n|z2)ε1(z2)ε2(z1)z2/z2
1−X−22(n|z2)X−11(n|z1)ε1(z1)ε2(z2)z1/z2

2 (5.29)

T21(n) = X−22(n|z2)X−22(n|z1)ε2(z1)ε2(z2)[1/z2
2−1/z2

1] (5.30)

T00(n) = X−22(n|z2)X−11(n|z1)ε1(z1)ε2(z2)z1−X−22(n|z1)X−11(n|z2)ε1(z2)ε2(z1)z2 . (5.31)

Inasmuch as the Darboux functions u11(n), u12(n) and t22(n), t21(n) are already found we have to

substitute them into the last ten equations (3.15)–(3.24) derived from the spatial compatibility con-

dition (3.10) and to recover all six functions q++(n), q+−(n), μ+(n) and r++(n), r+−(n), ν+(n) involved into

one-soliton solution. During the announced calculations we have operated only with six properly

chosen equations while the rest four ones have been used for the verification of obtained results.

The final formulas for the multi-component one-soliton solution read as follows

q++(n) = +sinh(2γ)
exp[+2i(κ+ +κ−)(n− ξ− y)+ iχ]

cosh[2(γ+ +γ−)(n− s− x)]
(5.32)

q+−(n) = −sinh(2γ)
exp[+2i(κ+ +κ−)(n+ ξ− y)+ iχ]

cosh[2(γ+ +γ−)(n+ s− x)]
(5.33)

μ+(n) = μ− exp(+2iκ) sinh(2γ) sinh[2(γ+ +γ− −γ)]

cosh[2(γ+ +γ−)(n− s− x)]cosh[2(γ+ +γ−)(n+ s− x)]
(5.34)

and

r++(n) = +sinh(2γ)
exp[−2i(κ+ +κ−)(n− ξ− y)− iχ]

cosh[2(γ+ +γ−)(n− s− x)]
(5.35)

r+−(n) = −sinh(2γ)
exp[−2i(κ+ +κ−)(n+ ξ− y)− iχ]

cosh[2(γ+ +γ−)(n+ s− x)]
(5.36)

ν+(n) = ν− exp(−2iκ) sinh(2γ) sinh[2(γ+ +γ− −γ)]

cosh[2(γ+ +γ−)(n− s− x)]cosh[2(γ+ +γ−)(n+ s− x)]
. (5.37)

Here the two pairs of real constant parameters γ+, κ+ and γ−, κ− are defined by the two sets of

equations

exp(+2γ+ +2iκ+) = exp(+2γ+2iκ)+μ (5.38)

exp(+2γ+−2iκ+) = exp(+2γ−2iκ)+ ν (5.39)

and

exp(−2γ−+2iκ−) = exp(−2γ+2iκ)+μ (5.40)
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exp(−2γ− −2iκ−) = exp(−2γ−2iκ)+ ν (5.41)

respectively. Another three real constant parameters s, ξ, χ are determined by formulas

2s = 1− γ

γ+ +γ−
(5.42)

2ξ = 1− κ

κ+ +κ−
(5.43)

χ = κ+ +κ−+4κ+2ψ− e . (5.44)

In order to specify the real quantities x and y it was necessary to separate the functions A and B into

their real and imaginary parts:

A = Re(A)+ iIm(A) (5.45)

B = Re(A)− iIm(A) . (5.46)

Having been written at length the functions x and y are given by the expressions

x = −1

2
− γ+d/2
γ+ +γ−

− sinh(2γ)

γ+ +γ−
[Re(A) sin(2κ)+ Im(A)cos(2κ)] (5.47)

and

y =
cosh(2γ)

κ+ +κ−
[Re(A)cos(2κ)− Im(A) sin(2κ)] (5.48)

respectively. Thus the time dependencies of purely real functions Re(A) and Im(A) determine the

whole soliton dynamics.

In obtained one-soliton solution (5.32)–(5.37) the quantity sinh(2γ) is seen to characterize the

amplitude of each basic soliton component while the parameter 4γ manifests itself as the total

number of excitations contained in one-soliton solution. The latter fact follows from the formula for

the total number of excitations

N =
∞∑

m=−∞
ln

[
1+μ(m)ν(m)+q+(m)r+(m)+q−(m)r−(m)

1+μν

]
(5.49)

as applied to the one-soliton solution (5.32)–(5.37).

The quantity x is closely related to the mean longitudinal coordinate of soliton wave packet.

Assuming the interpretation of quantity x being correct the quantity

� = −sinh(2γ)

γ+ +γ−
[Re(α) sin(2κ)+ Im(α)cos(2κ)] (5.50)

defined by formula � = ẋ should be understood as the longitudinal soliton velocity.

The quantity 1/2|γ+ +γ−| when considered at |γ+ +γ−| � 1 estimates the typical width of each

basic soliton component in longitudinal direction, though at |γ+ + γ−| � 1 such an estimation fails

to be correct due to the pronounced manifestation of lattice discreteness through the so-called lon-

gitudinal breathing of soliton width caused by soliton longitudinal movement [59, 64]. The param-

eter 2(κ+ + κ−) is closely related to the soliton momentum. It is also necessary to mention that
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the parameter 2s describes the coordinate splitting between the upper-chain and lower-chain basic

soliton components, while the parameter 4(κ+ +κ−)ξ determines the phase splitting between those

components.

In the case of vanishing background μ = 0 = ν for the concomitant field variables μ(n) and ν(n)

the definitions (5.38)–(5.41) of parameters γ+, κ+ and γ−, κ− show that γ+ = γ = γ− and κ+ = κ= κ−.

By another words we can understand the parameters 1/4γ and 4κ as some priming characteristics

related to the soliton width and soliton momentum respectively. These priming parameters coincide

with the physical ones 1/2|γ+ +γ−| and 2(κ+ +κ−) only at μ = 0 = ν.

6. Recurrent scheme for the successive Darboux transformations [66]

In order to make the Darboux dressing procedure suitable for successive applications, it is reason-

able to treat the superscripts − and + related to the seed and crop solutions as the running ones. In

so doing we adopt the following replacements

L−(n|z)→ L(s)(n|z) (6.1)

L+(n|z)→ L(c)(n|z) (6.2)

X−(n|z)→ X(s)(n|z) (6.3)

X+(n|z)→ X(c)(n|z) (6.4)

S (n|z)→ S (c)(n|z) (6.5)

zr→ zr(c) (6.6)

εk(zr)→ ε(c)
k (zr(c)) (6.7)

with c≡ s+1 being an arbitrary positive integer. Here the first two records (6.1) and (6.2) assume the

respective replacements to be inserted into the involved field amplitudes. As for the c-th Darboux

matrix S (c)(n|z) it must be given by the expression

S (c)(n|z) =

⎛⎜⎜⎜⎜⎝ z2+u(c)
11

(n) f (s)
12

(n)z+u(c)
12

(n)z−1

t(c)
21

(n)z+g(s)
21

(n)z−1 t(c)
22

(n)+ z−2

⎞⎟⎟⎟⎟⎠ . (6.8)

in complete accord with the properties t(c)
12

(n)= f (s)
12

(n) and u(c)
21

(n)= g(s)
21

(n) that have been established

earlier.

Provided the zeroth seed solution g(0)
11

(n), f (0)
12

(n), g(0)
12

(n), f (0)
22

(n), g(0)
21

(n), f (0)
21

(n) and the related

zeroth auxiliary matrix-function X(0)(n|z) are known, the N-th crop solution g(N)
11

(n), f (N)
12

(n), g(N)
12

(n),
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f (N)
22

(n), g(N)
21

(n), f (N)
21

(n) is determined by the following recurrent formulas

g(c)
11

(n) =G(c)
11

(n)/D(c)
00

(n) (6.9)

f (c)
12

(n) = F(c)
12

(n)/D(c)
00

(n) (6.10)

g(c)
12

(n) = u(c)
12

(n+1) (6.11)

and

f (c)
22

(n) = F(c)
22

(n)/D(c)
00

(n) (6.12)

g(c)
21

(n) =G(c)
21

(n)/D(c)
00

(n) (6.13)

f (c)
21

(n) = t(c)
21

(n+1) , (6.14)

where

G(c)
11

(n) =
[
u(c)

11
(n+1)g(s)

11
(n)+u(c)

12
(n+1) f (s)

21
(n)+ f (s)

12
(n+1)g(s)

21
(n)−u(c)

12
(n+1)t(c)

21
(n)

]
t(c)
22

(n)−
− g(s)

21
(n)

[
u(c)

11
(n+1) f (s)

12
(n)+ f (s)

12
(n+1) f (s)

22
(n)+g(s)

12
(n)−u(c)

12
(n)

]
(6.15)

F(c)
12

(n) =
[
u(c)

11
(n+1) f (s)

12
(n)+ f (s)

12
(n+1) f (s)

22
(n)+g(s)

12
(n)−u(c)

12
(n)

]
u(c)

11
(n)− (6.16)

− f (s)
12

(n)
[
u(c)

11
(n+1)g(s)

11
(n)+u(c)

12
(n+1) f (s)

21
(n)+ f (s)

12
(n+1)g(s)

21
(n)−u(c)

12
(n+1)t(c)

21
(n)

]

D(c)
00

(n) = u(c)
11

(n)t(c)
22

(n)−g(s)
21

(n) f (s)
12

(n) (6.17)

F(c)
22

(n) =
[
t(c)
22

(n+1) f (s)
22

(n)+ t(c)
21

(n+1)g(s)
12

(n)+g(s)
21

(n+1) f (s)
12

(n)− t(c)
21

(n+1)u(c)
12

(n)
]
u(c)

11
(n)−

− f (s)
12

(n)
[
t(c)
22

(n+1)g(s)
21

(n)+g(s)
21

(n+1)g(s)
11

(n)+ f (s)
21

(n)− t(c)
21

(n) ] (6.18)

G(c)
21

(n) =
[
t(c)
22

(n+1)g(s)
21

(n)+g(s)
21

(n+1)g(s)
11

(n)+ f (s)
21

(n)− t(c)
21

(n)
]
t(c)
22

(n)− (6.19)

− g(s)
21

(n)
[
t(c)
22

(n+1) f (s)
22

(n)+ t(c)
21

(n+1)g(s)
12

(n)+g(s)
21

(n+1) f (s)
12

(n)− t(c)
21

(n+1)u(c)
12

(n)
]

and the superscript c runs through positive integers from 1 to N, while s = c− 1. Here the c-th

Darboux functions u(c)
11

(n), u(c)
12

(n) and t(c)
22

(n), t(c)
21

(n) are given by formulas

u(c)
11

(n) = U(c)
11

(n)/U(c)
00

(n) (6.20)

u(c)
12

(n) = U(c)
12

(n)/U(c)
00

(n) (6.21)

and

t(c)
22

(n) = T (c)
22

(n)/T (c)
00

(n) (6.22)
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t(c)
21

(n) = T (c)
21

(n)/T (c)
00

(n) , (6.23)

where

U(c)
11

(n) = Y (s)
1

(n|z2(c))Y (s)
2

(n|z1(c))z2
2(c)/z1(c)−Y (s)

1
(n|z1(c))Y (s)

2
(n|z2(c))z2

1(c)/z2(c)+

+ f (s)
12

(n)Y (s)
2

(n|z1(c))Y (s)
2

(n|z2(c)) [z2(c)/z1(c)− z1(c)/z2(c)] (6.24)

U(c)
12

(n) = Y (s)
1

(n|z1(c))Y (s)
1

(n|z2(c))
[
z2

1(c)− z2
2(c)

]
+

+ f (s)
12

(n)
[
Y (s)

2
(n|z1(c))Y (s)

1
(n|z2(c))z1(c)−Y (s)

2
(n|z2(c))Y (s)

1
(n|z1(c))z2(c)

]
(6.25)

U(c)
00

(n) = Y (s)
1

(n|z1(c))Y (s)
2

(n|z2(c))/z2(c)−Y (s)
1

(n|z2(c))Y (s)
2

(n|z1(c))/z1(c) (6.26)

and

T (c)
22

(n) = Y (s)
2

(n|z1(c))Y (s)
1

(n|z2(c))z2(c)/z2
1(c)−Y (s)

2
(n|z2(c))Y (s)

1
(n|z1(c))z1(c)/z2

2(c)+

+ g(s)
21

(n)Y (s)
1

(n|z2(c))Y (s)
1

(n|z1(c)) [z2(c)/z1(c)− z1(c)/z2(c)] (6.27)

T (c)
21

(n) = Y (s)
2

(n|z2(c))Y (s)
2

(n|z1(c))
[
1/z2

2(c)−1/z2
1(c)

]
+

+ g(s)
21

(n)
[
Y (s)

1
(n|z2(c))Y (s)

2
(n|z1(c))/z2(c)−Y (s)

1
(n|z1(c))Y (s)

2
(n|z2(c))/z1(c)

]
(6.28)

T (c)
00

(n) = Y (s)
2

(n|z2(c))Y (s)
1

(n|z1(c))z1(c)−Y (s)
2

(n|z1(c))Y (s)
1

(n|z2(c))z2(c) (6.29)

with the shorthand

Y (s)
j (n|zr(c)) =

2∑
k=1

X(s)
jk (n|zr(c))ε(c)

k (zr(c)) (6.30)

being introduced. All these formulas (6.8)–(6.30) should be supplemented with the Darboux trans-

formation relation

X(c)(n|z) = S (c)(n|z)X(s)(n|z) (6.31)

as an indispensable part of the whole recurrent procedure.

In the case of vacuum zeroth seed solution (5.1)–(5.6) related for the system with attractive type

nonlinearities (1.1)–(1.6), when

f (0)
jk (n) = νδ jk (6.32)

g(0)
jk (n) = μδ jk (6.33)

X(0)
jk (n|z) = δ jk[ηk(z)]n exp[ϕk(z)] , (6.34)

the general formulas (6.8)–(6.30) yield the first crop solution g(1)
11

(n), f (1)
12

(n), g(1)
12

(n), f (1)
22

(n), g(1)
21

(n),

f (1)
21

(n) of one-soliton type (5.32)–(5.37). The question arises whether the N-th crop solution based
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on the vacuum zeroth seed solution (6.32), (6.33) can be identified as the N-soliton one. Below we

provide some convincing arguments in favor of an affirmative answer.

First of all let us parameterize the roots z1(c) and z2(c) of equation detS (c)(n|z) = 0 by means of

the formulas

z1(c) = exp[+γ(c)+ iκ(c)] (6.35)

z2(c) = exp[−γ(c)+ iκ(c)] , (6.36)

where index c may run through positive integers from 1 to N. Taking into account that the quantity

sinh[2γ(1)] determines the amplitude of any basic field function in the case of purely one-soliton

solution, we concentrate on the second crop solution characterized by the parameters γ(1) and γ(2),

with parameter γ(1) being inherited from the one-soliton seed solution. In order to comprehend the

two-soliton structure of the second crop solution, it is sufficient to reveal that in the limiting case of

vanishing seed parameter γ(1) the solution survives as a newly generated soliton with the amplitude

of any basic field function determined by the quantity sinh[2γ(2)]. The simplest way to verify this

statement is supported by the one-to-one correspondence between the fundamental set

2∑
k=1

S (1)
jk (n|zr(1))X(0)

kk (n|zr(1))ε(1)
k (zr(1)) = 0 (6.37)

associated with the purely one-soliton solution and its counterpart

2∑
k=1

S (2)
jk (n|zr(2))X(0)

kk (n|zr(2))ω(2)
k (zr(2)) = 0 (6.38)

associated with the second crop solution taken in the limiting case of vanishing γ(1). Precisely, the

the structures of Darboux matrices in the former (6.37) and latter (6.38) sets are essentially similar

inasmuch as f (0)
12

(n) = 0 = g(0)
21

(n) and f (1)
12

(n) = 0 = g(1)
21

(n). Moreover, the renormalized parameters

ω(2)(zr(2)) contained in the second set (6.38) are given by the formulas

ω(2)
1

(zr(2)) =
{
z2

r (2)− exp[+2iκ(1)]
}
ε(2)

1
(zr(2)) (6.39)

ω(2)
2

(zr(2)) =
{
z−2

r (2)− exp[−2iκ(1)]
}
ε(2)

2
(zr(2)) (6.40)

which are seen to guarantee the symmetry[
ω(2)

2
(z2(2))/ω(2)

1
(z2(2))

]∗
= −ω(2)

1
(z1(2))/ω(2)

2
(z1(2)) (6.41)

isomorphic to the original one[
ε(2)

2
(z2(2))/ε(2)

1
(z2(2))

]∗
= −ε(2)

1
(z1(2))/ε(2)

2
(z1(2)) . (6.42)

Hence, in view of the symmetry[
ε(1)

2
(z2(1))/ε(1)

1
(z2(1))

]∗
= −ε(1)

1
(z1(1))/ε(1)

2
(z1(1)) , (6.43)

the properties of parameters ε(1)
k (zr(1)) and ω(2)

k (zr(2)) turn out to be similar. At last, the correspon-

dence between the functions X(0)
kk (n|zr(1)) and X(0)

kk (n|zr(2)) is self-evident.

By induction we can conclude that the N-th crop solution based on the vacuum zeroth seed

solution should be treated as a N-soliton one.
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7. Infinite set of local densities as a premise for the system integrability in the Liouville
sense [65, 67]

The Liouville integrability of a nonlinear system given on an infinite spatial support assumes that

there exists an infinite set of conserved quantities being in involution in pairs [53]. However already

the sole knowledge at least of several local densities provides a good opportunity to study the system

dynamics. Here the term “local density” implies the density ρ(n) governed by the local conservation

law (discrete-space analogue of continuity equation)

ρ̇(n) = J(n| n−1)− J(n+1| n) , (7.1)

where the quantity J(n+1/2| n−1/2) should be treated as a current. As for the quantity
∑+∞

n=−∞ ρ(n)

it is seen to be a conserved one if the values of a current at both spatial infinities coincide. When

considering our general integrable system (2.6)–(2.19) we suppose the latter demand being satisfied

for the whole infinite set of currents via the proper choice of boundary conditions for the prototype

field variables.

In this Section we present explicitly several lowest local conservation laws from the infinite hier-

archy related to the general integrable system (2.6)–(2.19). Three of them follow from the universal

local conservation law [67]

d
dτ

ln [det L(n|z)] = Sp A(n+1|z)−Sp A(n|z) (7.2)

(being a straightforward consequence of the zero-curvature equation (2.1) under condition that

det L(n|z) � 0) while the rest are generated by the direct recursive procedure [67] whose general-

ized version [65] is suitable for any semi-discrete integrable system linked with the spatially one-

dimensional auxiliary spectral problem of an arbitrary order.

Here it is worth noticing that the idea to use the direct recursive technique for generating conser-

vation laws had been originated in the pioneering works by Konno, Sanuki and Ichikawa [28] and

Wadati, Sanuki and Konno [73] dealing with the continuous integrable nonlinear systems. When

having been applied to the semi-discrete integrable nonlinear systems the approach has been refor-

mulated by Tsuchida, Ujino and Wadati [51, 52]. However in contrast to the generalized recursive

procedure [65] all these articles [28,51,52,73] consider only the simplest versions of direct recursive

procedure relying upon the second-order auxiliary spectral problems in the Caudrey sense.

We begin with the local conservation laws emanated from the universal local conservation law

(7.2). In so doing we shall use the 2 × 2 matrix representations (2.4) and (2.5) for the spectral

L(n|z) and evolution A(n|z) operators with the matrix elements of A(n|z) being specified in terms of

prototype field variables (2.12)–(2.19). Insofar as the quantity det L(n|z) is a Laurent polynomial in

even powers of spectral parameter while the quantity Sp A(n+ 1|z)−Sp A(n|z) does not depend of

spectral parameter at all the local conservation laws generated by the universal local conservation

law (7.2) arise as follows

ρ̇+(n) = J0(n| n−1)− J0(n+1| n) (7.3)

ρ̇0(n) = J0(n| n−1)− J0(n+1| n) (7.4)

ρ̇−(n) = J0(n| n−1)− J0(n+1| n) . (7.5)
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Here the local densities ρ+(n), ρ0(n), ρ−(n) are given by expressions

ρ+(n) = ln
[
f22(n)− f21(n) f12(n)

]
(7.6)

ρ0(n) = ln
[
1+g11(n) f22(n)− f12(n)g21(n)−g12(n) f21(n)

]
(7.7)

ρ−(n) = ln
[
g11(n)−g12(n)g21(n)

]
(7.8)

while the currents turn out to be the same for all three local conservation laws since each of them is

related to the common quantity

J0(n| n−1) = b11 f12(n) f21(n−1)+ c22g21(n)g12(n−1) . (7.9)

The structure of lowest local conservation laws (7.3)–(7.5) ensures the chain of equalities

ρ̇+(n) = ρ̇0(n) = ρ̇−(n). As a consequence the functions exp[ρ+(n)], exp[ρ0(n)], exp[ρ−(n)] must

differ from each other only by the factors independent of time variable τ. To preserve the unifor-

mity of space these factors must be regarded as independent of spatial variable n. The statements

of this paragraph when applied to the system with the attractive type nonlinearities (1.1)–(1.6) give

rise to the early announced natural constrains (1.7) and (1.8) with time-independent background

parameters μ and ν.

To proceed with the subsequent local conservation laws we briefly summarize the main points

of direct recursive technique in its general form [65] dealing with the spectral L(n|z) and evolution

A(n|z) operators given by R×R square matrices (where det L(n|z) � 0) without any reference on

the scattering data of auxiliary spectral problem or on the Hamiltonian structure of an integrable

system. Here we do not assume any simplifying restrictions on the order of spectral operator so that

it even can coincide with the rank R of respective matrix.

First of all we are obliged to operate with a set of auxiliary functions Γ jk(n|z) which are proved

to comply with the rule

Γ ji(n|z)Γik(n|z) = Γ jk(n|z) (7.10)

and must satisfy to the following set of spatial Riccati equations

Γ jk(n+1|z)

R∑
i=1

Lki(n|z)Γik(n|z) =

R∑
i=1

L ji(n|z)Γik(n|z) , (7.11)

where the quantities L jk(n|z) denote the matrix elements of spectral operator L(n|z). The general

property (7.10) imposes constraints onto the auxiliary functions Γ jk(n|z) so that only R−1 of them

can be considered as truly independent. For example, dealing with the spectral operator of second

order (R = 2) it is sufficient to use the single auxiliary function, while relying upon the spectral

operator of third order (R = 3) we must invoke already two auxiliary functions.
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Another key ingredient of generalized approach is the collection of generating equations

d
dτ

ln M j j(n|z) = Bj j(n+1|z)−Bj j(n|z) (7.12)

with M j j(n|z) and Bj j(n|z) given by the expressions

M j j(n|z) =

R∑
i=1

L ji(n|z)Γi j(n|z) (7.13)

and

Bj j(n|z) =

R∑
i=1

A ji(n|z)Γi j(n|z) , (7.14)

where A jk(n|z) are the matrix elements of evolution operator A(n|z).

In order to generate the hierarchy of local conservation laws we must seek the solutions to the

Riccati equations (7.11) as some appropriate power series with respect to spectral parameter z or

inverse spectral parameter 1/z. Then inserting the result of calculation into the generating equations

(7.12) and collecting the terms with the same powers of z or 1/z we should come to the infinite

hierarchy of local conservation laws. The local density in each local conservation law is dictated

exclusively by the spectral operator, while the local current by the spectral and evolution operators

combined inasmuch as the quantities ln M j j(n|z) should be understood as the generating functions

of local densities, while the quantities Bj j(n|z) should be qualified as the generating functions of

local currents.

In the present case of 2× 2 spectral (2.4) and evolution (2.5) matrices L(n|z) and A(n|z) the set

of spatial Riccati equations is reduced to two mutually equivalent equations

Γ12(n+1|z)
[
f21(n)z+g21(n)z−1

]
Γ12(n|z)+Γ12(n+1|z)

[
f22(n)+ z−2

]
=

[
z2+g11(n)

]
Γ12(n|z)+ f12(n)z+g12(n)z−1 (7.15)

and

Γ21(n+1|z)
[
f12(n)z+g12(n)z−1

]
Γ21(n|z)+Γ21(n+1|z)

[
z2+g11(n)

]
=

[
f22(n)+ z−2

]
Γ21(n|z)+ f21(n)z+g21(n)z−1. (7.16)

Thus developing the recurrent procedure at |z| → 0 it is reasonable to consider the first (7.15) of

above two equations and seek the function Γ12(n|z) in the form

Γ12(n|z) = z
∞∑

k=0

γ12(n|0|k)z2k. (7.17)

Conversely developing the recurrent procedure at |z| → ∞ it is reasonable to use the second (7.16)

of two alternative equations and seek the function Γ21(n|z) in the form

Γ21(n|z) = z−1
∞∑

k=0

γ21(n|∞|k)z−2k. (7.18)
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The appropriate calculations within each of just announced recurrent schemes yield for the two

simplest (but very significant) local conservation laws the following expressions

ρ̇12+(n) = J12+(n| n−1)− J12+(n+1| n) (7.19)

ρ̇21−(n) = J21−(n| n−1)− J21−(n+1| n) , (7.20)

where

ρ12+(n) = f22(n)+g21(n)g12(n−1) (7.21)

ρ21−(n) = g11(n)+ f12(n) f21(n−1) (7.22)

and

J12+(n+1| n) = c22g21(n+1)g12(n) f22(n)

− c22g21(n+1) f12(n)− f21(n)b11g12(n)

− c22g21(n+1)
[
g11(n)−g12(n)g21(n)

]
g12(n−1) (7.23)

J21−(n+1| n) = b11 f12(n+1) f21(n)g11(n)

− b11 f12(n+1)g21(n)−g12(n)c22 f21(n)

− b11 f12(n+1)
[
f22(n)− f21(n) f12(n)

]
f21(n−1) . (7.24)

Another two admissible but more cumbersome recurrent procedures are based upon the expan-

sion

Γ21(n|z) = z
∞∑

k=0

γ21(n|0|k)z2k (7.25)

taken at |z| → 0 and the expansion

Γ12(n|z) = z−1
∞∑

k=0

γ12(n|∞|k)z−2k (7.26)

taken at |z| → ∞ that must be applicable to the second (7.16) and first (7.15) equivalent Riccati

equation respectively. The results of calculations reproduce the two local conservation laws (7.3)

and (7.5) having already been found in the framework of universal local conservation law (7.2) and

yield additionally a series of new ones. The most simple but still significant among them are the
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local conservation laws

ρ̇21+(n) = J21+(n| n−1)− J21+(n+1| n) (7.27)

ρ̇12−(n) = J12−(n| n−1)− J12−(n+1| n) , (7.28)

where

ρ21+(n) = f22(n)+g21(n+1)g12(n) (7.29)

ρ12−(n) = g11(n)+ f12(n+1) f21(n) (7.30)

and

J21+(n| n−1) = c22 f22(n)g21(n)g12(n−1)

− c22 f21(n)g12(n−1)−g21(n)b11 f12(n)

− c22g21(n+1)
[
g11(n)−g12(n)g21(n)

]
g12(n−1) (7.31)

J12−(n| n−1) = b11g11(n) f12(n) f21(n−1)

− b11g12(n) f21(n−1)− f12(n)c22g21(n)

− b11 f12(n+1)
[
f22(n)− f21(n) f12(n)

]
f21(n−1) . (7.32)

Inasmuch as any function of the form F(n+1|n)−F(n|n−1) can be always taken as a density in

some trivial local conservation law the local densities ρ12+(n) and ρ21+(n) should be considered as

physically equivalent. Evidently the same statement concerns the local densities ρ21−(n) and ρ12−(n)

too.

8. Hamiltonian representation of primary nonlinear Schrödinger system with the
attractive type nonlinearities [66, 67]

Now when the lowest local densities of general semi-discrete integrable nonlinear system are known

it is possible to adapt them to the needs of a particular reduced system in order to find out its

Hamiltonian representation in terms of properly defined Hamiltonian function and relevant Pois-

son bracket. In this article we restrict ourselves to the case of nonlinear Schrödinger system on a

triangular-lattice ribbon (1.1)–(1.6) characterized by the attractive type nonlinearities.

To be consistent we must remember that the property ρ̇+(n) = ρ̇0(n) = ρ̇−(n) inspires two nat-

ural constraints (1.7) and (1.8) implying that the field variables μ(n) and ν(n) (referred to as the

concomitant ones) are actually dependent on the basic field variables q+(n), q−(n) and r+(n), r−(n).

As a consequence when starting to apply the general principles of Hamiltonian consideration

[20, 37, 76] we must operate only with the basic equations (i.e. equations (1.1)– (1.4)) and try to

rewrite them in the unified form

ẏλ(n) =

4∑
κ=1

∞∑
m=−∞

Jλκ(n|m)
∂H

∂y
κ
(m)

(8.1)

with the quantity H being the Hamiltonian function and the metric elements Jλκ(n|m) subjected to

the skew symmetry Jκλ(m|n) = −Jλκ(n|m), where y1(n), y2(n), y3(n), y4(n) is some complete set of
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independent field variables written in the unified form. The above record (8.1) is rather universal

inasmuch as it permits a number of particular functional relationships between the unified and basic

field variables. In this Section we adopt the simplest linear correspondence between these two sets

of field variables given by the relations

py1(n) = q−(n) (8.2)

py2(n) = q+(n) (8.3)

py3(n) = r−(n) (8.4)

py4(n) = r+(n) . (8.5)

Here the front-index at quantities pyλ indicates that actually we deal with the primary basic

field variables disguised as the unified ones (i.e. with the basic field variables as they appear in

the primary version (1.1)–(1.6) of the semi-discrete integrable nonlinear Schrödinger system with

background-controlled inter-site resonant coupling). We shall keep the same front-index at all quan-

tities characterizing the primary system (1.1)–(1.6) in the framework of Hamiltonian treatment.

The experience given by other semi-discrete integrable systems of nonlinear Schrödinger type

[26, 31, 46, 58] prompts us to seek the Hamiltonian density of the primary system (1.1)–(1.6) as

some superposition of second local densities entering the local conservation laws (see formulas

(7.21), (7.22) and (7.29), (7.30) of Section 7 accompanied by the reduction formulas (2.20)–(2.25)

of Section 2). This observation gives rise to the following candidate [66, 67]

pH = −
∞∑

m=−∞
α[q+(m)r−(m−1)+μ(m)−μ]−

∞∑
m=−∞

β[r+(m)q−(m−1)+ν(m)− ν] (8.6)

on the Hamiltonian function. Then comparing the original basic equations (1.1)–(1.6) with their

required unified form (8.1) we obtain the candidates on metric elements pJλκ(n|m) in terms of basic

and concomitant field variables. Their nonzero specimens are written below [67]:

pJ13(n|m) = −i[1+q−(n)r−(n)]δnm (8.7)

pJ14(n|m) = −i[q−(n)r+(n)−μ(n)]δnm (8.8)

pJ23(n|m) = −i[q+(n)r−(n)− ν(n)]δnm (8.9)

pJ24(n|m) = −i[1+q+(n)r+(n)]δnm (8.10)

pJ31(n|m) = +i[1+ r−(n)q−(n)]δnm (8.11)

pJ32(n|m) = +i[r−(n)q+(n)− ν(n)]δnm (8.12)

pJ41(n|m) = +i[r+(n)q−(n)−μ(n)]δnm (8.13)
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pJ42(n|m) = +i[1+ r+(n)q+(n)]δnm . (8.14)

The rest of metric elements are equal to zero. Once the candidates on metric elements are found we

must verify that the quantity {F,G} given by formula

{F,G} = −
4∑
λ=1

4∑
κ=1

∞∑
n=−∞

∞∑
m=−∞

∂F
∂yλ(n)

Jλκ(n|m)
∂G

∂y
κ
(m)

(8.15)

meets all requirements supporting the definition of Poisson bracket [20,37,76]. The most critical of

them is the demand

{E, {F,G}}+ {F, {G,E}}+ {G, {E,F}} = 0 (8.16)

claiming to be the Jacobi identity. According to the general rule [20,37,76] the above demand (8.16)

is tantamount to the set of equations

4∑
κ=1

∞∑
k=−∞

[
Jκλ(k|l)∂Jμν(m|n)

∂y
κ
(k)
+Jκμ(k|m)

∂Jνλ(n|l)
∂y
κ
(k)
+Jκν(k|n)

∂Jλμ(l|m)

∂y
κ
(k)

]
= 0 . (8.17)

N.B. Here the indices marked by letters μ and ν have nothing to do with the background parameters

defined as μ = lim|n|→∞μ(n) and ν = lim|n|→∞ ν(n) .

The direct substitution of early obtained expressions (8.7)–(8.14) for the quantities pJλκ(n|m)

with the use of expressions for derivatives ∂μ(n)/∂py
κ
(n) and ∂ν(n)/∂py

κ
(n) following from the

natural constraints (1.7) and (1.8) reduces the set of requirements (8.17) into the collection of iden-

tities. As a result the Jacobi identity (8.16) turns out to be valid thereby justifying the definition of

Poisson bracket (8.15) as well as the choice of Hamiltonian function (8.6).

Using the definition of Poisson bracket (8.15) specified by the formulas for the metric elements

(8.7)–(8.14) and taking into account the relationships between the unified and basic field variables

(8.2)–(8.5) one can readily calculate all possible Poisson brackets related to the basic q+(n), r+(n),

q−(n), r−(n) and concomitant μ(n), ν(n) field variables. Their list is as follows

{q+(m),r+(n)} = +i [1+q+(n)r+(n)]δnm (8.18)

{q+(m),r−(n)} = +i [q+(n)r−(n)− ν(n)]δnm (8.19)

{q−(m),r−(n)} = +i [1+q−(n)r−(n)]δnm (8.20)

{q−(m),r+(n)} = +i [q−(n)r+(n)−μ(n)]δnm (8.21)

{q+(m),q+(n)} = 0 = {r+(m),r+(n)} (8.22)

{q+(m),q−(n)} = 0 = {r+(m),r−(n)} (8.23)

{q−(m),q−(n)} = 0 = {r−(m),r−(n)} (8.24)

{μ(m), ν(n)} = +i [q+(n)r+(n)−q−(n)r−(n)]δnm (8.25)
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{μ(m),μ(n)} = 0 = {ν(m), ν(n)} (8.26)

{μ(m),r−(n)} = +i [r+(n)+ r−(n)μ(n)]δnm (8.27)

{μ(m),q+(n)} = −i [q−(n)+q+(n)μ(n)]δnm (8.28)

{ν(m),q−(n)} = −i [q+(n)+q−(n)ν(n)]δnm (8.29)

{ν(m),r+(n)} = +i [r−(n)+ r+(n)ν(n)]δnm (8.30)

{μ(m),r+(n)} = 0 = {ν(m),q+(n)} (8.31)

{μ(m),q−(n)} = 0 = {ν(m),r−(n)} . (8.32)

Relying upon these results (8.18)–(8.32) it is not difficult to verify that the nonlinear Schrödinger

system on a triangular-lattice ribbon (1.1)–(1.6) permits the concise Hamiltonian representation

q̇+(n) = {pH,q+(n)} (8.33)

ṙ+(n) = {pH,r+(n)} (8.34)

q̇−(n) = {pH,q−(n)} (8.35)

ṙ−(n) = {pH,r−(n)} (8.36)

μ̇(n) = {pH,μ(n)} (8.37)

ν̇(n) = {pH, ν(n)} (8.38)

with the Hamiltonian function pH given by early adopted formula (8.6).

Though the Hamiltonian function itself (8.6) does not manifests any nonlinear interaction due

to be given by the quadratic form with respect to the field variables however the nonlinear interac-

tions still appear in primary dynamic system (1.1)–(1.6) thanks to the highly nonstandard form of

relevant Poisson brackets (8.18)–(8.32). The question arises whether it possible to standardize the

form of Poisson structure and to carry over all nonlinear interactions directly into the standardized

Hamiltonian function. Under some (terminologically veiled but plausible) conditions the positive

statement on this problem proclaims the Darboux theorem [15, 20, 37, 76] however it does not give

any reasonable prescription how to perform such a standardization. The first rational hint in resolv-

ing the puzzle of standardization has been prompted to us by the fact of pronounced criticality of the

primary (unstandardized) nonlinear system (1.1)–(1.6) against the governing background parameter

μν. We consider the theme of system criticality in the next Section.

It is worth noticing that the nonstandard form of Poisson structure is rather typical property

of integrable nonlinear systems associated with the discrete spectral problems. As an example we

would like to mention the Ablowitz-Ladik system [1, 2] whose nonstandard Poisson structure [26,

31, 46] hinders the tangible interpretation of its field variables in clear physical terms.
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9. Criticality of primary dynamic system against the background parameter [62, 68]

As the matter of fact the criticality of semi-discrete integrable nonlinear Schrödinger system with

background-controlled inter-site resonant coupling (1.1)–(1.6) against the background parameter

μν has been discovered inspecting the spectrum of its low-amplitude excitations [62]. The similar

result has been obtained when constructing the analyticity domains of Jost functions of the auxiliary

scattering problem associated with the system equations [62].

According to the Caurdey approach to the inverse scattering transform [12, 60, 61] the lines

separating the analyticity domains of distinct Jost functions in the plane of complex-valued spectral

parameter z are determined by the collection of equations

|η j(z)| = |ηk(z)| , (9.1)

where η j(z) stands for the j-th eigenvalue of limiting spectral operator L(z) and indices j and k span

all possible combinations in such a way as to prevent their mutual coincidence.

Having been applied to the system of our interest (1.1)–(1.6) and relying upon the 4×4 matrix

representation (2.2) of auxiliary spectral operator L(n|z) we come to the set of four distinct eigenval-

ues (2.31)–(2.34). As a consequence the conditions (9.1) determining the boundaries between the

domains of analyticity consist of six equations. The proper analysis of these equations shows the

crucial qualitative structure rearrangement of analyticity domains occurring when the background

parameter μν crosses its critical value μν = 1 [62]. The Figures 2 and 3 demonstrate the typical sub-

divisions into the analyticity domains in the plane of phase-adjusted spectral parameter zexp(−iδ)
respectively at under-critical μν < 1 and over-critical μν > 1 values of background parameter μν in

the case of fourth order auxiliary spectral operator. Here the real phase parameter δ is fixed by the

relation μ/ν = exp(+4iδ).
The crossover in the arrangement of analyticity domains of the Jost functions is the generic

property of the system under study (1.1)–(1.6) and it inevitably takes place also in case of the

2× 2 matrix representation (2.4) of auxiliary spectral operator L(n|z) when we have only two dis-

tinct eigenvalues (2.35) and (2.36) and hence only one condition (9.1) determining the boundaries

between the domains of analyticity. The Figures 4 and 5 demonstrate the typical subdivisions into

the analyticity domains in the plane of phase-adjusted spectral parameter zexp(−iδ) respectively

at under-critical μν < 1 and over-critical μν > 1 values of background parameter μν in the case of

second order auxiliary spectral operator.

In order to observe the criticality against background parameter μν directly in the framework

the primary (unstandardized) nonlinear system (1.1)–(1.6) let us rewrite the system two natural

constraints (1.7) and (1.8) by means of three formulas

μ(n)−q−(n)r+(n) = μ exp[+ρ(n)] (9.2)

1+μ(n)ν(n)+q+(n)r+(n)+q−(n)r−(n) = (1+μν) exp[+ρ(n)] (9.3)

ν(n)−q+(n)r−(n) = ν exp[+ρ(n)] , (9.4)

where the common real quantity ρ(n) is supposed to be the total density of excitations on both chains

of a ladder lattice. Then combining the above relations (9.2)–(9.4) we come to the expression [68]

2[q+(n)+ν(n)q−(n)][r+(n)+μ(n)r−(n)]+2[q−(n)+μ(n)q+(n)][r−(n)+ ν(n)r+(n)]+

+[q+(n)r+(n)−q−(n)r−(n)]2+ [1−μ(n)ν(n)]2 = (1−μν)2 exp[+2ρ(n)] (9.5)
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Fig. 2. The typical subdivision into domains of analyticity of Jost functions in the plane of phase-adjusted spectral

parameter zexp(−iδ) at under-critical values of background parameter μν < 1 (s.s. μν = exp(−π/2)). The case of fourth

order auxiliary spectral operator.

Fig. 3. The typical subdivision into domains of analyticity of Jost functions in the plane of phase-adjusted spectral

parameter zexp(−iδ) at over-critical values of background parameter μν > 1 (s.s. μν = exp(+π/2). The case of fourth

order auxiliary spectral operator.
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Fig. 4. The subdivision into domains of analyticity of Jost functions in the plane of phase-adjusted spectral parameter

zexp(−iδ) at under-critical values of background parameter μν < 1. The case of second order auxiliary spectral operator.

Fig. 5. The typical subdivision into domains of analyticity of Jost functions in the plane of phase-adjusted spectral

parameter zexp(−iδ) at over-critical values of background parameter μν > 1 (s.s. μν = exp(+π/2)). The case of second

order auxiliary spectral operator.
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that is seen to be essentially critical against the value of background parameter μν. Precisely at μν =

1 its right-hand-side part vanishes identically and we are obliged to equalize each term in left-hand-

side part to zero due to the nonnegativity of each such term evident from the inherent symmetries

r∗+(n) = q+(n), r∗−(n) = q−(n) and ν∗(n) = μ(n) of primary field amplitudes. These demands valid only

at the very critical point μν = 1 are tantamount to the extra set of constraints

q+(n)+ ν(n)q−(n) = 0 = r+(n)+μ(n)r−(n) (9.6)

q−(n)+μ(n)q+(n) = 0 = r−(n)+ ν(n)r+(n) (9.7)

μ(n)ν(n) = 1 (9.8)

that contract the primary multi-component nonlinear dynamic system (1.1)–(1.6) given on a ribbon

of triangular lattice with two sites in the unit cell into the two-component nonlinear dynamic system

+iq̇(n)+ [αq(n+1)+βq(n−1)][1+q(n)r(n)] = 0 (9.9)

−iṙ(n)+ [βr(n+1)+αr(n−1)][1+ r(n)q(n)] = 0 (9.10)

given on a purely one-dimensional lattice with one site in the unit cell. Here the contracted field

variables q(n) and r(n) are defined according to the parametrization formulas

q+(n)exp[−i(2δ−π)(n−1/2)] = q(n) = q−(n)exp[−i(2δ−π)(n+1/2)] (9.11)

r+(n)exp[+i(2δ−π)(n−1/2)] = r(n) = r−(n)exp[+i(2δ−π)(n+1/2)] (9.12)

μ(n)exp[−2iδ] = 1 = ν(n)exp[+2iδ] , (9.13)

where the real phase parameter δ is assumed to be time-independent.

Thus in the critical point μν = 1 the primary nonlinear integrable system (1.1)–(1.6) shrinks into

the more simple system (9.9) and (9.10) that can be referred to as the generalization of integrable

Ablowitz-Ladik system [1, 2] to the case of time-dependent coupling parameters α and β [29, 59].

As a result the number of independent field variables is reduced by half while the concomitant field

variables are trivialized to the mere constants. However either in under-critical region μν < 1 or in

over-critical region μν > 1 the system remains being multi-component and it can not be reduced

to the more simple (presumably Ablowitz-Ladik) one by any transformation. This statement is in

lines with the fact that the structure matrix related to the primary integrable system (1.1)–(1.6) (i.e.
structure matrix with the matrix elements pJλκ(n|m) given by formulas (8.7)–(8.14)) degenerates as

it will be seen precisely at the critical point μν = 1.

Indeed due to the diagonality of primary structure matrix with respect to the spatial indices n
and m it is sufficient to deal solely with the determinant pD(n) of local structure matrix, i.e. with

the determinant of 4× 4 square matrix whose elements pJλκ(n|n) are marked by λ and κ as the
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only running indices. According to the relations (8.7)–(8.14) specifying the elements pJλκ(n|m) of

structure matrix the explicit expression for the local determinant pD(n) is given by formula

pD(n) =
{
[1+q+(n)r+(n)][1+q−(n)r−(n)]− [μ(n)−q−(n)r+(n)][ν(n)−q+(n)r−(n)]

}2. (9.14)

This expression (9.14) clearly indicates that at critical value μν = 1 of background parameter μν

the determinant pD(n) of the local structure matrix and hence the determinant
∏∞

m=−∞ pD(m) of the

whole structure matrix both turn to zero identically by the virtue of criticality constraints (9.6)–(9.8).

10. Symmetric sets of intermediate basic field variables and their fundamental Poisson
brackets [70]

Inasmuch as both left-hand-side and right-hand-side parts of criticality-detecting formula (9.5) are

essentially nonnegative and moreover the right-hand-side part is a perfect square of purely real

function the idea arises to organize the perfect square of some real-valued expression in the left-

hand-side part too. This suggestion gives rise to the following substitutions

q+(n)+ ν(n)q−(n) =
1−μ(n)ν(n)

1−u+(n)v+(n)u−(n)v−(n)
[1+u−(n)v−(n)]u+(n) (10.1)

r+(n)+μ(n)r−(n) =
1−μ(n)ν(n)

1−u+(n)v+(n)u−(n)v−(n)
[1+u−(n)v−(n)]v+(n) (10.2)

q−(n)+μ(n)q+(n) =
1−μ(n)ν(n)

1−u+(n)v+(n)u−(n)v−(n)
[1+u+(n)v+(n)]u−(n) (10.3)

r−(n)+ ν(n)r+(n) =
1−μ(n)ν(n)

1−u+(n)v+(n)u−(n)v−(n)
[1+u+(n)v+(n)]v−(n) (10.4)

serving to introduce the new basic field variables u+(n), v+(n) and u−(n), v−(n) instead of the orig-

inal ones q+(n), r+(n) and q−(n), r−(n). Here the complex conjugation symmetries r∗+(n) = q+(n),

r∗−(n) = q−(n) and ν∗(n) = μ(n) of primary field amplitudes ensure the same symmetries v∗+(n) =

u+(n), v∗−(n) = u−(n) of new basic field amplitudes thereby supporting the nonnegativity of quanti-

ties u+(n)v+(n) and u−(n)v−(n). These new basic field variables u+(n), v+(n) and u−(n), v−(n) will

play an intermediate but very significant part in our forthcoming consideration.

Thus taking the square root of the criticality-detecting formula (9.5) with the use of definitions

(10.1)–(10.4) we obtain

1−μ(n)ν(n)

1−u+(n)v+(n)u−(n)v−(n)
[1+u+(n)v+(n)][1+u−(n)v−(n)] = (1−μν) exp[+ρ(n)] . (10.5)

Here the signs of square roots have been chosen to ensure the correct limiting values u+(n) = q+(n),

v+(n) = r+(n) and u−(n) = q−(n), v−(n) = r−(n) of intermediate basic field variables u+(n), v+(n) and

u−(n), v−(n) at zero background values μ = 0 = ν of concomitant fields (see formulas (9.2), (9.4)

and (10.1)–(10.4) for the elucidation). Though being the direct consequence of seven previously

written formulas (9.2)–(9.4) and (10.1)–(10.4) the above relation (10.5) makes it possible to simplify

considerably the calculations of quantities q+(n), r+(n), q−(n), r−(n), μ(n), ν(n) and exp[+ρ(n)] in
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terms of intermediate field amplitudes u+(n), v+(n) and u−(n), v−(n). The respective results are as

follows

q+(n) =
u+(n)[1+μνu−(n)v−(n)]− νu−(n)[1+u+(n)v+(n)]

1−μνu+(n)v+(n)u−(n)v−(n)
(10.6)

r+(n) =
v+(n)[1+μνu−(n)v−(n)]−μv−(n)[1+u+(n)v+(n)]

1−μνu+(n)v+(n)u−(n)v−(n)
(10.7)

q−(n) =
u−(n)[1+μνu+(n)v+(n)]−μu+(n)[1+u−(n)v−(n)]

1−μνu+(n)v+(n)u−(n)v−(n)
(10.8)

r−(n) =
v−(n)[1+μνu+(n)v+(n)]− νv+(n)[1+u−(n)v−(n)]

1−μνu+(n)v+(n)u−(n)v−(n)
(10.9)

μ(n) =
(1−μν)u−(n)v+(n)+μ [1−u+(n)v+(n)u−(n)v−(n)]

1−μνu+(n)v+(n)u−(n)v−(n)
(10.10)

ν(n) =
(1−μν)u+(n)v−(n)+ ν [1−u+(n)v+(n)u−(n)v−(n)]

1−μνu+(n)v+(n)u−(n)v−(n)
(10.11)

exp[+ρ(n)] =
[1−μu+(n)v−(n)][1− νu−(n)v+(n)]

[1−μνu+(n)v+(n)u−(n)v−(n)]2
[1+u+(n)v+(n)][1+u−(n)v−(n)] . (10.12)

These seven formulas (10.6)–(10.12) have been verified by the direct substitutions into the main

determining expressions (9.2)–(9.4) and (10.1)–(10.4) as well as into the auxiliary one (10.5).

The obtained transformation formulas (10.6)–(10.11) allows to exclude the concomitant fields

μ(n) and ν(n) from the system dynamics. This positive fact however does not lead automatically to

the canonical field variables. First of all at nonzero background values μ and ν of concomitant fields

the two sets of intermediate field amplitudes u+(n), v+(n) and u−(n), v−(n) in the formula (10.12)

for exp[+ρ(n)] are seen to be essentially intermixed. In addition the set of fundamental Poisson

brackets related to the intermediate field amplitudes demonstrates essential entanglements between

all dynamic variables.

To substantiate the latter statement we turn to the list of Poisson brackets (8.18)–(8.32) related

to the primary field variables q+(n), r+(n), q−(n), r−(n) and μ(n), ν(n). As it has been sown in

Section 9 the structure matrix responsible for these brackets (8.18)–(8.32) is degenerate only at the

critical value μν = 1 of background parameter μν. Thus outside the critical point (i.e. at μν � 1)

we can safely apply all necessary formulas from the above list (8.18)–(8.32) when calculating the

fundamental Poisson brackets related to the intermediate field variables u+(n), v+(n), u−(n), v−(n).
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The established results are summarized by the relations

{u+(m),v+(n)} = i

1−μν [1+u+(n)v+(n)][1+μνu+(n)v+(n)]δnm (10.13)

{u+(m),v−(n)} = iν

1−μν
1−μu+(n)v−(n)

1− νu−(n)v+(n)
[1+u+(n)v+(n)][1+u−(n)v−(n)]δnm (10.14)

{u−(m),v−(n)} = i

1−μν [1+u−(n)v−(n)][1+μνu−(n)v−(n)]δnm (10.15)

{u−(m),v+(n)} = iμ

1−μν
1− νu−(n)v+(n)

1−μu+(n)v−(n)
[1+u+(n)v+(n)][1+u−(n)v−(n)]δnm (10.16)

{u+(m),u+(n)} = {u+(m),u−(n)} = {u−(m),u−(n)} = 0 (10.17)

{v+(m),v+(n)} = {v+(m),v−(n)} = {v−(m),v−(n)} = 0 . (10.18)

In the course of rather long and tedious calculations of these formulas (10.13)–(10.18) we were

obligated to find the expressions for the intermediate field variables u+(n), v+(n), u−(n), v−(n) in

terms of the primary ones q+(n), r+(n), q−(n), r−(n), μ(n), ν(n) using the original definitions (10.1)–

(10.4) and then to proceed step by step through the whole list of required fundamental Poisson

brackets taking into account the expressions (10.6)–(10.11) for the old field variables in terms of

the new ones.

The nonzero elements of structure matrix related to the intermediate field variables are given by

formulas

iJ13(n|m) = −iJ31(m|n) = −{u−(m),v−(n)} (10.19)

iJ14(n|m) = −iJ41(m|n) = −{u−(m),v+(n)} (10.20)

iJ23(n|m) = −iJ32(m|n) = −{u+(m),v−(n)} (10.21)

iJ24(n|m) = −iJ42(m|n) = −{u+(m),v+(n)} . (10.22)

The respective local structure determinant

iD(n) =
{{u+(n),v+(n)}{u−(n),v−(n)}− {u+(n),v−(n)}{u−(n),v+(n)}}2

(10.23)

acquires the form

iD(n) =
[1+u+(n)v+(n)]2 [1+u−(n)v−(n)]2

(1−μν)2 [1−μνu+(n)v+(n)u−(n)v−(n)]2
(10.24)

that is seen to be divergent when the background parameter μν tends to unity.

Recollecting that the local structure determinant pD(n) (9.14) related to the primary field vari-

ables tends to zero when the background parameter μν tends to unity it is reasonable to seek some
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compromise between the intermediate and primary field variables and to introduce one or another

asymmetric set of field variables via an appropriate choice of two complementary subsets. The

idea of asymmetry is supported also by the already proved fact that the number of independent

field variables is reduced by half when the background parameter μν takes its critical value equal

to unity. Thus we may expect that the subsystem described by the intermediate field amplitudes

should become unexcited in the critical point. In the next Section we shall start to develop the

idea of symmetry breaking by introducing the two possible variants of primary-intermediate field

variables explicitly.

11. Two variants of primary-intermediate field variables [70]

The symmetry between the two subsets of intermediate field variables u+(n), v+(n) and u−(n), v−(n)

assumes that replacing one or another subset by its primary counterpart we can operate with either

of two sets q+(n), r+(n), u−(n), v−(n) or q−(n), r−(n), u+(n), v+(n) of blended primary-intermediate

field variables separately on an equal footing.

Let us begin with the first variant of primary-intermediate field variables q+(n), r+(n), u−(n),

v−(n). In order to reformulate the system dynamics in terms of these variables we must obtain

the respective representations for the minus-labeled basic fields q−(n), r−(n) and the concomitant

fields μ(n), ν(n) as well as for the quantity exp[+ρ(n)]. In so doing it is helpful to use the following

relationships

q−(n)+μ(n)q+(n)

1+q+(n)r+(n)
=

(1−μν)u−(n)

1+μνu−(n)v−(n)
(11.1)

r−(n)+ ν(n)r+(n)

1+q+(n)r+(n)
=

(1−μν)v−(n)

1+μνu−(n)v−(n)
(11.2)

compatible with the transformation formulas (10.1)–(10.4) and (10.6)–(10.11) considered in Section

10. The appropriate calculations yield

q−(n) =
(1−μν)u−(n)

1+μνu−(n)v−(n)
−μq+(n)

1+u−(n)v−(n)

1+μνu−(n)v−(n)
(11.3)

r−(n) =
(1−μν)v−(n)

1+μνu−(n)v−(n)
− νr+(n)

1+u−(n)v−(n)

1+μνu−(n)v−(n)
(11.4)

μ(n) =
(1−μν)u−(n)r+(n)

1+μνu−(n)v−(n)
+μ

1+u−(n)v−(n)

1+μνu−(n)v−(n)
(11.5)

ν(n) =
(1−μν)q+(n)v−(n)

1+μνu−(n)v−(n)
+ ν

1+u−(n)v−(n)

1+μνu−(n)v−(n)
(11.6)

exp[+ρ(n)] = [1+q+(n)r+(n)]
1+u−(n)v−(n)

1+μνu−(n)v−(n)
. (11.7)

While preferring the second variant of primary-intermediate field variables q−(n), r−(n), u+(n),

v+(n) we must obtain the respective representations for the plus-labeled basic fields q+(n), r+(n) and
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the concomitant fields μ(n), ν(n) as well as for the quantity exp[+ρ(n)]. In so doing it is helpful to

use the following relationships

q+(n)+ ν(n)q−(n)

1+q−(n)r−(n)
=

(1−μν)u+(n)

1+μνu+(n)v+(n)
(11.8)

r+(n)+μ(n)r−(n)

1+q−(n)r−(n)
=

(1−μν)v+(n)

1+μνu+(n)v+(n)
(11.9)

compatible with the transformation formulas (10.1)–(10.4) and (10.6)–(10.11) considered in Section

10. The appropriate calculations yield

q+(n) =
(1−μν)u+(n)

1+μνu+(n)v+(n)
− νq−(n)

1+u+(n)v+(n)

1+μνu+(n)v+(n)
(11.10)

r+(n) =
(1−μν)v+(n)

1+μνu+(n)v+(n)
−μr−(n)

1+u+(n)v+(n)

1+μνu+(n)v+(n)
(11.11)

μ(n) =
(1−μν)q−(n)v+(n)

1+μνu+(n)v+(n)
+μ

1+u+(n)v+(n)

1+μνu+(n)v+(n)
(11.12)

ν(n) =
(1−μν)u+(n)r−(n)

1+μνu+(n)v+(n)
+ ν

1+u+(n)v+(n)

1+μνu+(n)v+(n)
(11.13)

exp[+ρ(n)] = [1+q−(n)r−(n)]
1+u+(n)v+(n)

1+μνu+(n)v+(n)
. (11.14)

Looking at formulas (11.3)–(11.7) and (11.10)–(11.14) establishing respectively the first and

the second variant of primary-intermediate field variables q+(n), r+(n), u−(n), v−(n) and q−(n),

r−(n), u+(n), v+(n) we clearly see that the alternative expressions (11.7) and (11.14) for the quan-

tity exp[+ρ(n)] both are factorized. This observation gives us the strong recommendation how to

subdivide the whole dynamic system into two rigorously determined subsystems. Moreover each of

formulas (11.7) and (11.14) for the quantity exp[+ρ(n)] strictly detects the character of excitations

in both subsystems. Thus at the under-critical values μν < 1 of background parameter μν both sub-

systems are of bright-excitation type and the quantity ρ(n) should be treated as the total density of

bright excitations in both subsystems. On the other hand in the over-critical region μν > 1 the sub-

system described by the primary field variables remains being of bright-excitation type while the

subsystem related to the intermediate field variables converts into the subsystem of dark-excitation

type. In the very critical point μν = 1 the whole system shrinks into a single subsystem of bright-

excitation type.

It is necessary to note that the terms “bright nonlinear excitations” and “dark nonlinear exci-

tations” used in this paper should be understood by analogy with the terms “bright solitons” and

“dark solitons” typical of the nonlinear optics [27].
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12. Fundamental Poisson brackets for each variant of primary-intermediate field
variables [70]

Now it is time to confirm that the rigorous separation into two subsystems claimed above is main-

tained also by the key features of fundamental Poisson brackets associated with each particular

variant of primary-intermediate field variables. We omit here all calculations based on the formulas

for the Poisson brackets between the primary fields (8.18)–(8.32) and on the formulas for the funda-

mental Poisson brackets between the intermediate fields (10.13)–(10.18) as well as on the auxiliary

and transformation formulas listed in the previous Section. Therefore let us consider only the final

results.

Thus the first variant of primary-intermediate field variables q+(n), r+(n), u−(n), v−(n) is char-

acterized by the following fundamental Poisson brackets

{q+(m),r+(n)} = i [1+q+(n)r+(n)]δnm (12.1)

{q+(m),q+(n)} = 0 = {r+(m),r+(n)} (12.2)

{q+(m),v−(n)} = 0 = {q+(m),u−(n)} (12.3)

{u−(m),r+(n)} = 0 = {v−(m),r+(n)} (12.4)

{u−(m),u−(n)} = 0 = {v−(m),v−(n)} (12.5)

{u−(m),v−(n)} = i

1−μν [1+u−(n)v−(n)][1+μνu−(n)v−(n)]δnm . (12.6)

Similarly the fundamental Poisson brackets for the second variant of primary-intermediate field

variables q−(n), r−(n), u+(n), v+(n) are given by the expressions

{q−(m),r−(n)} = i [1+q−(n)r−(n)]δnm (12.7)

{q−(m),q−(n)} = 0 = {r−(m),r−(n)} (12.8)

{q−(m),v+(n)} = 0 = {q−(m),u+(n)} (12.9)

{u+(m),r−(n)} = 0 = {v+(m),r−(n)} (12.10)

{u+(m),u+(n)} = 0 = {v+(m),v+(n)} (12.11)

{u+(m),v+(n)} = i

1−μν [1+u+(n)v+(n)][1+μνu+(n)v+(n)]δnm . (12.12)

Each of the two above collections (12.1)–(12.6) and (12.7)–(12.12) of fundamental Poisson

brackets strictly demonstrates the complete separation between the subsystems of distinct origin.

The accumulated results concerning the separation of field variables and the experience in can-

onization of other semi-discrete nonlinear systems [31, 54, 55, 58] are sufficient to formulate the

nonlinear transformations canonizing the integrable nonlinear system under study (1.1)–(1.6).
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13. Two variants of canonical field variables [70, 71]

The problem of system canonization implies that we have to find out such a set of unified field vari-

ables cy1(n), cy2(n), cy3(n), cy4(n) that the only nonzero elements of structure matrix appearing

in the Hamiltonian equations (8.1) to be given by the relations cJ13(n|m)=−iδnm, cJ24(n|m)=−iδnm,

cJ31(n|m) = +iδnm, cJ42(n|m) = +iδnm. Taking into account the fact of system exact splittability into

the primary and intermediate subsystems it is reasonable to handle the final step of canonization

procedure as the proper nonlinear scaling transformations of primary-intermediate field variables.

Considering that the quantities ln[1+q+(n)r+(n)] and ln[1+u−(n)v−(n)]− ln[1+μνu−(n)v−(n)]

taken in under-critical region μν < 1 are associated with the densities of excitations respectively

in plus-labeled primary subsystem and minus-labeled intermediate subsystem let us introduce the

new (physically corrected) field amplitudes Q+(n), R+(n) and U−(n), V−(n) by means of following

transformation formulas

Q+(n) = q+(n)

√
ln[1+q+(n)r+(n)]

q+(n)r+(n)
(13.1)

R+(n) = r+(n)

√
ln[1+q+(n)r+(n)]

q+(n)r+(n)
(13.2)

and

U−(n) =
u−(n)√

u−(n)v−(n)

√
ln

1+u−(n)v−(n)

1+μνu−(n)v−(n)
(13.3)

V−(n) =
v−(n)√

u−(n)v−(n)

√
ln

1+u−(n)v−(n)

1+μνu−(n)v−(n)
. (13.4)

Here the range of values for the quantity Q+(n))R+(n) is seen to be restricted by the inequality

Q+(n)R+(n) ≥ 0 at any admissible value of background parameter μν. In contrast the range of values

for the quantity U−(n)V−(n) is restricted by the chain of inequalities ln(1/μν) ≥ U−(n)V−(n) ≥ 0

if μν < 1 and by the chain of inequalities 0 ≥ U−(n)V−(n) ≥ ln(1/μν) if μν > 1. For the practical

purposes the right-hand-side parts of last two expressions (13.3) and (13.4) can be rewritten directly

in terms of primary field variables and we obtain

U−(n) =
q−(n)+μ(n)q+(n)√

[q−(n)+μ(n)q+(n)][r−(n)+ ν(n)r+(n)]

√
ln

1+μ(n)ν(n)+q+(n)r+(n)+q−(n)r−(n)

(1+μν)[1+q+(n)r+(n)]

(13.5)

V−(n) =
r−(n)+ ν(n)r+(n)√

[q−(n)+μ(n)q+(n)][r−(n)+ ν(n)r+(n)]

√
ln

1+μ(n)ν(n)+q+(n)r+(n)+q−(n)r−(n)

(1+μν)[1+q+(n)r+(n)]
.

(13.6)

The fundamental Poisson brackets related to the field variables Q+(n), R+(n) and U−(n), V−(n)

were calculated to be the canonical ones

{Q+(m),R+(n)} = iδnm (13.7)
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{Q+(m),Q+(n)} = 0 = {R+(m),R+(n)} (13.8)

{Q+(m),V−(n)} = 0 = {Q+(m),U−(n)} (13.9)

{U−(m),R+(n)} = 0 = {V−(m),R+(n)} (13.10)

{U−(m),U−(n)} = 0 = {V−(m),V−(n)} (13.11)

{U−(m),V−(n)} = iδnm . (13.12)

Due to the properties Q+(n)R+(n)≥ 0, ln(1/μν)≥U−(n)V−(n)≥ 0 valid at μν < 1 and the proper-

ties Q+(n)R+(n) ≥ 0, 0 ≥ U−(n)V−(n) ≥ ln(1/μν) valid at μν > 1 the canonical subsystem described

by the field amplitudes Q+(n) and R+(n) can be referred to as the strong one while the canoni-

cal subsystem described by the field amplitudes U−(n) and V−(n) can be referred to as the weak

one. The strong subsystem corresponds to the bright nonlinear excitations at all admissible values

μν ≥ 0 of background parameter μν. In contrast the weak subsystem undergoes the crossover from

bright-excitation type to dark-excitation type when the background parameter μν passes through the

critical point μν = 1 from its under-critical μν < 1 to its over-critical μν > 1 values. In the very criti-

cal point μν = 1 the subsystem of weak excitations persists to be absolutely unexcited. The mutual

symmetry between the strong and weak subsystems is seen to be essentially broken at all nonzero

values of background parameter and only at μν = 0 we come to the completely symmetric situation

tantamount to that already being considered earlier [58, 64].

The above variant of canonization is originated from the fields variables q+(n), r+(n) and u−(n),

v−(n), where the intermediate subsystem is labeled by subindex −. For this reason we call it as the

minus-asymmetric canonization.

On the other hand the variant of canonization originated from the fields variables q−(n), r−(n)

and u+(n), v+(n) will be referred to as the the plus-asymmetric one.

The transformation formulas responsible for the plus-asymmetric canonization read as follows

Q−(n) = q−(n)

√
ln[1+q−(n)r−(n)]

q−(n)r−(n)
(13.13)

R−(n) = r−(n)

√
ln[1+q−(n)r−(n)]

q−(n)r−(n)
(13.14)

and

U+(n) =
u+(n)√

u+(n)v+(n)

√
ln

1+u+(n)v+(n)

1+μνu+(n)v+(n)
(13.15)

V+(n) =
v+(n)√

u+(n)v+(n)

√
ln

1+u+(n)v+(n)

1+μνu+(n)v+(n)
(13.16)
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with the practical versions of last two expressions (13.15) and (13.16) given by formulas

U+(n) =
q+(n)+ ν(n)q−(n)√

[q+(n)+ ν(n)q−(n)][r+(n)+μ(n)r−(n)]

√
ln

1+μ(n)ν(n)+q+(n)r+(n)+q−(n)r−(n)

(1+μν)[1+q−(n)r−(n)]

(13.17)

V+(n) =
r+(n)+μ(n)r−(n)√

[q+(n)+ ν(n)q−(n)][r+(n)+μ(n)r−(n)]

√
ln

1+μ(n)ν(n)+q+(n)r+(n)+q−(n)r−(n)

(1+μν)[1+q−(n)r−(n)]
.

(13.18)

The range of values for the quantity Q−(n))R−(n) is restricted by the inequality Q−(n)R−(n) ≥ 0

at any admissible value of background parameter μν while the range of values for the quantity

U+(n)V+(n) is restricted by the chain of inequalities ln(1/μν) ≥U+(n)V+(n) ≥ 0 if μν < 1 and by the

chain of inequalities 0 ≥ U+(n)V+(n) ≥ ln(1/μν) if μν > 1.

As to the fundamental Poisson brackets

{Q−(m),R−(n)} = iδnm (13.19)

{Q−(m),Q−(n)} = 0 = {R−(m),R−(n)} (13.20)

{Q−(m),V+(n)} = 0 = {Q−(m),U+(n)} (13.21)

{U+(m),R−(n)} = 0 = {V+(m),R−(n)} (13.22)

{U+(m),U+(n)} = 0 = {V+(m),V+(n)} (13.23)

{U+(m),V+(n)} = iδnm (13.24)

related to the field variables Q−(n), R−(n) and U+(n), V+(n) they are seen to be the canonical ones.

In view of the evident mutatis mutandis correspondence with the minus-asymmetric case we do

not repeat here all arguments concerning the subdivision of plus-asymmetrically canonized system

into the respective strong and weak subsystems and do not explain the details of crossover effect

once again.

14. System Hamiltonian formulations in terms of symmetry-broken canonical field
variables [69–71]

In order to reformulate the integrable nonlinear system under study (1.1)–(1.6) to its canonical form

we have to know the the expressions for the primary field variables q+(n), r+(n), q−(n), r−(n), μ(n),

ν(n) given in terms of canonical ones Q+(n), R+(n), U−(n), V−(n) or Q−(n), R−(n), U+(n), V+(n).

We begin our consideration with the case of minus-asymmetric canonical fields Q+(n), R+(n)

and U−(n), V−(n). Thus inverting the transformation formulas (13.1)–(13.4) we can readily write

the primary-intermediate field variables q+(n), r+(n) and u−(n), v−(n) in terms of minus-asymmetric

canonical ones Q+(n), R+(n) and U−(n), V−(n) respectively. The obtained results should be inserted
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into the transformation formulas (11.3)–(11.6) for the truncated collection of primary fields q−(n),

r−(n), μ(n), ν(n). As a consequence we come to the following transformation formulas

q+(n) = Q+(n)

√
exp[+Q+(n)R+(n)]−1

Q+(n)R+(n)
(14.1)

r+(n) = R+(n)

√
exp[+Q+(n)R+(n)]−1

Q+(n)R+(n)
(14.2)

and

q−(n)=
U−(n)√

U−(n)V−(n)

√{1−μν exp[+U−(n)V−(n)]}{exp[+U−(n)V−(n)]−1} −

−μQ+(n)exp[+U−(n)V−(n)]

√
exp[+Q+(n)R+(n)]−1

Q+(n)R+(n)
(14.3)

r−(n)=
V−(n)√

U−(n)V−(n)

√{1−μν exp[+U−(n)V−(n)]}{exp[+U−(n)V−(n)]−1} −

−νR+(n)exp[+U−(n)V−(n)]

√
exp[+Q+(n)R+(n)]−1

Q+(n)R+(n)
(14.4)

μ(n)=μ exp[+U−(n)V−(n)]+
R+(n)U−(n)√

Q+(n)R+(n)U−(n)V−(n)
× (14.5)

×√{1−μν exp[+U−(n)V−(n)]}{exp[+U−(n)V−(n)]−1}{exp[+Q+(n)R+(n)]−1}

ν(n)=ν exp[+U−(n)V−(n)]+
Q+(n)V−(n)√

Q+(n)R+(n)U−(n)V−(n)
× (14.6)

×√{1−μν exp[+U−(n)V−(n)]}{exp[+U−(n)V−(n)]−1}{exp[+Q+(n)R+(n)]−1} .
The similar reasoning in the case of plus-asymmetric canonical fields Q−(n), R−(n) and U+(n),

V+(n) yields

q−(n) = Q−(n)

√
exp[Q−(n)R−(n)]−1

Q−(n)R−(n)
(14.7)

r−(n) = R−(n)

√
exp[Q−(n)R−(n)]−1

Q−(n)R−(n)
(14.8)

and

q+(n)=
U+(n)√

U+(n)V+(n)

√{1−μν exp[+U+(n)V+(n)]}{exp[+U+(n)V+(n)]−1} −

−νQ−(n)exp[+U+(n)V+(n)]

√
exp[+Q−(n)R−(n)]−1

Q−(n)R−(n)
(14.9)
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r+(n)=
V+(n)√

U+(n)V+(n)

√{1−μν exp[+U+(n)V+(n)]}{exp[+U+(n)V+(n)]−1} −

−μR−(n)exp[+U+(n)V+(n)]

√
exp[+Q−(n)R−(n)]−1

Q−(n)R−(n)
(14.10)

μ(n)=μ exp[+U+(n)V+(n)]+
Q−(n)V+(n)√

Q−(n)R−(n)U+(n)V+(n)
× (14.11)

×√{1−μν exp[+U+(n)V+(n)]}{exp[+U+(n)V+(n)]−1}{exp[+Q−(n)R−(n)]−1}

ν(n)=ν exp[+U+(n)V+(n)]+
R−(n)U+(n)√

Q−(n)R−(n)U+(n)V+(n)
× (14.12)

×√{1−μν exp[+U+(n)V+(n)]}{exp[+U+(n)V+(n)]−1}{exp[+Q−(n)R−(n)]−1} .
We determine the Hamiltonian functions cH− and cH+ of minus-asymmetrically canonized sys-

tem and plus-asymmetrically canonized system by substituting the respective transformation for-

mulas (14.1)–(14.6) and (14.7)–(14.12) into the expression (8.6) for the Hamiltonian function pH
of primary system (1.1)–(1.6).

Then the dynamics of minus-asymmetrically canonized system will be governed by the Hamil-

tonian equations

+iQ̇+(n) = +i{cH−, Q+(n)} = ∂ cH−
∂R+(n)

(14.13)

−iṘ+(n) = −i{cH−, R+(n)} = ∂ cH−
∂Q+(n)

(14.14)

+iU̇−(n) = +i{cH−, U−(n)} = ∂ cH−
∂V−(n)

(14.15)

−iV̇−(n) = −i{cH−, V−(n)} = ∂ cH−
∂U−(n)

(14.16)

which are seen to have a standard canonical form by virtue of canonical form of the relevant funda-

mental Poisson brackets (13.7)–(13.12).

Similarly the dynamics of plus-asymmetrically canonized system will be governed by the

Hamiltonian equations

+iQ̇−(n) = +i{cH+, Q−(n)} = ∂ cH+
∂R−(n)

(14.17)

−iṘ−(n) = −i{cH+, R−(n)} = ∂ cH+
∂Q−(n)

(14.18)

+iU̇+(n) = +i{cH+, U+(n)} = ∂ cH+
∂V+(n)

(14.19)
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−iV̇+(n) = −i{cH+, V+(n)} = ∂ cH+
∂U+(n)

, (14.20)

where the canonical properties of the relevant fundamental Poisson brackets (13.19)–(13.24) have

been taken into account.

15. Strong and weak standardized components of one-soliton solution [70, 71]

In this Section we illustrate some general results concerning the asymmetric standardizations

(13.1)–(13.6) and (13.13)–(13.18) of primary integrable nonlinear system (1.1)–(1.6) on an exam-

ple of one-soliton solution. For this purpose we shall use the formulas for the one-soliton solution

(5.32)–(5.37) of unstandardized system (1.1)–(1.6) given on an infinite ribbon of triangular lattice

and characterized by the attractive-type nonlinearities. In so doing we shall omit the upper index +

labeling the components of one-soliton solution for the brevity sake. The particular attention in our

consideration will be paid to the definitions (5.38)–(5.41) and (5.42) of key one-soliton parameters

γ+, κ+, γ−, κ− and s.

Fig. 6. The typical partitioning of strong Q+(n)R+(n) (full circles) and weak U−(n)V−(n) (empty circles) one-soliton

components over the unit cell number n for the case of minus-asymmetric standardization in the under-critical region

μν < 1 of background parameter μν. The calculations have been made at μ = 0.7 = ν, γ = 0.15, κ = 0, x = 0 according to

formulas (15.2) and (15.3). Both soliton components are seen to be of bright-excitation type.
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Fig. 7. The typical partitioning of strong Q+(n)R+(n) (full circles) and weak U−(n)V−(n) (empty circles) one-soliton

components over the unit cell number n for the case of minus-asymmetric standardization in the over-critical region

μν > 1 of background parameter μν. The calculations have been made at μ = 1.9 = ν, γ = 0.15, κ = 0, x = 0 according to

formulas (15.2) and (15.3). The weak soliton component is seen to be of dark-excitation type.

Relying upon the definitions (5.38)–(5.41) of parameters γ+, κ+ and γ−, κ− one can readily

obtain the following expression

sinh[2(γ++γ− − γ)] = (1−μν) sinh(2γ)

cosh[2(γ+ +γ− −γ)]
× (15.1)

× 2sinh(2γ) sinh(2γ)+ [exp(+2iκ)+μ][exp(−2iκ)+ ν]

[exp(+2γ+2iκ)+μ][exp(+2γ−2iκ)+ ν][exp(−2γ+2iκ)+μ][exp(−2γ−2iκ)+ ν]

indicating that the sign of its left-hand-side term sinh[2(γ++γ−−γ)] is completely determined by

the sign of right-hand-side combination (1−μν) sinh(2γ). In particular due to this property the con-

comitant one-soliton components (5.34) and (5.37) when calculated in the critical point μν = 1 are

reduced to their limiting constant values μ and ν. The same property of the term sinh[2(γ++γ−−γ)]

will be shown to determine the main characteristics of standardized one-soliton components.

Indeed applying the formulas of minus-asymmetric standardization (13.1), (13.2) and (13.5),

(13.6) to the quantities Q+(n)R+(n) and U−(n)V−(n) calculated by means of unstandardized multi-

component one-soliton solution (5.32)–(5.37) we obtain

Q+(n)R+(n) = ln

{
1+

sinh(2γ) sinh(2γ)

cosh[2(γ+ +γ−)(n− x− s)]cosh[2(γ+ +γ−)(n− x− s)]

}
(15.2)

U−(n)V−(n) = ln

{
1+

sinh(2γ) sinh[2(γ+ +γ− −γ)]

cosh[2(γ+ +γ−)(n− x−3s+1)]cosh[2(γ+ +γ−)(n− x+ s)]

}
. (15.3)
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Thus in accordance with general theory the quantity Q+(n)R+(n) when being calculated on one-

soliton solution acquires the real nonnegative values at all admissible values of background param-

eter μν and hence it can be treated as the number of bright Q+R+ excitations within n-th unit sell.

This property qualifies the Q+R+ soliton component as that belonging to the strong subsystem. In

contrast the sign of the quantity U−(n)V−(n) calculated on one-soliton solution is seen to be totally

manifested by the sign of parameter 1− μν and hence the quantity U−(n)V−(n) can be treated as

the number of bright U−V− excitations within n-th unit sell only at μν < 1. Moreover in the crit-

ical point μν = 1 the U−V− component of minus-asymmetric soliton is vanished completely. At

μν > 1 the product U−(n)V−(n) becomes negatively semi-definite and hence the U−V− component

of minus-asymmetric soliton describes the dark excitations. Consequently the U−V− component

of the minus-asymmetric soliton exhibits all properties predicted for the weak subsystem. Figures

6 and 7 calculated according to formulas (15.2) and (15.3) of minus-asymmetric standardization

illustrate the principal distinction in interplay between two mutually asymmetric one-soliton com-

ponents at under-critical μν < 1 (Fig. 6) and over-critical μν > 1 (Fig. 7) values of main background

parameter μν.

Fig. 8. The typical partitioning of strong Q−(n)R−(n) (full circles) and weak U+(n)V+(n) (empty circles) one-soliton

components over the unit cell number n for the case of plus-asymmetric standardization in the under-critical region

μν < 1 of background parameter μν. The calculations have been made at μ = 0.7 = ν, γ = 0.15, κ = 0, x = 0 according to

formulas (15.4) and (15.5). Both soliton components are seen to be of bright-excitation type.
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Fig. 9. The typical partitioning of strong Q−(n)R−(n) (full circles) and weak U+(n)V+(n) (empty circles) one-soliton

components over the unit cell number n for the case of plus-asymmetric standardization in the over-critical region μν > 1

of background parameter μν. The calculations have been made at μ = 1.9 = ν, γ = 0.15, κ = 0, x = 0 according to formulas

(15.4) and (15.5). The weak soliton component is seen to be of dark-excitation type.

On the other hand applying the formulas of plus-asymmetric standardization (13.13), (13.14)

and (13.17), (13.18) to the quantities Q−(n)R−(n) and U+(n)V+(n) calculated by means of unstan-

dardized multi-component one-soliton solution (5.32)–(5.37) we obtain

Q−(n)R−(n) = ln

{
1+

sinh(2γ) sinh(2γ)

cosh[2(γ+ +γ−)(n− x+ s)]cosh[2(γ+ +γ−)(n− x+ s)]

}
(15.4)

U+(n)V+(n) = ln

{
1+

sinh(2γ) sinh[2(γ+ +γ− −γ)]

cosh[2(γ+ +γ−)(n− x+3s−1)]cosh[2(γ+ +γ−)(n− x− s)]

}
. (15.5)

Thus in accordance with general theory the quantity Q−(n)R−(n) when being calculated on one-

soliton solution acquires the real nonnegative values at all admissible values of background param-

eter μν and hence it can be treated as the number of bright Q−R− excitations within n-th unit sell.

This property qualifies the Q−R− soliton component as that belonging to the strong subsystem. In

contrast the the sign of the quantity U+(n)V+(n) calculated on one-soliton solution is seen to be

totally manifested by the sign of parameter 1−μν and hence the quantity U+(n)V+(n) can be treated

as the number of bright U+V+ excitations within n-th unit sell only at μν < 1. Moreover in the

critical point μν = 1 the U+V+ component of plus-asymmetric soliton is vanished completely. At

μν > 1 the product U+(n)V+(n) becomes negatively semi-definite and hence the U+V+ component

of plus-asymmetric soliton describes the dark excitations. Therefore the U+V+ component of the

plus-asymmetric soliton exhibits all properties predicted for the weak subsystem. Figures 8 and
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9 calculated according to formulas (15.4) and (15.5) of plus-asymmetric standardization illustrate

the principal distinction in interplay between two mutually asymmetric one-soliton components at

under-critical μν < 1 (Fig. 8) and over-critical μν > 1 (Fig. 9) values of main background parameter

μν.

Here we underline that in the critical point μν = 1 the parameter of coordinate splitting s (5.42)

turns to zero identically by virtue of formula (15.1) for the functional parameter sinh[2(γ++γ−−γ)].

Thus any contradiction between the minus-asymmetric soliton representation and plus-asymmetric

soliton representation is absent. The very existence of two nonequivalent subsystems in either of

two asymmetrically standardized systems makes it possible to describe the system criticality in the

most natural way by eliminating all excitations in a weak subsystem in the critical point.

16. Conclusion

In this article we consider the most important properties of the semi-discrete integrable nonlinear

Schrödinger system with background-controlled inter-site resonant coupling in view of a significant

part that the semi-discrete integrable models of nonlinear Schrödinger type play in the description of

different phenomena from various branches of physics. The list of respective references on physical

applications can be found in our recent publications [66–68]. The core of reviewed results lies in

eight original articles [62,65–71] though the impact of works [31,54,55] dealing with the standard-

ization of famous Ablowitz-Ladik semi-discrete nonlinear system seems to be indispensable. As the

matter of fact the author’s activity in standardization of Ablowitz-Ladik system [54, 55] has been

inspired by rather critical attitude of Academician Alexander S. Davydov towards the nonstandard

field amplitudes as those lacking the direct physical sense [63]. The similar problem of standard-

ization as we have already seen concerns also the semi-discrete integrable nonlinear Schrödinger

system with background-controlled inter-site resonant coupling however on more sophisticated

level [69–71] as compared with the standardization problems appearing in simple semi-discrete

integrable nonlinear systems [50, 54, 55, 58] characterized by the splittable structure (symplectic)

matrices. On the one hand the splittability of a structure matrix assumes that each of the two diag-

onal blocks of a structure matrix is a zero matrix, while each of the two off-diagonal blocks of a

structure matrix is a diagonal matrix. On the other hand the spittabillity requires that the each ele-

ment of a structure matrix being given by the field variables belonging to one separate subsystem.

There is no universal recipe how to overcome both of above conditions simultaneously. As for the

system characterized by the splittable structure matrix the problem of its canonization turns out to

be more or less a trivial (though sometimes very cumbersome) task. Thus the main problem in can-

onization of the semi-discrete integrable nonlinear Schrödinger system with background-controlled

inter-site resonant coupling was to find out such a nonlinear transformation to new field variables

that the corresponding structure matrix will be splittable. To proceed with this program we were

obliged to make a number of logical steps. First of all we have obtained several lowest densities

from the infinite hierarchy and established the system Poisson and Hamiltonian structures in terms

of primary field variables. Then relying upon the so-called natural constraints we have revealed the

system criticality against the background parameter. Taking into account the fact of system critical-

ity we have managed to introduce the set of intermediate field variables and then the two variants of

primary-intermediate field variables. Each variant of primary-intermediate field variables is charac-

terized by the the splittable structure matrix and hence the main obstacle for the system canonization
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have been surmounted. In the course of standardization we have discovered that each of standard-

ized system consists of weak subsystem and strong subsystem. The symmetry between the weak

subsystem and strong subsystem is essentially broken and can be restored only at zero value of

background parameter. In the under-critical region of background parameter both canonical subsys-

tems are the subsystems of bright nonlinear excitations, while in the over-critical region the weak

subsystem converts into the subsystem of dark nonlinear excitations. In the very critical point the

weak subsystem remains completely unexcited. The crossover in the types of nonlinear excitations

has been confirmed by the standardized multi-component one-soliton solution both analytically and

graphically with the formulas for the primary (unstandardized) soliton solution being taken into

account. The primary soliton solution itself has been obtained in the framework of rather nontrivial

Darboux dressing approach developed specially for this purpose.

One more important property of the semi-discrete integrable nonlinear Schrödinger system with

background-controlled inter-site resonant coupling is linked with the a priori arbitrary time depen-

dencies of transverse coupling parameters capable to incorporate the effect of external linear poten-

tial. As a consequence the primary integrable nonlinear system with appropriately adjusted para-

metrical driving becomes isomorphic to the system modeling the Bloch oscillations of charged non-

linear carriers in an electrically biased ribbon of triangular lattice. The justification of this statement

can be found in our recent paper [68].
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